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ABSTRACT As serious public health problems require complex responses, health interventions often
involve multiple components implemented by groups including policy experts, social workers, and health
practitioners. The success or failure of an intervention depends on many different factors, ranging from
available resources to characteristics of the targeted public health issue and community to the complex
mechanics relating cause and effects of the actions performed. In this paper, we present a novel formal
methodology to evaluate public health interventions, policies, and programs. Our method uses the theory
of change (TOC) approach along with logic models that define the intervention under consideration to
generate a causal diagram and an ontology-based inferencemodel for causal description. The resulting causal
diagram will then be compared to existing knowledge and data to determine whether the intervention is
coherent, internally consistent and its goals are achievable in the allotted time with the resources provided.
The contextual knowledge and semantics provided by the ontology will generate a more explainable,
understandable, and trustworthy approach to compare and assess different interventions based on their shared
goals. Depending upon the quality and quantity of data available we perform a mix of qualitative and
quantitative evaluation of the interventions. This study uses smoking cessation interventions to showcase
the proposed methodology in action.

INDEX TERMS Causal graphs, intervention evaluation, logic models, ontologies, explainable AI, public
health program evaluation.

I. INTRODUCTION
The Center for Disease Control and Prevention (CDC)
identifies three main reasons why evaluating public health
programs and interventions is crucial: accountability,
identifying successful methods, and improving future
programs [1]. Another key benefit of intervention evaluation
is the ability to decide whether an intervention is effec-
tive, or finding the most effective intervention among several
programs/proposals. This type of evaluation needs to be
performed before interventions take place whereas most of
the existing evaluation methods are retrospective and, thus,
not suited to such an endeavor.

Health intervention evaluation may be ‘‘Formative
evaluation’’, to assess the feasibility, appropriateness of a
program, ‘‘Process/implementation evaluation’’, to control
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if an intervention’s activity has been developed as planned,
‘‘Outcome/effectiveness evaluation’’, to measure program
effects in the target population, and ‘‘Impact evaluation’’,
to evaluate intervention effectiveness in attaining its goals [2].
The existing literature [3] identifies the shortage of clear
evaluation and automatic procedure to guide and assist
‘‘researchers, grant/journal referees and reviewers in the
design, conduct or assessment of process evaluation, which
means that process evaluation may be planned in an ad hoc
fashion’’.

Public health organizations and health care providers often
make decisions on the effectiveness of interventions and
policies on the basis of their functionalities, time, budget,
and human resource availability. Most of the times complex
intelligent decision support systems used during the evalua-
tion process lack proper explainability. Explainable Artificial
Intelligence (XAI) [4] tends to overcome the limitations of
traditional AI systems to explain their predictions, decisions,
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FIGURE 1. An example of a logic model for smoking cessation, adapted from the U.S. Center for Disease Control and Prevention [21].

and actions to the users. Through a constant learning process
that increases the prediction precision, XAI aims to generate
more explainable, understandable, and trustworthy models.
While this might not yield the best of all possible prediction
and evaluation, it often improves itself through multiple iter-
ative learning processes. One important aspect of the learning
process is learning the semantic associations between dif-
ferent concepts, determinants, and indicators using formal
ontologies in the field. Ontologies capture the users’ concep-
tualization and knowledge of a specific domain. They have
been successfully used in a wide range of clinical [5], [6],
public health [7], [8], and global health [9], [10] applications.

We designed the POLicy EVAlUation & Logical Testing
(POLE.VAULT) Framework [11], [12] that aims to facili-
tate the ontology-based evaluation of public health interven-
tions and policies. It uses Root Cause Analysis (RCA) [13],
a technique for detecting and describing the causality path
for a problem and recommending remedial actions. Using
contextual knowledge captured in ontologies, POLE.VAULT
analyzes public health programs and policies and discusses
how the context influences the outcome. Ontologies pro-
vide reusable modules based on consensus knowledge, which
enables knowledge-based interventions to ‘‘be responsive to
the local context and potentially more effective while still
allowing meaningful evaluation in controlled designs’’ [14].
Here, context covers ‘‘any elements which are external
to the intervention, but which may impede or strengthen
the effects of an intervention’’ [3]. Building up on top of
the POLE.VAULT framework, in this paper, we propose a
method to evaluate public health interventions prospectively.
The proposed method can be interesting for public health
researchers and decision-makers who need to choose between
several possible interventions and to prove that the data sup-
port the theory behind a selected intervention. Through the
mediation of ontologies, many different kinds of data both
qualitative (e.g., access to public parks) as well as quantitative

(e.g., average income) can be used. Similarly, data coming
from different domains (e.g., public health, economy, law
enforcement, etc.) can be aggregated to produce a wider and
more accurate picture of the situation (including the health
status) of a given community.

A complete evaluation also requires a quantitative analysis
of the resources available and the existing stressors to help
direct the choice. This paper focuses on a more qualitative
approach that can be expanded to include quantitative data
later on. As a result, the algorithms and methods that we
present do not yet form a complete solution to the problem.

To illustrate our ideas, we will use the example of smoking
cessation programs. Smoking has been identified as a serious
health issue for a relatively long time, and many different
interventions, from efforts involving communities [15] to
approaches involving law and tax changes [16], have been
designed to help individuals quit smoking. In Section II,
we will introduce the concepts of the theory of change [17],
logic models [18], causal diagrams [19] and ontologies [20]
as well as the characteristics of the targeted population.
Section III explains how to use the proposed method to
evaluate the interventions. Section IV looks at twomethods to
obtain the causal diagrams that are needed for the evaluation.
Section V shows the proposed method in action through an
example scenario. Finally, Section VI discusses prospects for
future work and conclude.

II. THEORY OF CHANGE, LOGIC MODELS, CAUSAL
DIAGRAMS AND ONTOLOGIES
In order to represent the interventions that we intend to eval-
uate, we use logic models [18]. Figure 1 and Figure 2 show
some examples of logic models used in the context of smok-
ing cessation in the United States [21] and Scotland [22],
respectively. A logic model gives a visual representation of an
intervention.Most logicmodels, in particular in public health,
follow the same archetype where inputs (i.e., resources) are
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FIGURE 2. An example of a logic model for smoking cessation, adapted from the Scottish National Health Service [22].

connected to activities (i.e., the actions) that will take place
during the intervention. The activities are connected to out-
puts (i.e., immediate or short-term expected consequences of
the activities), which are then linked to outcomes, impacts
(i.e. the more long-term effect of the intervention). As there
is no universal standard, different organizations may come
up with slightly different logic models for one intervention.
For example, Figure 1 emphasizes on the environment of the
intervention as a parameter, while Figure 2 is more focused
on giving a framework for intervention development instead
of one intervention.

The Theory of Change (TOC) [17] supports the logic
model by defining long-term goals and then ‘‘maps back-
ward to identify changes that need to happen earlier (pre-
conditions). The identified changes are mapped graphically
in causal pathways of outcomes, showing each outcome in
logical relationship to all the others’’. TOC is a helpful tool
to test hypotheses and assumptions on the best interventions
to reach a desirable goal and identifies measurable indicators
of success for evaluating interventions [17].

Behind the development and implementation of an inter-
vention, there is an implied assumption that the activities
will result in progress towards the objectives. This entails
the existence of causal relationships between the activities,
their immediate outputs and the expected impacts of the
intervention. We use causal diagrams [19] to represent these
causal relationships. Figure 3 shows an example of such a
causal graph.

Graphs representing causal pathways have been
extensively used [19], [23]–[28] to visualize the links among

FIGURE 3. An example of a causal graph.

variables of interest. Causal graphs, created from a merger
of graphical probability theory with path diagrams, pro-
vides a powerful yet intuitive tool to show and ‘‘deduce
the statistical associations implied by causal relations’’ [24].
Recent advances in causal inference and discovery [23]
rely heavily on advanced mathematical theories that address
problems such as ‘‘confounding control, policy analysis,
mediation, missing data and the integration of data from
diverse studies’’ [26]. Knowledge representation and Seman-
tic Web tools and techniques have been also used to
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construct and infer causal relationships in multiple health
domains [19], [29], [30].

Causal networks from observational and interventional
data, including the ones involving multiple cause-effect re-
relationships, can be inferred using different statistical and
computational approaches [23], [26], [28], [29], [31]. How-
ever, most of the existing causal inference approaches are
only applicable for a small number of public health applica-
tions, due to the complexity and a high number of parameters
(many uncertain) in the field. One of the main novelties
of our proposed approach is the disambiguation of param-
eters and providing of semantic explainability for causal
links and relations between different elements of an inter-
vention or between different interventions. Our method pro-
vides a semantic backbone to explain and explore questions
throughout all three levels (association, intervention, and
counterfactuals) of causal hierarchy [32]. One of the open
problems [28] in the field of causal discovery is how to deter-
mine the semantic and syntactic properties (e.g., soundness,
consistency) for existing causal search algorithms. Again, our
proposed ontology-driven approach provides semantics that
is transparent to the end-users and rich enough to support
automatic consistency and soundness assessment of causal
pathways through logical reasoning. Moreover, it offers flex-
ibility to accommodate a variety of intervention design,
including partial or multi-level interventions. By utilizing
detailed axioms, this method also expands the set of criteria
that may be used for the identification of a causal graph.

Defining the correct causal graph is difficult because
causality is stronger than simply correlation. By considering
the notion of temporality, e.g., in Figure 3, ‘‘Age of the first
cigarette’’ predates the current ‘‘Number of cigarettes per
week’’ one sees that the causality can only go one way. In a
similar way, there are connections that can, intuitively, go
in only one direction, e.g., changing ‘‘Number of cigarettes
per week’’ will not result in an increase or decrease of some-
one’s ‘‘Income’’. It is also worth observing that this infor-
mation is qualitative and does not explain how two values
are connected. Indeed, it is possible that the sign of causal
relation might change. For instance, increasing the number
of helplines may initially increase the ability to find help.
However, if the number of helplines grows so large that it
causes confusion, it may reduce that ability instead.

Each intervention is tailored for a given population,
designed with specific intent and knowledge by different
persons with different backgrounds and ideas. This means
that two interventions, even if they use the same processes,
are likely to use slightly different vocabularies which makes
it harder to federate and reuse their data and results. For
instance, ‘‘Quitline’’ in Figure 1 and ‘‘telephone helpline’’
in Figure 2 correspond to the same general concept but do
not use the same lexicon. In order to overcome this issue,
we use ontologies that define a uniform common lexicon
that can be used as a ‘‘lingua franca’’ when dealing with
the various interventions. One of the first tasks in interven-
tion evaluation is thus to ‘‘translate’’ the intervention in the

language of the ontology to make it possible to compare
it with the existing resources. Many ontologies exist in the
biomedical domain [33]. Several efforts [34], [35] are under-
way to develop ontologies specifically to describe human
behavior change and the interventions that cause them.

III. EVALUATING INTERVENTIONS
In order to evaluate the interventions, we extracted the pro-
cesses from the logic models and compared them to the causal
diagrams representing the same processes. To be more pre-
cise, the idea is to look for the causal paths that are identified
by logic models in the causal graphs.

Our proposed algorithm contains several different steps.
The first step is to express the information in both logic
models and the causal diagrams using the ontologies. Sev-
eral challenges exist during this process. Logic models often
use terms that cannot be interpreted automatically because
they use words that are specific to a particular intervention
(e.g., ‘‘Quitline’’ in Figure 1) or because they can cover
many different ideas (e.g., ‘‘high-quality quitline services’’
in Figure 1) that may not be regrouped into one concept in the
hierarchy of the ontology. Mapping logic models to ontolo-
gies often require some computational work (e.g., to compute
the list of ‘‘tobacco-related medical expenditures’’ from the
ontology). A solution to tackle these problems is to update
the ontology regularly with new concepts, relations, and
axioms but this may create new challenges. When adding
new concepts and relations, if they are not globally accepted
by the community, the interoperability of the method will be
reduced, which is highly detrimental. Adding new axioms
can be even more damaging as it could lead to inconsistent
ontologies that would thus lose all their meaning. We refer
the interested readers to our previous works [9], [10] on how
to manage changes and maintain interoperability.

The next step is to identify the causal paths implied by
the logic models. In most cases, this step only consists in
following the arrows in the logic models. However, in some
cases, e.g., in Figure 1, the arrows are not specific enough
and choices have to be made on which concepts on the left
of the arrow should be connected to which concepts on the
right. The consequences of the choice depend on how one
tries to connect the paths found in the logic models to the
causal graph. We can assume for now that every concept on
the left, that we will call ‘‘cause (of the arrow)’’ for ease of
understanding, is connected to every concept on the right, that
we will call ‘‘consequence (of the arrow)’’. Some of these
connections will likely be erroneous and can be removed later
if such a problem is detected. Another approach would be
to infer the causal relations from the logic models using a
heuristic or an algorithm but that would likely use the causal
diagram and thus affect the results of the evaluation.

Once the causal paths have been determined, one needs
to check whether they appear in the causal graph. If one
assumes that all concepts on the left need to be connected
to every concept on the right, then it is unlikely to find all
these paths in the causal graph. A better solution would be
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to check whether there exists a path connecting each cause
to at least one consequence and at least one cause to each
consequence. If that is the case, every concept that appears
in the logic model can be expected to have an impact and is
thus meaningful. In such a situation, the intervention seems
sensible.

In order to improve this method, one may want to slightly
modify the notion of the causal graph and make a difference
between causes that positively or negatively affect an out-
come of interest [36]. The algorithm then asks to identify how
the different concepts are supposed to evolve, i.e., whether
we want them to increase or decrease. The algorithm then
checks that the existing paths in the causal graph match this
requirement.

Going slightly further towards a quantitative evaluation
of the interventions, we can use the existing knowledge to
estimate the relative strength of every connection in the causal
diagram. To be able to associate explicit values to the com-
ponents of the causal diagram, we must be able to find a
mapping between the causal diagram and the existing data.
Semantic rules, e.g. Positional-Slotted Object-Applicative
Rule Markup Language (PSOA RuleML) rules [37], can be
used to define how to interpret the data into the ontology.
For example, assuming a dataset contains a database with
a table ‘‘Policy results’’ for policies and how youths and
merchants complied with them, one can use a rule of the form
shown in Figure 4 that extracts the youth compliance data
from the table. Semantic web services, for instance, Semantic
Automated Discovery and Integration (SADI) web services
[38], can be then created using these rules to automate access
to the data. Rules can be a very powerful tool to connect
multiple sources and to increase the semantic information
associated with the data but their exact interaction with causal
reasoning still needs to be investigated.

Once the existing data is available, statistical analysis is
used to weigh each arrow. As noted previously, some of the
arrows may have negative weight. For instance, an increase
in ‘‘Number of cigarettes per week’’ could negatively impact
‘‘ease of smoking cessation’’ in the causal diagram of
Figure 3. Therefore, the existence of a path from the inputs to
the targeted outcomes may not necessarily be an indication
of the likelihood of success. Rather than focusing only on
the existence of a path, the algorithm will now focus on
the product of the weights of the arrows along such a path.
We may decide that an intervention is deemed likely to be
successful if the paths from the inputs to the outcomes are
all positive, i.e., the products of the weights along each path
are positive. Another option could be to require the paths to
have a value higher than a given threshold. However, such
an algorithm requires greater care because the weights of
different arrows may not have comparable value.

IV. GENERATING CAUSAL DIAGRAMS
One of the key challenges of using causal graphs is that they
usually do not readily exist. This means that we need first
to generate causal graphs with which to compare the logic

FIGURE 4. An example of a rule.

models of the interventions. In order to create those causal
diagrams, we propose two different methods.

The first method makes use of the ontology and its contex-
tual knowledge. We assume the existence of enough data to
accurately represent the domain on which the interventions
take place. In the case of smoking cessation, this does not
seem unrealistic because of the well-documented history of
smoking, its health effects and the different approaches to
smoking cessation. From the data, using a statistical approach
to causality [27], it is quite feasible to generate a graph by
analyzing, for every pair of concepts, if there is a causality
relationship between them. Obviously, as the data should be
diverse and comprehensive enough to be representative, this
requires a lot of computation before the evaluation can take
place. Furthermore, there is a risk that the resulting causal
graph will be extremely complex and highly connected which
would severely impede the intervention evaluation. In partic-
ular, it might create so many paths in the causal graph that it is
almost always possible to find one matching the logic model
of the intervention under consideration.

The second method uses the same idea as the evaluation,
i.e., using the inherent causal knowledge in the logic mod-
els. For this to work, we assume that there exists at least
one successful intervention from which knowledge can be
extracted. The problems that arise with this method are the
same as those for the evaluation. First, contrary to what
happened in the first method, the logic models are probably
not expressed in the same language as the ontology, and we
must parse it to generate the right conceptualization. The
correct connections may also be difficult to infer given that
the tasks, outcomes, and goals are usually fairly general
which may yield an inconsistent or even wrong model. Third,
the intervention might be successful despite some inconsis-
tency or miss-match between its components, which results
in misleading connections in the causal graph. As more data
becomes available, it would be possible to refine the causal
graph by extracting knowledge from more than one logic
model and filtering out conflictual information. Finally, this
method does not weigh the connections between concepts or
their strengths. This is not a major problem for a purely qual-
itative approach but will be a hurdle when a more thorough
quantitative approach is followed.

V. APPLICATION
In this section, we will demonstrate the applicability of our
method through a simple example. We use a fragment from
a logic model for smoking cessation (Figure 5) used in
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FIGURE 5. A fragment of a logic model for smoking cessation adapted
from the Maryland Department of Health and Mental Hygiene [39].

Maryland [39]. Because no real causal diagram exists and
we do not have access to sufficient data to infer a realistic
causal graph, we will use a dummy one created solely for this
example.

The first step is to express the domain knowledge in a for-
mal, machine-readable ontology language. This is already an

arduous task. We then map every box of the logic model to an
ontological element (e.g., an ontological concept). Figure 6
shows an example of such mapping. Many concepts need
to be created because they either belong to slightly different
domains or are too specific to have been previously defined.
For instance, there is no concept expressing exactly ‘‘Data
Collection and Reporting’’ so one needs to merge different
concepts, which may come from different ontologies. In this
case, we express ‘‘Data Collection and Reporting’’ as the
union of ‘‘Data Collection’’ and ‘‘Reporting’’.
In many cases, several ontologies define a given con-

cept, with different levels of granularities and expressivity.
For instance, both the National Cancer Institute Thesaurus
(NCIT) [40] and SNOMED CT [41] define a concept for
‘‘Community’’. Using one definition instead of the other
means reducing interoperability because only part of the
existing applications will be consistent with the choice made.
Hence, we state that both definitions are equivalent and use
both definitions at the same time. It can create other problems
too if there are axioms in either ontologies that are in conflict
with the other ontology, but that is usually not the case.
Another possible problem is that the chosen definition for a
concept in an ontologymay not be the one that we are looking
for. For instance, NCIT defines a concept for ‘‘Partnership’’

FIGURE 6. A possible mapping of the boxes from the logic model to an ontology.

VOLUME 8, 2020 9947



J. H. Brenas, A. Shaban-Nejad: Health Intervention Evaluation Using Semantic Explainability and Causal Reasoning

but its definition is ‘A business enterprise entered into for
profit which is owned by more than one person, each of
whom is a ‘‘partner.’’’ [41]. When that is the case, one needs
to find another concept with a meaning closer to what they
need to express: in this case we chose ‘‘Collaboration’’ from
SNOMED CT. A similar problem exists for ‘‘Youth’’ where
the definition is ‘The time of life between childhood and
maturity. This period overlaps with adolescence.’ when what
we are looking for is a person whose state, or age category,
is ‘‘Youth’’. We didn’t make that distinction in Figure 6 to
try to make the mapping easier to understand and represent.
Furthermore, some concepts are not currently defined in the
relevant ontologies for many different reasons. Inmany cases,
for instance, ‘‘Compliance’’, the concept that we are inter-
ested in is not central to any biomedical domain and thus not
defined. In some cases, for example, ‘‘Merchant’’ there exist
other concepts (e.g., ‘‘Vegetable seller’’ in SNOMED CT)
that are more specific. This is an indication that adding a
more general concept might be a good idea. In other cases,
for instance, ‘‘Ban’’, the missing concept can be seen as a
sub-category of an existing concept (e.g., of ‘‘Regulation’’
in NCIT) that can be easily added to the ontology. A final
case is when a concept is not the best way to represent an
idea in the ontology. For instance, ‘‘Price’’ is a value and
is thus better represented by a datatype relation. Similarly,
an ‘‘Increase’’ represents a modification of a data value and
is thus not a concept. On the other hand, there might be
cases where concepts exist that correspond to some part of a
logic model, but we would rather not use them. For instance,
using ‘‘Smoke-Free Policy’’ from MESH [42] to represent
the non-smoking policies may be a good idea but it creates
an unbalance between ‘‘Smoke-Free Policy’’ and ‘‘Regulation
has_subject Smoking’’ if a similar concept does not exist to
describe it.

We now generate a causal diagram from the logic model.
It will have roughly the same shape and directionality as
the logic model. As much as possible, we need to try to
avoid using newly defined concepts because it is unlikely,
they will be used by other applications which would reduce
interoperability.

In this situation, some of the qualifiers that were used pre-
viously, e.g., ‘‘Creation’’, do not matter and can be removed.
We obtain the causal diagram in Figure 7. The logic model
contains the information that the ‘‘Compliance by Merchants
and/or Youth’’ affects the ‘‘Price of Tobacco’’ through ‘‘Tax-
ation’’. This is a piece of information that should appear
in the causal diagram but the logic model does not explain
how ‘‘Taxation’’ is related to the ‘‘Compliance’’s. Here,
an ontology-driven causal diagram can help us improve inter-
pretability, transparency, and explainability of our model.
As the causal diagram uses values, ideally every node of the
causal diagram should correspond to a data relation in the
ontology. Such is the case for ‘‘Tobacco Price’’ that corre-
sponds to ‘‘Tobacco has_price’’. This is not always possible,
and indicators may have to be found when a concept is used
instead. However, as we are only interested in the qualitative

FIGURE 7. A possible causal diagram resulting from the logic model.

evaluation of the interventions, not being able to assign values
to the concepts is not a big problem.

In order to evaluate the intervention represented by the
logic model in Figure 5, we use a dummy causal diagram,
shown in Figure 8, that represents the concepts present in the
logic model. The goal is to check the existence of the causal
paths implied by the logic model. For instance, the logic
model implies that there is a causal path between a ‘‘Smoking
Ban’’ and ‘‘Compliance by Merchants’’. Indeed, a direct path
can be found in Figure 8. In a similar way, the logic model
implies the existence of a causal path between ‘‘State Involve-
ment’’ and ‘‘Compliance by Merchants’’ that is not directly
in the causal diagram but still exists. Using the underlying
semantics provided by ontologies, one can infer indirect paths
within a causal diagram. On the other hand, the logic models
contain a path from ‘‘Data Collection’’ to ‘‘Compliance by
Youths’’ that does not exist in the causal diagram. As the
causal diagram does not contain any edge from ‘‘Compliance
by Youths’’ to ‘‘Tobacco Price’’, the evaluationwould validate
the paths from ‘‘Community Involvement’’, ‘‘State Involve-
ment’’ and ‘‘Smoking Ban’’ but not the others. In order to
obtain amore quantitative approach, it is possible to use exist-
ing data (e.g., generated through statistical analysis) to pop-
ulate a causal diagram before comparing it to the one created
from the logic model. Many different approaches can be used
to weight the connections in the populated causal diagram.
For example, one could use a linear regression and time series
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FIGURE 8. A possible causal diagram to compare to the logic model.

models between the various data points. By using the slope of
the regression, one gets an approximation of how a change in
one of the two parameters affects the evolution of the other.
It is, obviously, not perfect and only works if the linear regres-
sion is a good approximation of the relationship between
the two parameters. Another key difficulty is that it requires
huge amounts of data that may not be available or exist.
As we are, for now, mostly interested in the theory, we can
assume that we have enough data for the method to function
properly. That may not necessarily be the case in actual
applications.

Using the weighted causal diagram, the paths found in the
qualitative evaluation can now be calculated and weighted
too. In order to obtain the weight of a path, we multiply the
weights of all the edges that it contains. It is not a fully accu-
rate estimate of the relationship between the input resources
and the outcomes because several concepts may have all sorts
of causes outside of the path that are not taken into account in
the evaluation. It should, however, give an idea of what can
be expected.

It is worth pointing out that our goal here is not to determine
the best way to weight the edges of the causal diagram.
The algorithm computing the weights is a key part of any

application of our method but, given that our focus is on the
theory and we are not collecting any data for the computation
of weights, we only use random numbers as an illustration of
our method in this example. A complete study of the possible
choices for the weights and how to extend them from edges to
paths would be of great interest but lies outside of the scope
of this paper.

Let us use the modified causal diagram in Figure 9. The
values it contains, as discussed above, are purely arbitrary
and do not reflect any actual knowledge. In a real-world
application, the weights must be computed or inferred from
the existing data. One can see that some of the paths that
had been identified previously in the qualitative evaluation
appear not to be propitious. For instance, the path ‘‘Smoking
Ban’’ to ‘‘Compliance by Merchants’’ to ‘‘Tobacco Price’’
has a weight of −3.4 and would thus likely not have positive
results. On the other hand, the path ‘‘State Involvement’’
to ‘‘Taxation’’ to ‘‘Compliance by Merchants’’ to ‘‘Tobacco
Price’’ has a weight of 2.04 and is thus expected to yield
the intended results. Some inputs can yield several differ-
ent weights that can yield similar results, e.g., ‘‘Community
Involvement’’ is at the start of two paths ending in ‘‘Tobacco
Price’’ both having positive weights (2.7 for the direct one,
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FIGURE 9. A causal diagram with weighted edges.

8.5 for the indirect one), or different results, e.g., ‘‘State
Involvement’’ also starts a path through ‘‘Smoking Ban’’ with
a negative weight.

VI. DISCUSSION AND CONCLUSION
In this paper, we proposed a formal approach to evaluate
public health interventions. It rests on the idea of studying
the causal relationships behind a target intervention, which
is expressed in its logic model. This causal pathway is then
compared to causal diagrams constructed from real-world
evidence data. Several hurdles needed to be cleared for our
method to be fully functional. In order to be able to effectively
compare the information coming from the logic model of an
intervention with the causal diagrams, theymust be expressed
using similar concepts. This problem can be addressed by
using formal ontologies to build a common semantic model
and language. Moreover, full causal diagrams are rarely read-
ily available in the real world, even for domains in which
sufficient knowledge exists. This issue can be palliated by
using existing data to generate a causal diagram according
to our best knowledge. To facilitate reuse and integration,
we advocate the use of logic rules and semantic web services
to create a framework for data access.

Most current intervention assessment methods are either
based on survey data or based on a set of pre-defined
assumptions without taking into account the context and its
dynamics. The contextual knowledge captured in ontolo-
gies enables us to analyze how context influences outcomes.

Using semantic inference and causal reasoning within an
explainable AI framework we can determine what elements
in a disease causal pathway (e.g. behaviors, actions, or con-
ditions) must be changed to stop the recurrence of similar,
undesired outcomes.

Using the formal consensus knowledge and the logical
reasoners enable researchers and policymakers to evaluate
(or forecast) various outcomes of one specific intervention
(or series of interventions) through logical inference and
deductive querying (e.g. what are the potential consequences
of a smoke cessation intervention on the prevalence of lung
cancer in a defined community in the next decade?)

We have proposed several approaches to intervention eval-
uation. The purely qualitative approach uses the casual graph
and checks for the existence of the causal paths that are
present in the logic model. The more quantitative approach
additionally checks whether these paths affect the outcome
in the right direction. This creates the need for more elabo-
rate causal diagrams that reflect the relative importance of
connections. This can be done by using the existing data.
To the best of our knowledge, this work is the first study that
investigates automatic evaluation and assessment of health
interventions using semantic and causal reasoning and infer-
ence.

We hope that our intervention evaluation can be useful to
all the actors involved in public health intervention design and
implementation. We, however, acknowledge that this method
is only the first step in creating an automated intervention

9950 VOLUME 8, 2020



J. H. Brenas, A. Shaban-Nejad: Health Intervention Evaluation Using Semantic Explainability and Causal Reasoning

evaluation tool. Considering that in the real-world the activ-
ities defined within a logic model does not usually occur in
a straight-line sequence we used formal ontologies to model
the way we believe things will happen, rather than how it
actually happens. The underlying theory of change provides
a ‘‘forecast that shows what conditions we believe must exist
for other conditions to come into being’’ [43] (e.g. if x, then
y), and goes through by several phases of evaluation and
recalibration throughout an intervention evaluation life cycle.
Each application requires the creation of a specific causal
diagram and each causal diagram requires the acquisition and
sharing of knowledge. Furthermore, every additional piece of
data can be used to refine the evaluation and make it more
accurate. One area for future research is evaluating the way
the causal diagram models reality. Our method relies on the
assumption that paths are enough to describe the domain,
but this is not necessarily the case. The more quantitative
approach also raises additional problems as one needs to
figure out how to assign weights to the edges, whether they
are constants or functions, how to weight the paths from the
weights of the edges, etc. More theoretical work is underway
to make the proposed model fully functional.
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