
SPECIAL SECTION ON ADVANCED DATA MINING METHODS FOR SOCIAL COMPUTING

Received December 20, 2019, accepted January 2, 2020, date of publication January 8, 2020, date of current version June 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964785

Searching Correlated Patterns
From Graph Streams
MING JIN 1, MEI LI 2, YU ZHENG 3, AND LIANHUA CHI 4
1School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia
2College of Information Engineering, Northwest A&F University, Yangling 712100, China
3Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
4School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia

Corresponding author: Mei Li (limei@nwsuaf.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant 2452018147, in part by the
Doctoral Scientific Research Foundation under Grant Z109021709, and in part by the Key Research and Development Program of Shaanxi
under Grant 2019ZDLNY07-06-01.

ABSTRACT Mining the correlation has attracted widespread attention in the research community because
of its advantages in understanding the dependencies between objects. In this paper, a correlated graph
pattern searching scheme has been proposed, that is, provided with a query g as a structured pattern (i.e.,
a graph), our algorithm is capable of retrieving the top-k graphs that most likely correlated with g. Traditional
methods treat graph streams as static records, which is computational infeasible or ineffective because of
the complexity of searching correlated patterns in a dynamic graph stream. In this paper, by relying on
sliding windows to separate graph streams in chunks, we propose a Hoe-PGPL algorithm to handle the top-k
correlated patterns searching from a dynamic perspective. Our algorithm applies Hoeffding bound and two-
level (Sliding window level and local batch level) candidate inspection to discover potential graph candidates
and determine the similarity of these candidates without double-checking the previous stream. Theoretical
analysis shows that our method can guarantee the quality of the returned answers, and our experiments also
present that Hoe-PGPL has an excellent performance with aspects of precision, recall, runtime, and resource
consumption.

INDEX TERMS Data streams, graph streams, correlated structure pattern query, Pearson correlation
coefficient.

I. INTRODUCTION
Correlation mining has attracted widespread attention in the
research community because of its peculiarity and superiority
in finding potential correlations between different patterns.
Many research works have been conducted on correlated pat-
terns mining in various applications, such as financial trans-
action databases [45], [68], [70], quantitative databases [11],
and time-series data streams [40]. The research interest has
recently extended to graph streams where elements are con-
nected by relying on structural relations [26], [28]–[30].
A structural pattern is, therefore, equivalent to a graph rep-
resented as nodes that interconnected by edges.

The correlation between two structural patterns (graphs)
is a measure of the similarity in their occurrence distribution.
Provided with a query g and a graph stream, Correlated Graph
Search (CGSearch) aims to find structural patterns with the

The associate editor coordinating the review of this manuscript and

approving it for publication was Shirui Pan .

Pearson correlation coefficient at least θ , which is a user
predefined threshold. An example of this has been shown
in Fig 1 where θ = 1. Although this type of correlated
subgraph pattern is found to be important in various graph
representations, it expects the user to predefine a threshold
to work. However, it is usually challenging to specify such a
threshold, since a small value may lead to many correlation
graphs, while a large value may lead to very few results.
Recently, a version of the top-k algorithm has been proposed
to identify salient correlation subgraphs with the highest
correlation with g from the database [28], [43], [48].
However, these works [26], [28] are limited to static graph

streams only. In reality, the data streams are continuously
generated or change within/across various applications. For
example, on a website such as eBay, there are millions of
active users every day [5], and we can use graphs to represent
their browsing records. On the other hand, their activities
may change dynamically and different from other users so
that the analysis of correlated graphs of user’s browsing

106690 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6833-4811
https://orcid.org/0000-0003-2962-8945
https://orcid.org/0000-0003-0757-4210
https://orcid.org/0000-0002-6851-0731
https://orcid.org/0000-0003-0794-527X

M. Jin et al.: Searching Correlated Patterns From Graph Streams

FIGURE 1. A example illustrated correlated graph query. Given a database D = {g1,g2,g3,g4} and a query graph q, correlated graph query is
able to discover some subgraphs which has similar occurrence distributions with q. For instance, the answer subgraph ‘‘E-F’’ is a co-occurrent
subgraph of the query subgraph ‘‘A-B-C’’.

patterns will enable website owners to better understand
user needs and improve their services. Another example of
the dynamic graph stream can be found in the biomedical
domain. The association of chemical compounds may change
constantly during a chemical reaction because the structures
of chemicals change dynamically. Analysis of these com-
pounds (which can be regarded as correlated graphs) can
find out some important substructures, which may help to
discover new drugs [51]. In our experiments, we will also
demonstrate a case study of structural patterns searching
of scientific publications, which uses keywords and citation
relationships to retrieve papers highly correlated to a query
pattern (whereas traditional non-structural pattern search can
only use keywords for query). All these examples demon-
strate a clear need for searching structural patterns from graph
streams.

Recently, Shirui and Xingquan proposed a CGStream-
based method to query correlated graphs in a data stream
scenario [42]. While CGStream can return the correlated
graphs in an approximate but effective way, it expects users
to define a threshold value θ , which indicates the minimum
correlation scores between query g and retrieved patterns in
graph streams. Notice that in real-world applications, such
a threshold value is usually challenging to define and may
differ significantly for different streams and query patterns.
In order to make the structure pattern search more applicable
to real-life usages, we propose to address top-k correlated
graph queries for data streams in a dynamic way. In this
article, we focus on finding the top-k correlated graphs, rather
than retrieving correlation graphs with correlation values
above a given threshold θ . The main challenges, in this case,
are as follows:
• Graph correlation query combines NP-complete sub-
graph isomorphism examinations. In this case, storing
and calculating the frequency and correlation of each
subgraph is intricate in streams.

• Recalculating all correlations is very time-consuming
because the correlation within graphs are constantly
changing in streams over time.

• Streaming schemes require algorithms to return answers
promptly.

Exhaustive search is a straightforward method to address
our problem, which handles graph streams by using slid-
ing window approaches, then the hidden correlations are
examined by searching for the top-k correlated struc-
tural patterns based on the CGSearch [25], [26] or Top-
Cor [28], [30] algorithm in each window. Although the
exhaustive approach guarantees that the results are com-
plete and accurate, it is computationally infeasible since it
is time-consuming to search correlated structural patterns in
different windows repeatedly. A compromise is to allow the
system to retrieve the results in an approximate but highly
reliable way, with much faster query speed than exhaustive
search.

In this paper, we propose a correlated pattern searching
algorithm based on Hoeffding bound [20] and data streams.
This algorithm returns the top-k most correlated graphs of the
query graph in a sliding window covering multiple consec-
utive batches of stream records. More precisely, Hoeffding
bound [20] has been applied to each batch to determine a
series of possible correlated graphs. Then a novel scheme
named global-local inspection has been proposed to keep
track of candidate information based on two different sub-
schemes: Potential Local Lists (PLs) and Potential Global
List (PG). Although the potential global list PG can be uti-
lized to roughly estimate the candidate’s real correlation value
from a global perspective, the potential local lists PLs enable
us to estimate the correlation value from a local perspective,
which is more reliable. By carefully manipulating the PG and
PLs, we can predict each candidate’s actual correlation with a
relatively small deviation. Theoretical analysis shows that the
correlation value of each candidate in the PG is close to its real
correlation so that the output quality can be guaranteed and
bounded with aspects of the accuracy and recall of queries.
Our experimental results in section 5 indicate that Hoe-PGPL
is far more accurate and efficient when compared with an
exhaustive search method with aspects of time, memory con-
sumption, precision, recall.

VOLUME 8, 2020 106691

M. Jin et al.: Searching Correlated Patterns From Graph Streams

The rest of the paper is structured as follows. Preliminaries
and the problem definition are presented in Section 2. Our
Hoeffding bound based algorithm is presented in Section 3.
In Section 4, we provide a bound on the expectation of preci-
sion and recall. Experimental results are shown in Section 5,
following by a case study of correlated graphs from DBLP
graph streams in Section 6. In Section 7 and 8, we give a
review of the related works and summarize the paper.

II. PRELIMINARIES AND PROBLEM DEFINITION
A. PRELIMINARIES
We mainly consider connected, labeled, and undirected
graphs in this paper, where a typical graph is defined as
g = (V ,E, `). In this representation, V , E , and ` are the
vertices set, edge set, and labeling function, respectively.
The labeling function aims to attach labels to an edge or a
node in a graph. Given two graphs g1 = (V1,E1, `1) and
g2 = (V2,E2, `2), a subgraph isomorphism from g1 to g2
is an injective function f : V1 → V2, such that ∀(u, v) ∈
E1, we have (f (u), f (v)) ∈ E2, `1(u) = `2(f (u)), `1(v) =
`2(f (v)), `1(u, v) = `2(f (u), f (v)). g1 is a subgraph of g2 if a
subgraph isomorphism exists from g1 to g2, where subgraph
isomorphism is a NP-complete problem [13].

For a set of graphs Gi, the projected set in terms of graph
g denotes as SGig =

⋃
{g′|g ⊆ g′, g′ ∈ Gi}. The frequency Fg

and support SP(g) of the projected set is denoted as Fg =
|SGig | and SP(g) = |SGig |/|Gi|. For a set •, its cardinality
has been denoted as | • |. Given g1 and g2 in Gi, their joint
frequency is the number of graphs in Gi that have both g1
and g2, which denotes as Fg1 g2 = |S

Gi
g1

⋂
SGig2 |. Accordingly,

their joint support is SP(g1, g2) = |S
Gi
g1

⋂
SGig2 |/|Gi|.

B. PROBLEM DEFINITION
Provided with a streaming graph G and a query g, we
mainly focus on determining top-k correlated structural
patterns (graphs) from G regards to g. We assume that
graph data comes in batches, and a sliding window D =
{G1+i−w,G2+i−w, · · · ,Gi} is defined to cover a continuous
area of the streaming graph since G describes a dynamic
graph stream which changes continuously. In this case,
a batch of graphs has been denoted as Gj, i ≥ j ≥ 1+ i− w,
and the latest batch of streaming graphs has been denoted as
Gi. After that, our task is searching for the top-k correlated
patterns with g and the highest Pearson correlation in themost
current w batches. Figure 2 shows a top-k correlated graph
querywith a query graph g and awindow sizew, which equals
to 3.
Definition 1 (Pearson Correlation Coefficient): Provid

with graphs g1 and g2, which individual and joint supports
are defined as SP(g1), SP(g2), and SP(g1, g2) over F graphs,
respectively. The Pearson correlation coefficient φ(g1, g2) is
denotes as [45], [61]:

φ(g1, g2) =
SP(g1, g2)− SP(g1)SP(g2)

√
SP(g1)(1− SP(g1))SP(g2)(1− SP(g2))

(1)

FIGURE 2. Searching top-k correlated patterns based on sliding windows
over data streams. Batches G1, G2, and G3 have been covered by a sliding
window (red rectangular range) at timestamp T1. G4 is a newly arrived
batch at timestamp T2, which means that it is the most recent batch,
the sliding window updates to cover G2, G3, and G4 (solid red rectangle).
We use two different lists (PG and PLs) to store the potential graphs, and
results will be returned from the PG in each sliding window.

φ(g1, g2)) is 0 when SP(g1) or SP(g2) is equal to 0 or 1,
and the range of φ(g1, g2)) is between 0 and 1 because in
this paper, we only consider the positive correlations between
graphs.

The Pearson correlation coefficient can transform into
another representation over a set with F graphs in terms of
frequency [68]:

φ(g1, g2) =
FFg1g2 − Fg1Fg2√

Fg1 (F − Fg1)Fg2 (F − Fg2)
(2)

Fg1 , Fg2 , and Fg1 g2 denote the number of graphs with g1,
g2, and g1 plus g2 over F graphs, respectively. For clarity,
the correlation between g1 and g2 is represented as φD(g1, g2)
when they come from the entire windowD; On the other hand,
the correlation is φL(g1, g2) if these variables are collected
from a local batch of graphs Gj.

III. PROPOSED METHOD
In a data stream scenario, we aim to return the top-k correlated
subgraphs in each sliding window. A straightforward way is
to apply CGSearch [25], [26] or TopCor [28], [30] algorithm
to each sliding window whenever a new graph batch arrives.
However, this is computationally ineffective because recom-
puting the correlation of each subgraph from scratch in the
sliding window is expensive, especially for a large window
size.

Another way is to have a set of possible candidates over
streams, whenever a new batch of graphs flow in, we update
the statistic frequency information (according to Eq. 2) for
each candidate g in D (Fg1 , Fg2 , and Fg1g2) instead of restart-
ing to mine from the whole sliding window. Under such
circumstances, determining what type of candidates should
be discovered and how to maintain these candidates are of
great significance. In this paper, Hoeffding bound [20] has
been applied in each batch to elect a set of candidates, then
we rely on a global-local inspection scheme to maintain these
potential graphs with the PG and PLs. In this section, we first
state the Hoeffding bound [20] for candidate generation and
then introduce our algorithms with two levels of candidate
lists.

106692 VOLUME 8, 2020

M. Jin et al.: Searching Correlated Patterns From Graph Streams

A. HOEFFDING BOUND FOR CANDIDATE GENERATION
In [58], Rong et. al use a Chernoff bound to discover the top-
k frequent itemsets over data stream, where they assume the
presence of each item/itemset at each timestamp over streams
is a random boolean variable (i.e., if an item/itemset appears
at a timestamp, the random variable is 1, otherwise 0). In our
application, the correlation over a stream at each timestamp
is a real number within range [0, 1], so we employ Hoeffding
bound [20], which is also widely used in pieces of literature
on algorithm ranking and data stream classification for can-
didate generation.

Suppose there is a series of independent drawing points
{φ1, φ2, · · · , φn}, each point φi is in the range of [a, b]. The
Hoeffding boundary [20] provides a certain probability that
guarantees for the statistical estimation of the underlying
data. More explicitly, the estimated mean r̄ = 1

n

∑n
i= φi if

r is the expected value of these points. For any ε, Hoeffding
bound states that [20], [43],

Pr{|r − r̄| ≥ ε} ≤ 2e−
2nε2

R2 (3)

In above formula, n and R denote the number of accu-
mulated observations and the range of each observation φi,

respectively. If we let δ = 2e−
2nε2

R2 be the right side of
Eq.(3), the Hoeffding bound [20] indicates that the estimated
average r̄ exceeds±ε of r with a probability no greater than δ;
Otherwise speaking, r̄ is within the expected ε. From Eq.(3),
we know that [42]

ε =

√
R2 ln (2/δ)

2n
(4)

In the problem settings of this paper, we mainly focus on
positive correlations and fix the range of R = 1. We assume
the streaming data arrives in batches, and the correlation
is randomly distributed over data streams. For each batch,
we measure the estimated mean r̄ = φL(g1, g2), and the
correlation φD(g1, g2) in a sliding window is no less than
φL(g1, g2) − ε with probability 1 − δ. Generally speaking,
we compute φL(g1, g2) in batches over |Gi| graphs, and this
result should equals to the average of φL(g1, g2).
In each batch of the data stream, a set of potential top-

k correlated graphs can be mined by using the Hoeffding
bound [20]. Specifically, instead of query from the whole
batch, we aim to identify a series of candidates from the
projected database SGig2 , which is a subset of the batch
data Gi including all graphs containing query g2. Because
the size of SGig2 is much smaller than the original batch of
data, the employment of SGig2 can greatly reduce the time
consumption [26], [28], [30]. For each candidate graph g1,
we requires its correlation value is within a small range of
the k th value, i.e., φL(g1, g2) > φL − 2εs. In this case, εs =√

R2 ln (2/δ)
2|Gi|

and φL(g1, g2) denotes the k th correlation value
(notice that candidates are sorted based on their correlation
values in descending order) with query graph g2. Specificlly,
the method in [28], [30] or CGSearch algorithm [25], [26]

TABLE 1. Notations with Respect to Hoeffding Bound for Candidate
Generation.

can be used to find the k th correlation value. In this paper,
we summarise the primarily used notations of Hoeffding
bound in table 1 [20].

B. TWO LEVELS OF LISTS IN GLOBAL-LOCAL
INSPECTION SCHEME
After finding the possible top-k correlated structural patterns
in different batches, they need to be maintained carefully.
Here we introduce two different lists to manipulate these
patterns (graphs).

• Potential Global List (PG): For each candidate in
sliding window D, its global frequency information
(Fg1 , Fg2 , and Fg1g2) is stored in the PG where graphs
are sorted based on their correlation values in descend-
ing order. The top-k correlated graph query may simply
return the final answers by retrieving the top-k graphs
in the PG. The frequency of each candidate should
be updated accordingly whenever D is changed, e.g.,
adding or excluding a data batch.

• Potential Local Lists (PLs): The local frequency infor-
mation of each candidate (Fg1 , Fg2 , and Fg1g2) is
recorded in a set of PLs where we apply a list PLj,
j ∈ [1+ i− w, i] to keep the retrieved graphs from Gj.

To mine a graph stream effectively, we cannot keep track
on all of the information about the data stream. Usually, the
complexity is caused by a situational pattern τ , which is
less significant in historical observations but may become
significant in the future. However, the historical information
τ may not be stored since τ is less significant in previous
observations unless we are allowed to access the historical
stream data, which is prohibitive. As a result, we define an
emerging candidate pattern as follows.
Definition 2 (Emerging Candidate Patterns): Provide with

a query graph g1 and a sliding window D that covers w con-
secutive data chunksD = {Gi−w,G1+i−w, · · · ,Gi−1}, where
Gi−1 is the most recent data chunk. Assume a new data batch
Gi arrives, an emerging candidate pattern denotes a pattern τ ,
whose correlation value to g1 in Gi is significant with respect
to a predefined threshold (i.e., φL(τ, g1) ≥ φL−2εs), whereas
τ does not exist in D’s potential global candidate list.

Because an emerging pattern τ does not exist in the PG of
the previous sliding window, τ ’s true correlated value to g1

VOLUME 8, 2020 106693

M. Jin et al.: Searching Correlated Patterns From Graph Streams

in a new sliding window D′ = {Gi−w+1, · · · ,Gi−1,Gi} will
need to be estimated, which may, however, introduce bias.
In the following, we first discuss some possible solutions and
then present our global-local inspection scheme to handle this
problem.

• Up-to-date Batch only Estimation: A straightforward
way of estimating an emerging pattern τ ’s correlation to
the query graph g1 is to use τ ’s correlation in the most
current batch (φL(τ, q)) as an estimation of the whole
sliding window. As in our experiments, such a simple
scheme is not accurate and may result in significant
errors in the query results.

• PG-only Estimation: An alternative approach is to uti-
lize the PG to estimate the correlation of candidates from
a global perspective. Specifically, if an emerging pattern
τ is not in the PG (i.e., τ /∈ PG) but correlate with the
most current batch (i.e, τ ∈ PLi), which means that
in previous batches, φD(τ, g1) is comparatively low in
the sliding window, so τ cannot be previously held in
the PG. If a candidate τ /∈ PG and τmin denotes the
graph with the minimum correlation value φD(τmin, g1)
in the PG, we know that in previous batches φD(τ, g1) <
φD(τmin, g1). Therefore, τ can be estimated by using
τmin’s frequency information in previous batches. τ is
usually a small value (not the correlated patterns in
the current window) but may have the most significant
correlation in previous blocks.

• PLs-only Estimation:We can also employ a set of PLs
to calculate the emerging candidate pattern’s frequency.
Specifically, if a candidate τ /∈ PG, we can search
over the PL1+i−w to PLi−1 to estimate its frequency
in previous batches. On the one hand, the frequency
information in Gj can be obtained directly if τ ∈ PLj,
j ∈ [1 + i − W , i − 1]. On the contrast, if τ /∈ PLj,
then the minimum correlation in PLj is larger than its
correlation in Gj. If τmin denotes the graph in PLj with
the minimum correlation value, the frequency of τ in
Gj can be estimated by using the frequency information
of τmin. By leveraging PLs, we are hopefully getting a
more precise correlation estimation for each emerging
candidate pattern.

Global-local inspection scheme: Because PG and PLs
each has its unique advantages to estimate the correla-
tion value from either global or local perspectives, our
global-local inspection scheme integrates PLs and PG
together, and the detailed procedures are illustrated in
Algorithm 1.

Firstly, the estimated frequency for each candidate τ can
be obtained by going through PL1+i−w to PLi−1 from a local
perspective, as shown in Algorithm 1 from steps 3 to 10,
which minimizes the gap between the correlation values in
PLj, j ∈ [1+i−w, i−1] and their actual values inGj. Specifi-
cally, τ in batchGj has been estimated by using the frequency
of g′2 in step 11. The data structure of list(Fτ), list(Fg2), and
list(Fτg2) in this step will be introduced in Sec. 3.3. When

Algorithm 1 Merge(PLi,PG, τ)

1 τmin = arg min
g0∈PG

φD(g0, g1);

2 for τ ∈ PLi and PG do
3 for PLj, j ∈ [1+ i− w, i− 1] do
4 if τ ∈ PLj then
5 g′2 = τ ;
6 end
7 else
8 g′2 = arg min

g2∈PLj
φL(g2, g1);

9 end
10 end
11 Insert the statistics of g′2 in batch Gj to list(Fτ),

list(Fτg2), and list(Fg2);
12 if φD(τmin, g2) < φD(τ, g2) then
13 Further correct the statistics of τ ;
14 end
15 Add τ into PG;
16 end

we get the frequency of τ from PLs, this information can
be examined from a global perspective in the PG, as shown
in Algorithm 1 from steps 12 to 14. If τmin denotes the
graph with the minimum correlation in the PG and a renewed
correlation value φD(τ, g2) is greater than φD(τmin, g2), we
require φD(τ, g2) < φD(τmin, g2) from a global perspective
so that a further correction of the frequency information of
g2 will be needed. In our implementation, we replace the
frequency of τ with the frequency of τmin in Gj if we find
τ /∈ PLj, j ∈ [1+i−w, i−1]. By doing this, we can add newly
generated candidates into the PG and accurately estimate
its real correlation with the query graph g1. Consequently,
the ranking of the PG can be more reliable, and the ground
truth can also be returned in a more precise way.

C. HOE-PGPL ALGORITHM
Our Hoe-PGPL algorithm for continuous correlated subgraph
queries from data streams is listed in Algorithm 2. The frame-
work takes multiple parameters as inputs. To be more spe-
cific, G is a continuous graph stream; k specifies the number
of returned graphs; w indicates the sliding windows size with
aspects of a number of batches; parameter m controlling the
capacity of the PG.

We first initialize the PG and PLs as empty sets in step 1,
and the loop in step 2 represents a stream processing cycle.
As long as new graph data arrives constantly, the stream pro-
cessing cycle will repeat. When a new chunk Gi is collected,
the most antiquated data batch will be discarded by Hoe-
PGPL, which only applies Gi for the mining purposes. After
this, in each sliding window, Hoe-PGPL will return the top-k
correlated graphs Ag2 , and this process continues as long as
the stream data continuously flow.

106694 VOLUME 8, 2020

M. Jin et al.: Searching Correlated Patterns From Graph Streams

Algorithm 2 Hoe-PGPL Algorithm
Input :

G = {G1, · · · ,Gi, · · · }: Graph streams;
k : number of returned correlated graphs;
w : size of the sliding window;
m : maximize number of candidates in PG;

1 PG = ∅, PLs = ∅;
2 while G! = ∅ do
3 Gi← a new graph batch;
4 G← G/Gi ;

5 SGig1 =
⋃
{g2|g1 ⊆ g2, g2 ∈ Gi},Fg1 = |S

Gi
g1 |;

6 Retrieve top-k correlated graphs in Gi from SGig1 ;
7 Get the k th correlation value φL and error εs;
8 PLi←

⋃
{g2|φL(g2, g1) ≥ φL − 2εs, g2 ⊆ g′2, g

′

2 ∈

Gi};

9 for g2 ∈ PG do
10 Increasing list(Fg2), list(Fg2g1), and list(Fg1);
11 if |list(Fg2)| > w then
12 Remove the first element from list(Fg2),

list(Fg2g1), and list(Fg1);
13 end
14 end

15 Merge(PLi, PG, τ);

16 Recalculate top-k correlated patterns based on PG
and insert to Ag2 ;

17 if |PG| > m ∗ k then

18 calculate the bound εw =
√

R2 ln (2/δ)
2w|Gi|

;
19 Get the k th correlation value in PG, φD;
20 T ←

⋃
{g2|φD(g2, g1) < φD − 2εw, g2 ∈ PG};

21 PG← PG− T ;
22 end

23 Output Ag2 in the current sliding window;
24 i← i+ 1;
25 end

The Hoe-PGPL algorithm has four parts: (i) Candidate
generation based on Hoeffding bound [20] (steps 5 to 8);
(ii) Adjusting the frequency information in the PG
(steps 9 to14); (iii) Adding newly generated candidates to the
PG (step 15). Notice that this is a crucial subprocedure, and it
is shown in Algorithm 1; (iv) Pruning the PG (steps 16 to 22).
As parts (i) and (iii) have been discussed in previous subsec-
tions, we focus on the other two parts in this subsection.

1) UPDATING THE FREQUENCY INFORMATION IN PG
In each batch andwindowD, we need to refresh the frequency
information for each candidate g2 ∈ PG, i.e., Fg1 , Fg2 and
Fg1 g2 . Steps 9 to 14 in Algorithm 2 list the maintenance of
candidates that already exist in the PG. We first introduce
our data structure to record the frequency information then

describe the increasing and the decreasing procedures to
maintain the PG. To check the calculation of the Pearson
correlation value, each candidate in the PG is represented by
a five-dimensional tuple as follows:

< g2,F, list(Fg1), list(Fg1g2), list(Fg2) >

In the above tuple, g2 is the graph, F is the total number of
stream graphs after g2 is inserted into the global candidates
set. list(Fg1) is an array list, with each of its elements record-
ing the frequency of g1 in each batch of the sliding window.
Similarly, list(Fg1g2) and list(Fg2) store information about the
Fg1g2 and Fg2 in each batch, respectively. The increasing and
decreasing procedures are as follows:
Increasing Procedure: for each candidate g2 ∈ PG, if it

exists in thePLi, we update its frequency information directly,
otherwise, we search dataset SGig1 to get Fg2g1 , and search
the whole batch to get Fg2 information. All these frequency
statistics are inserted to list(Fg2), list(Fg2g1), and list(Fg1),
respectively.
Decreasing Procedure:We need to decrease the frequency

information for candidates in the PGwhen an antiquated data
batch is deleted from the sliding window. As we store each
candidate in a five-dimensional tuple, which helps facilitate
the decreasing process in a fast way, i.e., we only need to
remove the first element in the array list of Fg2 , Fg2g1 , and
Fg1 whenever a batch of the graph becomes outdated.

2) PRUNING PG
If |PG| is becoming considerably large, it may be
time-consuming to maintain and search from the PG, which
will, in turn, require pruning for PG (steps 11 to 15 in
Algorithm 2). If the number of candidates in the PG exceeds
a predefined threshold, i.e.,m∗k , Hoe-PGPL simply removes
the candidates whose correlation value is less than φD−2εw to
ensure that the maximum number of candidates in PG ism∗k .

IV. PRECISION AND RECALL BOUND ANALYSIS
Because our algorithm is an approximation based method,
in this section, we study its theoretical bound in terms of
query precision and recall.

Suppose the target top-k correlated graphs are denoted
as Tg2 , and the calculated graphs Ag2 are returned by Algo-
rithm 2, then the precision and recall can be calculated with
|Tg2

⋂
Ag2 |/|Ag2 | and |Tg2

⋂
Ag2 |/|Tg2 | [58], respectively.

Basically, we need to use two different estimations in our
algorithm: the k th correlation values in a local batch (denoted
by φL), the sliding window (denoted by φD), and the esti-
mated correlation for each emerging candidate τ . Either of
estimation may contribute to the overall error.

Firstly, a bound has been setted on the possible bias of
the k th correlation value in the local batch (φL) and sliding
window (phiD) in Lemma 1, where we show that φL is likely
to be close to φD. Next, in Lemma 2, we state that the accurate
correlated graph’s correlation value in a batch φL(g2, g1) will
be larger than φD − εs with a high probability. Combining
Lemma 1 and 2, we derive Theorem 1 to attest that our

VOLUME 8, 2020 106695

M. Jin et al.: Searching Correlated Patterns From Graph Streams

algorithmwill guarantee the storing of the accurate correlated
graphs at a certain confidence level. In other words, a real
top-k correlated graph will be stored in the PG and PLi with
a certain probability value. As our global-local inspection
scheme can estimate each candidate accurately, we finally
state our bound on precision and recall in Theorem 2 based
on Theorem 1.
Lemma 1: Let the k th correlation values in a local batch

and the sliding window are φL and φD, respectively. The
probability that φL ≥ φD + εs is at most δ, where εs =√

R2 ln (2/δ)
2|Gi|

, and δ is a user specified confidence threshold.
Proof: From Hoeffding bound, we have φL(g2, g1) ≥

φD(g2, g1)+εs with probability at most δ. Suppose graph g2 is
the k th correlated graph in a local batch, i.e., φL(g2, g1) = φL ,
then with probability at most δ,

φL ≥ φD(g2, g1)+ εs (5)

Case 1: if g2 is also the k th graph in sliding window, which
means φD(g2, g1) = φD. Then the lemma holds.

Case 2: if g2 is not one of the real top-k correlated graph
in the sliding window, then φD(g2, g1) < φD. From Eq.(5),
we know with probability p′ ≤ δ, φL ≥ φD + εs.
Case 3: If g2 is one of the top-k correlated graphs in the

sliding window, then φD(g2, g1) ≥ φD. As g2 is the k th

correlated graph in a local batch, there should be a set of
graphs GA that for each graph g′2 ∈ GA, φL(g′2, g1) ≥ φL .
With probability at most pz ≤ δ,

φL(g′2, g1) ≥ φD(g
′

2, g1)+ εs (6)

Case 3a: If the real top-k correlated graphs in the sliding
window are the graphs in GA, then there is a graph g′2 in GA
which is the k th correlated graph in the sliding window, i.e.,
φD(g′2, g1) = φD. As φL(g

′

2, g1) > φL and φD(g′2, g1) = φD.
According to Eq (6), we know that, p ≤ pz ≤ δ and φL ≥
φD + εs with a probability p.

Case 3b: At least one graph g′2 in setGA is not the real top-k
correlated graphs, then φD(g′2, g1) < φD. As φL(g′2, g1) > φL
and φD(g′2, g1) < φD, substituting in Eq (6), we know that,
with probability p, p ≤ pz ≤ δ, φL ≥ φD + εs. �
Lemma 2: If g2 is one of the true top-k correlated graph in

the sliding window, the probability that φL(g2, g1) ≥ φD− εs
is at least 1− δ.

Proof: If g2 is the k th correlated graph in the sliding
window (φD(g2, g1) = φD), the lemma follows according
to the Hoeffding bound (φL(g2, g1) ≥ φD(g2, g1) − εs is
at least 1 − δ). If g2 is not the k th correlated graph, then
φD(g2, g1) ≥ φD, the bound also follows. �

As the k th correlation values in a local batch (φL) is
close to the k th correlation values in a sliding window (φD)
(Lemma 1), and each true top-k graph’s correlation value
is greater than φD − εs with a high probability (Lemma 2),
combining these two inequations, we can guarantee that each
true correlated graph will be stored by our algorithm with a
high probability, which is shown in Theorem 1.

Theorem 1: If g2 is one of the real top-k correlated graphs,
then PLi stores g2 with probability higher than (1− δ)2, and
the PG stores g2 with probability higher than (1− δ)2.

Proof: According to Lemma 2, if g2 is one of the top-k
correlated graph in the sliding window, then the probability
that φL(g2, g1) ≥ φD − εs is at least 1 − δ. From Lemma 1,
the probability that φL ≥ φD + εs is at most δ. In another
word, φD ≥ φL − εs is at least 1 − δ. Thus, combining the
two inequalities, we have φL(g2, g1) ≥ φD − εs ≥ φL2εs,
and the probability is at least (1 − δ)2. Note that in each
batch, we retrieve those graphs whose correlation is above
φL − 2εs and store them to the candidate list PLi. In other
words, if g2 is one of the top-k correlated graphs in the sliding
window, it is held by a local list PLi at least (1 − δ)2. As we
insert the newly discovered graphs into the PG, and we use a
similar technologies to maintain the PG, which store g2 with
a probability also higher than (1− δ)2. �
Since we design two levels of candidate lists to determine

the real correlation of each newly emerging candidate, its
estimated correlation will approach its actual correlation.
So if a real top-k correlated graph is held in the PG, it will
be returned. Then our algorithm has such a bound in terms of
expectations of precision and recall, stated in Theorem 2.
Theorem 2: The expectations of recall and precision of our

proposed Hoe-PGPL algorithm are both at least (1− δ)2.
Proof: Because Hoe-PGPL returns k highest correlated

graphs, in our circumstance, the precision and recall will be
the same according to our definition. This is because |Ag2 | =
|Tg2 | = k 1. Given that the correlation of each candidate
g2 with query graph g1 in the PG approaches to the true
correlation, the true answer will be returned only if it is held
in the PG. From Theorem 1, we know that the probability of
storing a true correlated graph is at least (1 − δ)2. In other
words, each true top-k correlated graph will be returned at a
probability at least pr = (1−δ)2. Suppose the number of true
top-k correlated graphs returned by our algorithm is t , then t
follows a binomial distribution in a total number of k , i.e.,
(t; k, pr) = Pr(T = t) = C t

kp
t
r (1− pr)

(k−t). The expectation
of this binomial distribution is kpr , variance is kpr (1 − pr).
Thus the expectation of recall is kpr/k = pr = (1− δ)2. �

V. EXPERIMENTAL RESULTS
In this section, we illustrate our experiments, as well as
the associated results, in detail. The streaming dataset we
experimented is NCI Open Database Compounds 2, which
contains a series of compound structures of illness data. The
official dataset consists of around 250,000 graphs, which has
been reduced to around 230,000 after the preprocessing (e.g.
delete disconnected graphs).

We use two metrics, known as the precision and the recall,
to measure the performance of our algorithm. If there are

1For simplicity, we assume |Ag2 | = |Tg2 | = k in the analysis. In our
implementation, |Ag2 | may be larger than k , as there may be several cor-
relation values equal to φD. Consequently, precision and recall are slightly
different in our experiments.

2https://cactus.nci.nih.gov/ncidb2/download.html

106696 VOLUME 8, 2020

M. Jin et al.: Searching Correlated Patterns From Graph Streams

FIGURE 3. Memory and time consumption with various k values.

no false negatives in results provided by our algorithms,
the recall should equal to 1; Similarly, if there are no false
positives in the returned results, the precision should be 1.

Our algorithm has been compared with an exhaustive
search strategy, known as FixWin, with aspects of memory
consumption and running efficiency. FixWin is an accurate
method that can return all correct results with no false posi-
tives and negatives. However, this approach is computation-
ally infeasible because it demands a large amount of comput-
ing capacity and memory so that it is not an optimal choice
for the majority of stream-based applications. For example,
in our experiments, FixWin will abandon the existing work
and turn to search the top-k correlated structural patterns from
the beginning regardless of whether a new batch of graphs
comes.

In addition to FixWin, we also compare our algorithm
with three simple solutions to justify the effectiveness of our
global-local inspection scheme. The three simple solutions
represent three different approaches to use PG and PLs to
estimate the correlation values of newly emerging candidates.

• Estimate from the most current batch (denoted as
Hoe-M): A newly emerging candidate is inserted into
the PG directly, and its correlation value in the most
current batch is used as an estimation of the candidate’s
correlation in the sliding window.

• Use PG-only (Hoe-PG): Use the PG to estimate the
correlation from a global perspective.

• Use PLs-only (Hoe-PLs): Use PLs to estimate the cor-
relation from a local perspective.

There are fifty graphs we used in our experimented query
graphs, and for each of them, it has been randomly selected
and associated with a support value between 0.02 and 0.05 in
data streams. If there are α batches of graphs in total,
the average precision for a certain query can be calculated by
Precision = 1

α

∑α
i=1 Pi. In this equation, Pi is the precision

in a sliding window D =
⋃
{Gj|i ≥ j ≥ 1 + i − w}.

Similarly, the average recall, time, and memory consumption
are calculated in the same way. Note that for those fifty
graphs, we need to calculate the above metrics and average
them again as our final metrics.

For each batch, we rely on CGSearch [25], [26] to discover
a set of top-k correlated graphs over data streams. In the
first batch, we need to lower down the correlation threshold
for CGSearch to get the top-k answers step-by-step and then
insert these graphs into both PL1 and PG. Suppose φD is the
k th correlation value in the PG, we can initially use φD as
a correlation threshold to get the potential top-k correlated
graphs in the next batch over data streams. By doing so,
we can discover a series of candidates in different batches
effectively. An alternative method is to employ TopCor [28],
[30] to find the candidates within different batches. It is worth
noting that both CGSearch and TopCor can be integrated into
our Hoe-PGPL algorithm, and their selection not affects the
fairness of comparison in our experiments.

The performance of our algorithm has been examined with
different parameters, and the default values are δ = 0.03,
k = 20, m = 4, w = 8, and |Gi| = 4000.

A. EXPERIMENTS WITH DIFFERENT K VALUES
To examine the performance of our algorithm for various k
values, we adjust this value from 10 to 100. Fig. 3 compares
the runtime and memory consumption, and Fig. 4 shows the
average precision and recall with different k values.

1) SYSTEM RUNTIME AND MEMORY CONSUMPTION
With regard to memory consumption, Fig. 3 tells us that
FixWin consumes around three times more memory compar-
ing to the Hoeffding bound based methods since FixWin has
to keep the graph data within an entire window, but others
methods only store the latest batch of data and candidates
in PLs or/and PG. Among these Hoeffding bound based
methods, Hoe-M and Hoe-PG utilize a little smaller memory
comparing to Hoe-PLs and Hoe-PGPL. This is because Hoe-
M and Hoe-PG only employ the PG to store the candidates,
while Hoe-PLs and Hoe-PGPL additionally use PLs to esti-
mate the correlation values.

Similarly, with regard to the runtime performance,
Hoe-PGPL and other Hoeffding bound based strategies are
several times faster than the exhaustive search, as shown
in Fig. 3. Meanwhile, the time consumption of the Hoeffding
bound based methods are very close to each other. This result

VOLUME 8, 2020 106697

M. Jin et al.: Searching Correlated Patterns From Graph Streams

FIGURE 4. Precision and recall with various k values.

shows that including PLs (like Hoe-PLs and Hoe-PGPL do)
will not significantly increase the time consumption com-
pared to the methods using PG only (Hoe-M and Hoe-PG).
This is because the majority runtime for all these methods is
taken by the process of finding the top-k correlated structural
patterns in batches by CGSearch [25], [26], which involves
two time-consuming procedures, including mining frequent
subgraphs by gspan [63] and checking candidate frequency
to get Fg1 .
The results in Fig. 3 reveal that compared to exhaustive

search method FixWin, Hoeffding bound based methods are
several times more effective in terms of runtime and memory
consumptions. In addition, all Hoeffding bound bases meth-
ods are close to each other with aspects of their memory and
time consumptions because Hoeffding bound based methods
are highly overlappingwith each other, for clarity of presenta-
tion, we will mainly focus on the Hoe-PGPL in the following
subsections.

2) QUERY PRECISION AND RECALL
In Fig. 4, we report the effectiveness of our global-local
inspection scheme in terms of query precision and recall.
From Fig. 4(A), it is clear that Hoe-M has the worst per-
formance among these methods. This is because Hoe-M
simply uses the correlation value in the most current batch
as an estimation of the sliding window for each emerging
candidate pattern. Because an emerging pattern’s correlation
value in the current batch may be relatively large, this esti-
mation will introduce severe bias and affects the candidate
ranking in the PG, which in turn results in inaccurate query
results. In comparison, Hoe-PG, Hoe-PLs, and Hoe-PGPL
integrate additional estimation techniques to take PG or/and
PLs into consideration, thus can significantly improve the
system performance. While Hoe-PG uses the PG only to
estimate the correlation values roughly, Hoe-PLs makes use
of a set of local candidate list PLs, which results in more
accurate estimations than Hoe-PG. Because PG and PLs each
have their unique advantage to estimate the correlation value
from either global or local perspectives, Hoe-PGPL combines
their strength and yields a better result in terms of query

performance and recall. Since the correlation value estimated
byHoe-PGPL is muchmore reliable andmore close to its true
value, according to Theorem 2, the precision and recall are
theoretically bounded. The result in Fig. 4 confirms that Hoe-
PGPL is always better than other methods in both precision
and recall.

Note that in the experiment with increasing k values,
the precision and recall values drop for all algorithms. This
is because with a large k , the φD (the k th correlation value
in PG) will be small, and the number of candidates in the
range [φD−ε, φD+ε] may increase dramatically compared to
a large φD. For instance, when φD = 0.85, there may be only
ten candidates in a range of [0.85−εw, 0.85+εw].WhenφD =
0.65, there may be 235 of candidates in a range of [0.65−εw,
0.65+ εw]. It is challenging to differentiate these candidates
as their ranking order in the PG may change dramatically
even if a small error estimation exists in the PG. Nevertheless,
it is shown in Fig. 4 that, when Hoe-M drops dramatically in
performance in k = 100, Hoe-PGPL only decreases slightly,
which reveals the robustness of our Hoe-PGPL algorithm.
As both precision and recall of Hoe-PGPL are approaching
to 1, it shows that Hoe-PGPL is a highly accurate algorithm.

In summary, the above experiments and observations
conclude that (i) Hoeffding bound based methods can
significantly reduce the memory and time consumption com-
paring to the exhaustive search method. (ii) Hoe-PGPL
scheme outperforms its peers in terms of precision and recall
by compromising a tiny amount of runtime and memory as
it considers not only the potential global candidates (PG) but
also the potential local candidates (PLs).

B. EXPERIMENTS WITH VARIOUS BATCH SIZES |GI |

Fig. 5 and Fig. 6 shows the performance of our algorithmwith
different batch sizes varies from |Gi| = 3000, 5000, 7000,
to 9000.

From the results shown in Fig. 5 and Fig. 6, with
the increasing of the batch size, the precision and
recall are increasing for all the methods. This is because

increasing the batch size will decrease εs (εs =
√

R2 ln (2/δ)
2|Gi|

).

106698 VOLUME 8, 2020

M. Jin et al.: Searching Correlated Patterns From Graph Streams

FIGURE 5. Precision and recall with various batch size.

FIGURE 6. Memory and time consumption with various batch size.

FIGURE 7. Precision and recall with various window size w .

In other words, the correlation of each candidate in PGs will
be more close to its true correlation values, resulting in a bet-
ter performance. However, the time and memory consump-
tion will also climb because the number of graphs that need to
be processed is increasing in each batch. Nonetheless, Fig. 5
and 6 show that Hoe-PGPL ismuchmore effective comparing
to FixWin in terms of memory and time complexity, which
is also superior other methods with aspects of precision and
recall.

C. EXPERIMENTS WITH VARIOUS
SLIDING WINDOW SIZES
Fig. 5 and Fig. 6 shows the performance of our algorithmwith
different sliding window sizes w varies from 5 to 20.

From Fig. 7 and Fig. 8, it is obvious that with the increasing
of the window size, all methods experience a decline of the
query precision and recall values. This is because that the
larger the window size, the correlation of each candidate in
the PG will be more far away from its true correlation. Intu-
itively, φL(g2, g1) in a batch will bemuch nearer to φD(g2, g1)
in a sliding window if |Gi| is closer to the total number of
graphs in the sliding window (i.e., w|Gi|). It is also shown
in Fig. 8 that our Hoe-PGPL outperforms the exhaustive
method significantly regards to system runtime and memory
consumption. When increasing the window size, the runtime
taken by Hoe-PGPL remains the same. However, the runtime
of FixWin increase dramatically. For instance, with w = 20,
Hoe-PGPL only needs about 50 seconds to return the answer,

VOLUME 8, 2020 106699

M. Jin et al.: Searching Correlated Patterns From Graph Streams

FIGURE 8. Memory and time consumption with various window size w .

FIGURE 9. Precision and recall with various m value.

FIGURE 10. Memory and time consumption with various m value.

whereas FixWin requires about 700 seconds. In this case,
Hoe-PGPL outperforms FixWin an order of magnitude.

D. EXPERIMENTS WITH DIFFERENT
POTENTIAL CANDIDATE LIST SIZE
In Fig. 9 and 10, the performance of the algorithm with
different sizes of potential candidate list (PG) are compared,
where we vary the m values from 2 to 10, to change the size
of the PG.

The results in Fig. 9 show that with a smaller m value, the
Hoe-PG’s performance deteriorates significantly, with only
about 0.92 and 0.89 in precision and recall, respectively.

In this case, Hoe-PG is significantly worse than the methods
involving local PLs (Hoe-PG and Hoe-PGPL). Meanwhile,
Hoe-PG is only slightly better than Hoe-M, which uses the
most current batch to estimate the correlation values. This
result demonstrates the power of employing local PLs into the
algorithms. While m value continuously increases, the pre-
cision and recall values of all methods improve because
the increasing of the PG size allows more candidates to be
stored in the PG list. As a result, fewer candidates need
to estimate their correlation values, which in turn produces
more accurate results. In an extreme case, if the size of PG
is unlimited, we will record information for all patterns in

106700 VOLUME 8, 2020

M. Jin et al.: Searching Correlated Patterns From Graph Streams

TABLE 2. DBLP dataset used in experiments.

FIGURE 11. Graph representation of the paper P.106 (red-marked
rectangular box) in the DBLP database. Rectangular boxes denote the
identifier of papers, circles (nodes) denote various keywords, and those
solid lines (edges) denote different citation relationships. Notice that for
each rectangular box, the nodes are fully connected with each other.

the graph stream. The algorithm will then become 100%
accurate, yet it requires unbounded storage space (for PG)
and a significant amount of time for checking the PG list.
In our experiments, when varying the value of m from 2 to
10, Hoe-PGPL consistently outperforms others in respect of
precision and recall, and there is no notable increase in terms
of the system runtime and memory consumptions.

VI. CASE STUDY ON DBLP GRAPH STREAM
In this section, we use the DBLP graph streams to analyze the
correlated graphs discovered by our Hoe-PGPL algorithm.
DBLP Graph Stream: DBLP database 3 contains biblio-

graphic data on the majority of computer science journals and
proceedings [71]. For each instance in this database, it con-
sists of several attributes, i.e., article title, authors, abstract,
and unique ID [39], [53]. In our case, we choose a series of
conferences on Database and Data Mining conferences and
summarised in Table 2. We use the paper published on these
conferences as sources to build a graph stream.

In our case study, graphs are papers recorded in the DBLP
database, keywords or unique identifiers of these papers are
represented as nodes, and citation relationships across these
papers, or the relationships between titles, authors, and key-
words, are defined as edges. In detail, we define that (i) The
unique identifier of a paper is denoted as a node; (ii) Every
keyword in a paper is also denoted as a node; (iii) There is
an edge between paper PA and paper PB if the citation rela-
tionship exists between PA and PB; (iv) Nodes are connected
with each other, i.e., given a paper, the unique identifier and
keywords are linked with each other. Particularly, keywords
in a given paper are fully connected in this scenario. Fig. 11
shows a graph example for a DBLP paper.

3http://arnetminer.org/citation

In our study, we use ‘‘data-streams’’ as a one-edge query
graph, and retrieve top-20 correlated subgraphs from the
whole graph streams. As correlated graph query can return
subgraphs with similar distribution of the query graph,
we expect that this structure pattern query can help obtain
following meaningful results: (i) keywords frequently appear
with ‘‘data’’ and ‘‘streams’’, which may indicate some data
stream properties, challenges, research directions, and meth-
ods, etc. and (ii) some state-of-the-art literature related to
data streams, which have been publicly cited in the DBLP
benchmark.

Fig. 12 shows 10 correlated graphs returned by our
Hoe-PGPL algorithms. From the correlated graphs, we can
observe that many research papers related to data streams
indeed consider the time-changing (g1, g6, and g10), high
speed (g2, g3, g4, and g10), or concept drifts (g8 and g9)
of data streams. According to the results showing in g5 and
g7, query over data streams is also a popular research direc-
tion in the past years. Subgraph g9 shows that the classifier
ensemble-based method is a popular method to handle data
streams.

The results in Fig. 12 also show that some popularly cited
papers in data stream research have been retrieved in our
query results. For instance, P1 ([16]) is actually the first incre-
mental learning algorithm to address data stream classifica-
tion using decision tree methods. P2 ([23]) is the follow-up
work of P1 ([16]), which intends to capture the time-changing
properties of data streams. P4 ([57]) is the state-of-the-art
classifier ensemble learning algorithm to handle concept drift
over data streams. P3 ([15]) is another state-of-the-art algo-
rithm addressing the query task from data streams. All these
four papers (P1, P2, P3, and P4) represent some early works
on data streams. According to Google Scholar statistics on
March 17, 2013, the citations of these papers are 905, 828,
306, and 692, respectively.

The above case study indicates that correlated structure
pattern search is indeed useful to discover some interesting
patterns inside streams. When referring to academic pub-
lication streams (such as DBLP), it can retrieve research
challenges, directions, methodologies, and state-of-the-art lit-
erature related to a given query. For chemical compounds
analysis, it may help discover some fundamental properties
or similar substructures of the provided query graph, which
may eventually help discover new drugs.

VII. RELATED WORK
The work did in this paper is related to correlation mining,
correlated structural patterns (graphs) mining, data stream/
graph stream mining, and correlated graph stream query.

Correlation mining has attracted many research inter-
ests and been widely studied in multiple domains, like
biomedicine and economics. For example, correlation min-
ing has been extensively examed and adopted in market-
basket database [47], [59], [61], [68]. Although the methods
in these works are designed to mine the correlation based
on Pearson correlation coefficient, there are other strategies

VOLUME 8, 2020 106701

M. Jin et al.: Searching Correlated Patterns From Graph Streams

FIGURE 12. A query graph (‘‘data-streams’’) with one edge and part of its top-20 correlated graphs discovered from the DBLP graph streams.
The values in the brackets are the correlation values. Note that the keywords should be fully connected. For clear presentation, we omit some
edges. P1, P2, P3, P4 are some reference papers, i.e., P1 - [16], P2 - [23], P3 - [15], P4 - [57].

that have been widely studied, for example, χ2 test [7],
h-confidence [60], and m-pattern measure [36].
As for graph databases, correlation mining is an active

research topic. For example, CGSearch mines the corre-
lated graphs by filtering the correlation above a predefined
threshold [25], [26], and TopCor mines the correlated graphs
by searching the graphs with the most significant correla-
tion [28], [30]. These two algorithms handle a query by
relying on a certain query g1, but the works in [27], [32] did
it in a different way: It mines all of the correlated structural
pattern pairs in a graph database. In contrast, our algorithm is
designed for dynamic graph databases, instead of limited to
static databases.

Similar to graph databases, data stream has been an active
research field in the past few years [17], [18], [23], [24],
[41], [55], [67], [69]. In data stream environments, many
methods exist to mine interesting patterns, e.g., frequent
items/itemsets [9], [34], [38], [58], [64], [65]. The study
in [58] proposes to employ Chernoff bound to mine the top-
k frequent itemsets from a data stream, whereas our research
utilizes aHoeffding bound to discover top-k correlated graphs
and employs a global-local inspection scheme to ensure high
accuracy for correlation estimation. For graph mining in a
data stream scenario, some works on graph search [10], [56],
frequent graph pattern mining [6], [46], graph classifica-
tions [2], [12], [33], [44], graph clustering [1], [54], [62], and
outlier detections [3], [19], [66] have also been done.

For the correlated graph search from data stream settings,
[42] previously proposed an algorithm CGStream to query
the correlated graphs whose correlations are higher than a
predefined value θ . CGStream treats query graphs as oper-
ators, which constantly query subgraph patterns related to
itself when going through the graph stream. To reduce the
computational cost, CGStream sets up a set of outlooks (spe-
cial time stamps) over streams, and the mining task is only
triggered at the outlooks. The Hoe-PGPL algorithm is dif-
ferent to CGStream algorithm in two aspects: (i) CGStream

is a threshold based algorithm (i.e., it retrieves graphs with
correlation values higher than θ), and Hoe-PGPL is a top-
k based algorithm (i.e., it returns the top-k most correlated
graphs only). (ii) CGStream stores all graphs in the sliding
window to perform repeatedly mining at each outlook, while
Hoe-PGPL only stores the potential candidates in two poten-
tial lists (PG and PLs) and discard all the graphs in the sliding
window after processing.

VIII. CONCLUSION
In this paper, we have studied searching for the top-k corre-
lated patterns by using a sliding window approach to cover
graph streams over multiple consecutive batches. We believe
that in a dynamic data stream scenario, simply exhaustively
searching for the top-k correlated patterns requires storing the
entire window of graph data and repeating the query process,
which is computationally infeasible and memory consump-
tive. In our proposed method, each candidate’s correlation in
the PG can be accurately calculated by applying Hoeffding
bound and a global-local inspection scheme that integrates
with PLs and PG. Theoretical analysis proves that this method
can guarantee the quality of retrieval results. On the other
hand, experimental results show that, in terms of time and
memory consumption, our algorithm is much more efficient
comparing an exhaustive search method and has a relatively
good performance with aspects of precision and recall.

REFERENCES
[1] C. C. Aggarwal, Y. Zhao, and P. S. Yu, ‘‘On clustering graph streams,’’ in

Proc. SIAM Int. Conf. Data Mining, Apr. 2010.
[2] C. C. Aggarwal, ‘‘On classification of graph streams,’’ in Proc. SIAM Int.

Conf. Data Mining, Apr. 2011.
[3] C. C. Aggarwal, Y. Zhao, and P. S. Yu, ‘‘Outlier detection in graph

streams,’’ inProc. IEEE 27th Int. Conf. Data Eng., Apr. 2011, pp. 399–409.
[4] A. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.

Boston, MA, USA: Addison-Wesley, 1999.
[5] A. Bifet, ‘‘Mining big data in real time,’’ Informatica, vol. 37, no. 1, 2013.
[6] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà, ‘‘Mining frequent

closed graphs on evolving data streams,’’ in Proc. 17th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining (KDD), 2011, pp. 591–599.

106702 VOLUME 8, 2020

M. Jin et al.: Searching Correlated Patterns From Graph Streams

[7] S. Brin, R. Motwani, and C. Silverstein, ‘‘Beyond market baskets: Gen-
eralizing association rules to correlations,’’ ACM SIGMOD Rec., vol. 26,
no. 2, pp. 265–276, Jun. 1997.

[8] F. Cajori, A History of Mathematical Notations, vols. 1–2. New York, NY,
USA: Dover, 1993.

[9] H. Chen, L. Shu, J. Xia, and Q. Deng, ‘‘Mining frequent patterns in a
varying-size sliding window of online transactional data streams,’’ Inf. Sci.,
vol. 215, pp. 15–36, Dec. 2012.

[10] L. Chen and C. Wang, ‘‘Continuous subgraph pattern search over certain
and uncertain graph streams,’’ IEEE Trans. Knowl. Data Eng., vol. 22,
no. 8, pp. 1093–1109, Aug. 2010.

[11] C. Cheung and F. Li, ‘‘A quantitative correlation coefficient miningmethod
for business intelligence in small and medium enterprises of trading busi-
ness,’’ Expert Syst. Appl., vol. 39, no. 7, pp. 6279–6291, Jun. 2012.

[12] L. Chi, B. Li, and X. Zhu, ‘‘Fast graph stream classification using discrim-
inative clique hashing,’’ in Proc 17th Pacific–Asia Conf Knowl. Discovery
Data Mining (PAKDD), 2013, pp. 225–236.

[13] S. A. Cook, ‘‘The complexity of theorem-proving procedures,’’ in Proc.
3rd Annu. ACM Symp. Theory Comput. (STOC), 1971, pp. 151–158.

[14] X. Ding, X. Lian, L. Chen, and H. Jin, ‘‘Continuous monitoring of skylines
over uncertain data streams,’’ Inf. Sci., vol. 184, no. 1, pp. 196–214,
Feb. 2012.

[15] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, ‘‘Processing complex
aggregate queries over data streams,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2002, pp. 61–72.

[16] P. Domingos and G. Hulten, ‘‘Mining high-speed data streams,’’ in Proc.
6th ACM SIGKDD Int. Conf. Knowl. Discovery DataMining (KDD), 2000,
pp. 71–80.

[17] D. M. Farid, L. Zhang, A. Hossain, C. M. Rahman, R. Strachan,
G. Sexton, and K. Dahal, ‘‘An adaptive ensemble classifier for min-
ing concept drifting data streams,’’ Expert Syst. Appl., vol. 40, no. 15,
pp. 5895–5906, Nov. 2013.

[18] M. Garofalakis, J. Gehrke, and R. Rastogi, Data Stream Management:
Processing High-Speed Data Streams. Berlin, Germany: Springer, 2016.

[19] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, ‘‘Outlier detection for
temporal data: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 9,
pp. 2250–2267, Sep. 2014.

[20] W. Hoeffding, ‘‘Probability inequalities for sums of bounded random
variables,’’ J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 13–30, Mar. 1963.

[21] N. Homem and J. P. Carvalho, ‘‘Finding top-k elements in data streams,’’
Inf. Sci., vol. 180, no. 24, pp. 4958–4974, Dec. 2010.

[22] L. J. Hubert, ‘‘Matching models in the analysis of cross-classifications,’’
Psychometrika, vol. 44, no. 1, pp. 21–41, Mar. 1979.

[23] G. Hulten, L. Spencer, and P. Domingos, ‘‘Mining time-changing data
streams,’’ in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), 2001, pp. 97–106.

[24] A. U. Kamath, A. Mahalingam, and J. H. Brauker, ‘‘Systems and meth-
ods for replacing signal data artifacts in a glucose sensor data stream,’’
U.S. Patent 8 260 393, Sep. 4, 2012.

[25] K. Kamfa, M. Y. Waziri, M. Mamat, M. A. Mohamed, and P. Liza,
‘‘A newmodified three term CG search direction for solving unconstrained
optimization problems,’’ J. Adv. Res. Model. Simul., vol. 1, no. 1, pp. 23–
30, 2018.

[26] Y. Ke, J. Cheng, and W. Ng, ‘‘Correlation search in graph databases,’’
in Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), 2007, pp. 390–399.

[27] Y. Ke, J. Cheng, and J. X. Yu, ‘‘Efficient discovery of frequent correlated
subgraph pairs,’’ in Proc. 9th IEEE Int. Conf. Data Mining, Dec. 2009,
pp. 239–248.

[28] Y. Ke, J. Cheng, and J. X. Yu, ‘‘Top-k correlative graph mining,’’ in Proc.
SIAM Int. Conf. Data Mining, Apr. 2009, pp. 1038–1049.

[29] B. Kolleri, ‘‘Event correlation and association using a graph database,’’
U.S. Patent App. 15/256 416, Mar. 8, 2018.

[30] G. S. Latsiou and A. N. Papadopoulos, ‘‘Incremental discovery of top-k
correlative subgraphs,’’ inProc. 15th Panhellenic Conf. Inform., Sep. 2011,
pp. 56–60.

[31] C. Lee, O. Zaiane, H. Park, J. Huang, and R. Greiner, ‘‘Clustering high
dimensional data: A graph-based relaxed optimization approach,’’ Inf. Sci.,
vol. 178, no. 23, pp. 4501–4511, Dec. 2008.

[32] M. Letsios, O. D. Balalau, M. Danisch, E. Orsini, and M. Sozio, ‘‘Finding
heaviest k-subgraphs and events in social media,’’ in Proc. IEEE 16th Int.
Conf. Data Mining Workshops (ICDMW), Dec. 2016, pp. 113–120.

[33] B. Li, X. Zhu, L. Chi, and C. Zhang, ‘‘Nested subtree hash kernels for large-
scale graph classification over streams,’’ inProc. IEEE 12th Int. Conf. Data
Mining, Dec. 2012, pp. 399–408.

[34] N. Li, W. Qardaji, D. Su, and J. Cao, ‘‘PrivBasis: Frequent itemset min-
ing with differential privacy,’’ Proc. VLDB Endowment, vol. 5, no. 11,
pp. 1340–1351, Jul. 2012.

[35] C. Liang, Y. Zhang, P. Shi, and Z. Hu, ‘‘Learning very fast decision tree
from uncertain data streamswith positive and unlabeled samples,’’ Inf. Sci.,
vol. 213, pp. 50–67, Dec. 2012.

[36] S. Ma and J. Hellerstein, ‘‘Mining mutually dependent patterns,’’ in Proc.
IEEE Int. Conf. Data Mining, Nov. 2002, pp. 409–416.

[37] O. Maron and W. Andrew Moore, ‘‘Hoeffding races: Accelerating model
selection search for classification and function approximation,’’ in Proc.
NIPS, 1993, pp. 59–66.

[38] S. Moens, E. Aksehirli, and B. Goethals, ‘‘Frequent itemset mining for big
data,’’ in Proc. IEEE Int. Conf. Big Data, Oct. 2013, pp. 111–118.

[39] C. Moreira, P. Calado, and B. Martins, ‘‘Learning to rank academic experts
in the DBLP dataset,’’ Expert Syst., vol. 32, no. 4, pp. 477–493, Aug. 2015.

[40] A. Mueen, S. Nath, and J. Liu, ‘‘Fast approximate correlation for massive
time-series data,’’ in Proc. Int. Conf. Manage. Data SIGMOD, 2010,
pp. 171–182.

[41] S. Pan, Y. Zhang, and X. Li, ‘‘Dynamic classifier ensemble for positive
unlabeled text stream classification,’’ Knowl. Inf. Syst., vol. 33, no. 2,
pp. 267–287, Nov. 2012.

[42] S. Pan and X. Zhu, ‘‘CGStream: Continuous correlated graph query for
data streams,’’ in Proc. 21st ACM Int. Conf. Inf. Knowl. Manage. (CIKM),
2012, pp. 1183–1192.

[43] S. Pan and X. Zhu, ‘‘Continuous top-k query for graph streams,’’ in Proc.
21st ACM Int. Conf. Inf. Knowl. Manage. (CIKM, 2012, pp. 2659–2662.

[44] S. Pan, X. Zhu, C. Zhang, and P. S. Yu, ‘‘Graph stream classification using
labeled and unlabeled graphs,’’ in Proc. IEEE 29th Int. Conf. Data Eng.
(ICDE), Apr. 2013.

[45] P. Sedgwick, ‘‘Pearson’s correlation coefficient,’’ Bmj, vol. 345, p. e4483,
2012.

[46] E. Shen and T. Yu, ‘‘Mining frequent graph patterns with differential
privacy,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), 2013, pp. 545–553.

[47] Z. Shen, M. A. Cheema, X. Lin, W. Zhang, and H. Wang, ‘‘Efficiently
monitoring top-k pairs over sliding windows,’’ in Proc. IEEE 28th Int.
Conf. Data Eng., Apr. 2012, pp. 798–809.

[48] K. Shin, T. Eliassi-Rad, and C. Faloutsos, ‘‘CoreScope: Graph mining
using k-core analysis—Patterns, anomalies and algorithms,’’ inProc. IEEE
16th Int. Conf. Data Mining (ICDM), Dec. 2016, pp. 469–478.

[49] J. G. Skellam, ‘‘The frequency distribution of the difference between two
Poisson variates belonging to different populations,’’ J. Roy. Stat. Soc. A,
vol. 109, no. 3, p. 296, 1946.

[50] W. N. Street and Y. Kim, ‘‘A streaming ensemble algorithm (SEA) for
large-scale classification,’’ in Proc. 7th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2001, pp. 377–382.

[51] I. Takigawa and H. Mamitsuka, ‘‘Graph mining: Procedure, application
to drug discovery and recent advances,’’ Drug Discovery Today, vol. 18,
nos. 1–2, pp. 50–57, Jan. 2013.

[52] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee, ‘‘Sliding window-
based frequent pattern mining over data streams,’’ Inf. Sci., vol. 179, no. 22,
pp. 3843–3865, Nov. 2009.

[53] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, ‘‘ArnetMiner:
Extraction and mining of academic social networks,’’ in Proc. 14th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2008,
pp. 990–998.

[54] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, ‘‘Learning deep represen-
tations for graph clustering,’’ in Proc. 28th AAAI Conf. Artif. Intell., 2014.

[55] D. V. Wie and P. J. Brody, ‘‘Automated real-time data stream switching in
a shared virtual area communication environment,’’ U.S. Patent 7 844 724,
Nov. 30, 2010.

[56] C. Wang and L. Chen, ‘‘Continuous subgraph pattern search over graph
streams,’’ in Proc. ICDE, 2009, pp. 393–404.

[57] H. Wang, W. Fan, P. S. Yu, and J. Han, ‘‘Mining concept-drifting data
streams using ensemble classifiers,’’ inProc. 19th ACMSIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2003, pp. 226–235.

[58] R. C.-W. Wong and A. W.-C. Fu, ‘‘Mining top-K frequent itemsets from
data streams,’’ Data Mining Knowl Discovery, vol. 13, no. 2, pp. 193–217,
Sep. 2006.

[59] H. Xiong, M. Brodie, and S. Ma, ‘‘TOP-COP: Mining TOP-K strongly
correlated Pairs in large databases,’’ in Proc. 6th Int. Conf. Data Mining
(ICDM), Dec. 2006, pp. 1162–1166.

[60] H. Xiong, P.-N. Tan, and V. Kumar, ‘‘Hyperclique pattern discovery,’’Data
Mining Knowl. Discovery, vol. 13, no. 2, pp. 219–242, Sep. 2006.

VOLUME 8, 2020 106703

M. Jin et al.: Searching Correlated Patterns From Graph Streams

[61] H. Xiong, S. Shekhar, P.-N. Tan, and V. Kumar, ‘‘Exploiting a support-
based upper bound of Pearson’s correlation coefficient for efficiently
identifying strongly correlated pairs,’’ in Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2004, pp. 334–343.

[62] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, ‘‘A model-based approach
to attributed graph clustering,’’ in Proc. Int. Conf. Manage. Data (SIG-
MOD), 2012, pp. 505–516.

[63] X. Yan and J. Han, ‘‘GSpan: Graph-based substructure pattern mining,’’ in
Proc. IEEE Int. Conf. Data Mining, Jun. 2003, pp. 721–724.

[64] J. Yu, Z. Chong, H. Lu, Z. Zhang, and A. Zhou, ‘‘A false negative approach
to mining frequent itemsets from high speed transactional data streams,’’
Inf. Sci., vol. 176, no. 14, pp. 1986–2015, Jul. 2006.

[65] J. Yu, Z. Chong, H. Lu, and A. Zhou, ‘‘False positive or false negativem-
ining frequent itemsets from high speed transactional data streams,’’ in
Proc. 13th Int. Conf. Very Large Data Bases, vol. 30, 2004, pp. 204–215.

[66] W. Yu, C. C. Aggarwal, S. Ma, and H. Wang, ‘‘On anomalous hotspot
discovery in graph streams,’’ in Proc. IEEE 13th Int. Conf. Data Mining,
Dec. 2013, pp. 1271–1276.

[67] P. Zhang, J. Li, P. Wang, B. J. Gao, X. Zhu, and L. Guo, ‘‘Enabling
fast prediction for ensemble models on data streams,’’ in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2011,
pp. 177–185.

[68] W. Zhou and H. Xiong, ‘‘Volatile correlation computation: A checkpoint
view,’’ in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), 2008, pp. 848–856.

[69] X. Zhu, P. Zhang, X. Lin, and Y. Shi, ‘‘Active learning from stream
data using optimal weight classifier ensemble,’’ IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 40, no. 6, pp. 1607–1621, Dec. 2010.

[70] Y. Zhu, L. Qin, J. X. Yu, and H. Cheng, ‘‘Finding top-k similar graphs in
graph databases,’’ in Proc. 15th Int. Conf. Extending Database Technol.
(EDBT), 2012, pp. 456–467.

[71] O. R. Zaiane, J. Chen, and R. Goebel, ‘‘DBconnect: Mining research com-
munity on DBLP data,’’ in Proc. 9th WebKDD 1st SNA-KDD Workshop
Web Mining Social Netw. Anal. (WebKDD/SNA-KDD), 2007, pp. 74–81.

MING JIN received the master’s degree in infor-
mation technology from the University of Mel-
bourne, Parkville, Melbourne, Australia, in 2019.
Since November 2018, he has been working in
the field of industrial data mining and software
development. His researches focus on time series
analysis, graph neural networks (GNNs), datamin-
ing, and machine learning.

MEI LI received the Ph.D. degree from Northwest
A&FUniversity, in 2016. She is currently an Asso-
ciate Professor with Northwest A&F University.
Her research interests include data mining and
machine learning.

YU ZHENG received the B.S. and M.S. degrees
in computer science from Northwest A&F Uni-
versity, China, in 2008 and 2011, respectively.
She is currently a Research Assistant with Monash
University. Her research interests include image
classification, data mining, and machine learning.

LIANHUA CHI received the dual Ph.D. degrees
in computer science from the University of Tech-
nology Sydney, Australia, and the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2015. She was a Postdoctoral Research Scientist
with the IBMResearchMelbourne. She has been a
Lecturer of computer science with La Trobe Uni-
versity, since 2018. Her current research interests
include graph stream data mining and big data
hashing. She was a recipient of the Best Paper
Award in PAKDD, in 2013.

106704 VOLUME 8, 2020

	INTRODUCTION
	PRELIMINARIES AND PROBLEM DEFINITION
	PRELIMINARIES
	PROBLEM DEFINITION

	PROPOSED METHOD
	HOEFFDING BOUND FOR CANDIDATE GENERATION
	TWO LEVELS OF LISTS IN GLOBAL-LOCAL INSPECTION SCHEME
	HOE-PGPL ALGORITHM
	UPDATING THE FREQUENCY INFORMATION IN PG
	PRUNING PG

	PRECISION AND RECALL BOUND ANALYSIS
	EXPERIMENTAL RESULTS
	EXPERIMENTS WITH DIFFERENT K VALUES
	SYSTEM RUNTIME AND MEMORY CONSUMPTION
	QUERY PRECISION AND RECALL

	EXPERIMENTS WITH VARIOUS BATCH SIZES |GI|
	EXPERIMENTS WITH VARIOUS SLIDING WINDOW SIZES
	EXPERIMENTS WITH DIFFERENT POTENTIAL CANDIDATE LIST SIZE

	CASE STUDY ON DBLP GRAPH STREAM
	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	MING JIN
	MEI LI
	YU ZHENG
	LIANHUA CHI

