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ABSTRACT The 1954 Soil Conservation Services (SCS) runoff predictivemodel was adopted in engineering
designs throughout the world. However, its runoff prediction reliability was under scrutiny by recent studies.
The conventional curve number (CN) selection methodology is often very subjective and lacks scientific
justification while nested soil group catchments complicate the issue with the risk of inappropriate curve
number selection which produces unreliable runoff results. The SCS CN model was statistically invalid
(α = 0.01 level) and over predicted runoff volume as much as 21% at the Sungai Kerayong catchment
in Kuala Lumpur, Malaysia. Blind adoption of the model will commit a type II error. As such, this study
presented a new method to calibrate and formulate an urban runoff model with inferential statistics and
residual modelling technique to correct the runoff prediction results from the SCS CN model with a
corrected equation. The new model out-performed the Asymptotic runoff model and SCS CN runoff model
with low predictive model bias, reduced sum of squared errors by 32% and achieved high Nash-Sutcliffe
efficiency value of 0.96. The derived urban curve number is 98.0 with 99% confidence interval ranging from
97.8 to 99.5 for Sungai Kerayong catchment. Twenty-five storms generated almost 29 million m3 runoff
(11,548 Olympic size swimming pools) from the Sungai Kerayong catchment in this study. 75%-94% of
the rain water became runoff from those storms and lost through the catchment, without efficient drainage
infrastructure in place, the averaged flood depth reached 6.5 cm while the actual flood depth will be deeper
at the flood ponding area near to the catchment outlet.

INDEX TERMS Bootstrap, curve number, rainfall-runoff model.

I. INTRODUCTION
Flood is a natural disaster whereby excessive volumes of
water accumulate in a region, submerging dry land. On the
other hand, flash flood takes place within a short duration of
time and is most often caused by incredibly heavy rainfall
from thunderstorms. Flood prone areas are usually low in
elevation, near to the outlet of a watershed or on a flat terrain.
When a ground is saturated, even low intensities of rainfall
can induce a flood. As the ground can no longer absorb the
rainfall, the excessive body of water becomes runoff which
does not permeate into the ground and instead flows across
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the land surface. The percentage ratio of the runoff amount
(Q) over the rainfall amount (P) is known as the runoff coeffi-
cient. The coefficient percentage (ranges from zero to 100%)
value tends to be larger for regions with low infiltration
as well as high runoff and vice versa. It also indicates the
likelihood of runoff generation. If the percentage value of the
runoff coefficient is high, it implies that a catchment is highly
saturated. In case as such, a flood will occur.

Runoff volume from rainfall is nearly 97% of the
Malaysian water demands [1]. Unclaimed water loss through
runoff also causes flooding and financial losses at the down-
stream of urban catchments [2] and therefore, it is crucial to
be able to model the rainfall-runoff behaviour of a catchment
in order to manage the water resources effectively. The study
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surrounding the topic of floods is significant to better under-
stand its paleohydrologic and geomorphic aspects, why it
occurs, and how to overcome the negative effects of flooding.
An emphasis has been put on this field because it creates a
great deal of damage to homes and causes many casualties
each year.

Reports regarding the destructive aftermath of flash floods
have also been observed worldwide [3], [4]. According to
the International Disaster Database, over 1.4 billion people
were affected and about 100,000 people were killed by floods
in the last decade of the 20th century [5]. Flood related
disasters affected nearly 770 million people worldwide in
the past 10 years and caused over 53 thousands casualties,
injured more than 75 thousands with reported total losses
around 374 billion dollars [6]. Natural hazards are still one
of the major causes of casualties amongst the human popu-
lation reported in the latest annual disaster statistical review
from 2019 [4], [5]. Floods also disrupt daily lives and busi-
nesses, cause damage in the field of agriculture and damages
infrastructure such as roads, sewer systems, and buildings.
In cases as such, a rapid approximation of inundated regions
is important to effectively plan response operations. Global
demand for research regarding natural disasters has increased
immensely over the years as an effort to reduce these disas-
trous events, the near real time (NRT) detection of a flood
event and flood mapping studies were conducted with differ-
ent technologies [7]–[10].

Although the soil profiling method has been in use to pre-
dict and model subsurface storm flow response, the method
is expensive and comes with a certain degree of ambiguity
to assume uniform geological formation between bore sites.
Many deterministic runoff predictive models require exten-
sive data collection and input which is tedious and costly
to set up and update. The fast pace of urban development
outdated many studies and modelling results as those models
can no longer represent the latest condition of the catchment
of interest and therefore, it is imminent to develop a feasible
rainfall-runoff modelling technique to produce swift yet sta-
tistically significant runoff prediction results especially for an
urban catchment which undergoes development at a fast pace.

In 1954, the Soil Conservation Services (SCS) from the
United States of America introduced a runoff predictive
model which used curve number (CN) to represent an overall
land cover condition. The model was adopted by govern-
ment agencies and became popular worldwide for runoff
prediction. It is also part of every Hydrology text book.
Nevertheless, many researchers expressed the concern of
unreliable runoff estimates and scrutinised the validity of
the model in recent years [11]–[17]. The SCS CN method
has been used to predict and compute the runoff volume
of a storm event [18], [19]. Technical Release 55 (TR-55)
of SCS classified site conditions into different CN values.
However, a US researcher reported that forested catchments
had the highest CN classification mistake. The wrong CN
choice often produces unrealistic runoff estimates [20]. Some
researchers reported that practical CN values only spanned

from 40 to 98 in their field studies [21]. Instead of relying
on the conventional SCS procedure and handbook, many
researchers started to utilise advance technologies to classify
land use, detect soil moisture, monitor rainfall characteristics
and to model hydrologic conditions in their studies [22]–[28].

The selection of CN is highly subjective to its practitioners
and therefore, hydrologists and modellers must improve this
modelling approach [20], [33]. Many researchers also con-
cluded that rainfall-runoff (P − Q) dataset should be used to
derive CN values in order to reflect catchment runoff char-
acteristics [20], [29]–[33]. SCS practitioners often tweak the
CN value to gain better results but such unscientific practice
does not have any justification. In-situ CN measurement can
be difficult while nested soil group catchments further com-
plicate CN selection process. SCS practitioners often adopt
the model and almost never explore site specific calibration
possibility [33] while the least-squares method (LSM) [33]
and the asymptotic fitting method (AFM) [20] are the most
commonly used techniques with SCS CN model.

The aim of this study is to develop a methodology to
formulate a statistically significant rainfall-runoff model to
reflect runoff characteristics under highly saturated ground
conditions in order to address urban flooding issue. With
the guide from inferential statistics, this study used a new
methodology to derive CN through P−Q dataset and formu-
late a catchment specific runoff predictive model according to
the P−Q conditions under high catchment saturation state in
order to estimate flood depth for the Sungai Kerayong urban
catchment in Malaysia.

II. STUDY SITE AND METHODOLOGY
This study was carried out in the Sungai Kerayong catchment
which is located in the capital city Kuala Lumpur ofMalaysia.
The Sungai Kerayong river is one of the major tributaries of
the Klang River in Malaysia. The total area of the catchment
is about 48.3 km2 (Fig. 1). The study area is highly urbanized
with 77.5 % of imperviousness. Low residential area formed
the largest fraction of the impervious surfaces covering 24.0%
of the catchment [34].

In 1954, SCS proposed the following equation:

Q =
(P− Ia)2

P− Ia + S
(1)

where P is the depth of a rainfall event (mm), Q is the runoff
depth from a rainfall event (mm), S is the water retention
depth of a catchment (mm) and Ia is the initial retention or
abstraction depth (mm).

The initial abstraction is defined as the initial retention
amount before the beginning of runoff process. SCS also
proposed that Ia = 0.20S. The initial abstraction coefficient
ratio(λ) was proposed as a constant (0.20). It is a parameter
which correlates Ia and S. Ia = 0.20S simplified Eq. (1) into:

Q =
(P− 0.2S)2

P+ 0.8S
(2)
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FIGURE 1. Sungai Kerayong catchment and its rainfall-runoff graph (with runoff coefficient larger than 75%). Modified from [34].

In Eq. (2) if P < 0.2S, there will be no runoff. According
to the literature review study of [15] and [33] many studies
questioned the hypothesis of Ia = 0.20S and challenged the
runoff prediction accuracy of Eq. (2) in recent decades.

Twenty-five rainfall-runoff data pairs with runoff coeffi-
cient larger than 75%were selected from a seventy-two P−Q
dataset collected from 1998 to 2003 at this site in order
to formulate a runoff predictive model to reflect the catch-
ment’s runoff characteristics near to a flood prone satura-
tion state at the Sungai Kerayong catchment (remaining data
pairs with low runoff coefficient were discarded as they do
not reflect the saturated catchment condition that will cause
flooding).

Previous researchers presented the methodology that
Eq. (1) can be rearranged to find S and λ values according to
P−Q data pairs [33], [35]. This study took extra steps to con-
duct inferential statistics with IBM statistic software, SPSS
(version 18) after deriving S and λ values. Non-parametric
Bootstrapping, Bias corrected and accelerated (BCa) tech-
nique (2,000 random sampling with replacement) [36]–[38],
[41] was conducted at 99% confidence interval (CI) in order
to find the optimum λ and S value to calibrate Eq. (1) and
perform hypotheses assessment [38], [40]. Unlike previous
research studies, the optimum λ and S value was derived
according to inferential statistics instead of choosing between
the mean and the median of the λ and S value from its derived
dataset. The proposed new CN derivation and model cali-
bration methodology utilised inferential statistics and super-
vised non-linear genetic optimisation algorithm (Evolution-
ary Solver in Excel) to optimise λ and S value. Evolutionary
Solver optimisation algorithm created a population size of
2,000 and 2,000 random seed with mutation rate of 0.075 to

converge toward an optimal solution within BCa 99% CI at
small error of 0.001 mm for the formulation of the Sungai
Kerayong runoff prediction model at alpha = 0.01 level
[38], [40]. The proposed SCS model calibration of this study
consists of the following steps:

1) Given that: Pe = P − Ia and Ia = λS; rearrange SCS
Eq. (1) into following:

Q =
P2e

Pe + S

S =
P2e
Q
− Pe

λ =
Ia
S

2) Calculate the runoff coefficient (Q/P)% of each
P−Q datapair and select the P−Q event pairs whereby
the percentage of the runoff coefficient is larger than or
equal to 75%.

3) For each P− Q event pair calculate λ and S value.
4) Conduct Bootstrap, BCa (at α = 0.01 level) inferential

statistical analyses (2,000 samples) for λ and S dataset
in SPSS and generate CI for λ and S dataset.

5) Test Null Hypotheses by referring to the λ CI span and
its standard Deviation.

6) Find the optimum λ and S value from BCa CI and
calculate Ia.

7) Formulate the new calibrated SCS model by substitut-
ing Ia and S into Eq. (1).

8) According to a group of researchers [33], when λ value
other than 0.20 was detected at a catchment, its corre-
sponsing S values (denoted by Sλ) must be correlated
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to the S0.2 values for CN calculation. As such, correlate
Sλ and S0.2 with the S general formula derived by past
research [41].

9) Lastly, substitute the correlation equation into:

CN =
25, 400

S0.2 + 254
to determine the CN.

A. RESIDUAL MODELLING TO ADJUST SCS CN MODEL
Although it is difficult to model the residual pattern of scat-
tered data, it is easier to model differences between two
similar prediction models which are derivative of the same
framework. Twomodels will eventually converge toward uni-
fication through the adjustment of a statistically significant
equation which models the difference between them. In the
event thatH01 can be rejected at α = 0.01 confidence interval
level, Eq. (2) will become invalid. As such, it is imperative
to be able to produce an adjusted equation to correct the SCS
CNmodel according to the catchment specific characteristics
because the model has gained popularity in many sectors. The
calibrated runoff prediction model and the SCS CN model or
Eq. (2) are derivative from Eq. (1) thus runoff prediction dif-
ferences (Qv) between twomodels can bemodelled according
to P values in order to adjust the runoff prediction results
from Eq. (2). An adjustment equation can be produced and
amended to runoff prediction results from the conventional
SCS CN model in order to aid SCS practitioners to calibrate
runoff prediction results and improve runoff prediction accu-
racy. The effective adjustment to SCS CN model will restore
its statistical significance as well.

The following two null hypotheses were set up under this
study to assess Eq. (2).
• Null Hypothesis 1 (H01): Eq. (2) is applicable to Sungai
Kerayong catchment.

• Null Hypothesis 2 (H02): The value of λ = 0.20 is a
constant.

In the event that H01 was rejected, Eq. (2) becomes invalid
and cannot be used to predict the runoff of the Sungai Ker-
ayong catchment while H02 rejection proves that λ is not as
suggested by SCS as a fixed value of 0.20 which will pave
the way for model calibration by varying λ value. AFM was
used by past researchers to derive the CN of a catchment
by using the catchment P − Q dataset [32], [33], [35], [40]
and therefore, this study will benchmark the new Sungai
Kerayong catchment runoff prediction model against Eq. (2)
and the AFM runoff model.

B. RUNOFF MODELS COMPARISON AND ASSESSMENT
Residual sum of squares (RSS), Nash-Sutcliffe efficiency
index (E) and model BIAS are calculated to assess different
runoff models. Better runoff predictive model will have a
lower RSS value and a higher Nash-Sutcliffe efficiency index
(E) value. E value of 1.0 indicates a perfect model while the
mean value of the observed dataset outperforms the model
when E < 0. The model BIAS shows the overall model’s

ability to predict accurately. Negative BIAS value indicates
a model’s under-prediction tendency and vice versa.

C. CRONBACH’S ALPHA RELIABILITY TEST
Cronbach’s Alpha has been in use to assess the reliability and
internal consistency of a survey or questionnaire. The calcu-
lation of alpha value refers to the variances between different
entities within a test group. This study adopted the ability of
Cronbach’s Alpha reliability test to detect differences from
a specific measurement or model in order to demarcate or
isolate predictive model(s) that has (have) different or incon-
sistent runoff prediction characteristics when compared to
other benchmarked model(s) [42]–[45]. Runoff prediction of
the conventional SCS CN rainfall-runoff model, new cali-
brated SCS runoff predictive model and the adjusted (cor-
rected) SCS runoff predictive model were analysed simulta-
neously as a test group according to the Cronbach’s Alpha
reliability test procedure in SPSS through the following
steps: Analyze/Scale/Reliability. Analysis/Select to include
all runoff predictions models under ‘‘Items’’/Model: select
Alpha option. Under the statistics option; select ‘‘Scale’’
and ‘‘Scale if item deleted’’ option in order to detect and
isolate runoff predictive model(s) that is (are) different from
other benchmarked model(s)/Continue/Click OK to run the
Cronbach’s Alpha reliability test.

D. RECEIVER OPERATING CHARACTERISTIC
CURVE ANALYSES
The receiver operating characteristic curve (ROCC) was used
in world war two for radar operators to assess the valid-
ity of the received radar signals. ROCC was adopted by
the medical field in 1970 to assess the effectiveness of an
administered test with dichotomous outcomes. The concept
of the confusion matrix which consists of a true positive,
true negative, false positive and false negative test results
were summarized and represented through the ROCC graph
where the y-axis represents sensitivity and x-axis represents
1-specificity of a test. After plotting the ROCC, the area under
the ROCC (AUROCC) was calculated to classify a test on the
scale from zero to 1.0 where the value of 1.0 is considered
as a perfect test result. AUROCC value > 0.9 is consid-
ered as an excellent test, AUROCC value between 0.8 and
0.9 indicates a good test result, a value between 0.7 and
0.8 indicates an acceptable test result while value less than
0.5 indicates an unreliable test with its achieved effectiveness
by chance only. The diagonal line on the ROCC graph repre-
sents the AUROCC value of 0.5. In the event that AUROCC
value is around 0.5, ROCC will fluctuate along the diagonal
line [46]–[48].

The study requires a runoff predictive model that can
predict runoff conditions of a catchment of interest under
high rainfall intensities. As such, any runoff predictions
within a ±10% error margin were classified with the value
of ‘‘1.0’’ to indicate a true positive runoff prediction while all
other predictions with an error margin larger than 10% were
classified with the value of ‘‘0.0’’ to indicate true negative
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prediction results. The runoff predictions from the conven-
tional SCS CN runoff predictive model and the newly cali-
brated SCS runoff predictive model were classified according
to the dichotomous outcomes classification rule with respec-
tive rainfall depths for ROCC analyses in order to determine
which rainfall-runoff predictive model is capable of predict-
ing runoff amount within ±10% error margin at high rainfall
intensity range. The ROCC analyses were conducted in SPSS
through the following steps: Analyse/ROC Curve/Select the
rainfall depths data to ‘‘Test Variable’’/ Select dichotomous
outcomes of the models to ‘‘State Variable’’/ Enter ‘‘1.0’’
(as positive outcome) to ‘‘Value of State Variable’’/Check
the ‘‘ROCCurve’’, ‘‘with diagonal reference line’’, ‘‘standard
error and confidence interval’’ and ‘‘Coordinate points of the
ROC Curve’’/Click OK to proceed.

III. RESULTS AND DISCUSSION
A. STATISTICS AND NULL HYPOTHESES ASSESSMENT
This study derived twenty-five λ values from the rainfall-
runoff dataset of Sungai Kerayong catchment. Descriptive
statistics was tabulated in Table 1.

TABLE 1. Bootstrapping BCa results of λ and S values at Sungai Kerayong
catchment.

The supervised non-linear genetic optimization referred
to the λ median confidence interval [0.036, 0.129] while S
optimisation was also conducted within the median confi-
dence interval [1.690, 7.060] because both λ and S dataset
are skewed (Table 1).

The optimised λ value was 0.036 and the optimised S value
was 6.29 mm to represent the dataset of Sungai Kerayong
catchment thus Ia = 0.23 mm was calculated. The substitu-
tion of Ia and S into Eq. (1) will form a Sungai Kerayong
catchment runoff prediction model as:

Q0.036 =
(P− 0.23)2

P+ 6.06
(3)

The standard deviation of λ dataset is not equal to zero
which proves that λ cannot be a constant. The median’s BCa
CI spans from 0.036 to 0.129, it does not include the λ
value of 0.2. As such, λ value cannot be 0.2 for this site
(Table 1) and therefore, H01 and H02 were both rejected.
Eq. (2) becomes invalid to predict runoff at Sungai Kerayong
catchment (at α = 0.01 level).

B. CORRELATION BETWEEN S0.036 AND S0.2 FOR
SUNGAI KERAYONG CATCHMENT
S0.036 and S0.2 can be calculated for theP−Q dataset using the
S general formula [41] through the substitution of λ = 0.036

and 0.20 corresponding to the same P−Q dataset for Sungai
Kerayong catchment. The correlation between S0.036 and S0.2
was identified with SPSS as:

S0.2 = 0.838 S0.036 0.991 (4)

where S0.036 is total abstraction amount (mm) when λ =
0.036 and S0.2 is total abstraction amount (mm) when
λ = 0.2.
The adjusted R2 of Eq. (4) is 0.99 with low standard error

of 0.02 while its p value is less than 0.001. The substitution

of the S0.2 into SCS CN formula (CN =
25, 400

S0.2 + 254
) will

calculate the CN value of 98 to predict runoff conditions at
Sungai Kerayong catchment.

C. THE ASYMPTOTIC CN OF SUNGAI KERAYONG
CATCHMENT
The ‘‘complacent behaviour’’ was detected through AFM
where CN values reduce with increasing rainfall depths and
do not approach to any stable CN∞ value. CN was undefined
for Sungai Kerayong catchment (as shown in Fig. 2) as CN∞
failed to approach a stable state and kept declining [20].
As such, a CN value cannot be identified with this method.

FIGURE 2. CN value cannot be identified for complacent behaviour
pattern with AFM.

D. RESIDUAL MODELLING AND THE CORRECTED
EQUATION
Runoff prediction differences (Qv) between Eq. (3) and (2)
were mapped with several non-linear regression models
according to P values using SPSS. The best correction equa-
tion was identified as:

Qv = −0.292+ 0.857LN (P) (5)

where Qv is the runoff prediction difference (mm) between
two models and P is the rainfall depth (mm).

This equation was proposed as an amendment for SCS CN
model or Eq. (2) to correct its runoff over prediction error as
below:

Q =
(P− 0.2S)2

P+ 0.8S
+ 0.292− 0.857LN (P) (6)
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ifP < 0.2S, Q = 0 where P,Q and S are the same parameters
as stated in previous section. Eq. (5) modelled runoff predic-
tion differences between two models with the low standard
error of the estimate and high adjustedR square (0.092, 0.985,
p < 0.001). Eq. (6) adjusted SCS model into a runoff model
very similar to Eq. (3).

E. RUNOFF MODELS ASSESSMENT
The assessment of all runoff models in this study were tabu-
lated in Table 2.

TABLE 2. Descriptive statistics and 99% BCa results of four runoff
predictive models.

Eq. (6) has proximate RSS, BIAS and E index as Eq. (3).
Both Eq. (3) and (6) has the bias value near to zero which
indicates that both models are capable of producing similar
and accurate runoff prediction results. On the other hand,
Eq. (2) tends to over predict runoff amount as its model’s
BIAS is the highest (1.68 mm).

The rejection of H01 and H02 inferred that the SCS CN
model which was represented by Eq. (2) is invalid and not
statistically significant. On the other hand, SCS CN model
also over predicted runoff of all rainfall scenarios in this
study. Runoff residual modelling can be conducted between
Eq. (2) and Eq. (3) to produce a corrected equation for Eq. (2).
The amendment of Eq. (5) adjusted the runoff prediction
results and corrected RSS of Eq. (2) by almost 33% to achieve
proximate runoff prediction results as Eq. (3). Un-calibrated
SCS CN model or Eq. (2) over-predicted runoff amount by
111,626 m3 (on average) under different rainfall scenarios
from the 48.3 km2 Sungai Kerayong catchment in this study
when compared to the newly calibrated model or Eq. (3).
The runoff over prediction risk is significant and worsen
toward higher rainfall intensities from the un-calibrated SCS
CN model or Eq. (2). SCS CN rainfall-runoff model was
statistically in-significant (α = 0.01 level) and over predicted
urban runoff as much as 21% at Sungai Kerayong catchment
in Kuala Lumpur, Malaysia.

Drainage systems were overdesigned by USD$2 billion
per year in the United States [49], climate change will
post another challenge in future hydro structure designs and
projects in Malaysia. Without Eq. (6), SCS CN model or
Eq. (2) will over predict runoff at a significant and sub-
stantial runoff volume leading to over-design issues at this
catchment.

It is noteworthy to mention that although rainfall depth
of this study is only up to 80 mm but the runoff coefficient
(Q/P) ranges from 75% to 94%. P − Q dataset of this
study was selected to model the runoff condition at Sungai

FIGURE 3. ROCC of the newly calibrated runoff model (left) and SCS CN
model (right). Modified from SPSS output.

Kerayong catchment near to saturation state in order to
formulate a rainfall-runoff model for urban flood forecast.
Eq. (3) and (6) model the runoff up to 94% saturation con-
dition (at α = 0.01 level) with high accuracy.
For social science related studies, the Cronbach’s Alpha

reliability test was often used to remove or discard survey
question(s) from a survey or questionnaire which require(s)
modification or further consideration. The removal of those
survey question(s) will increase the overall Cronbach Alpha
value of a survey or questionnaire. This study utilised the reli-
ability test to differentiate predictive runoff model(s) which
is (are) different from other models within the test group.
The Cronbach’s Alpha reliability test results of the aforemen-
tioned test group were tabulated in Table 3.

TABLE 3. Cronbach’s alpha reliability test.

The overall Cronbach’s Alpha reliability test value of the
test group was 0.995, if the conventional SCS CN runoff pre-
dictive model’s runoff predictions were deleted from the test
group, the overall reliability value increased by 0.4% from
0.995 to 0.999. On the contrary, if either the newly calibrated
SCS runoff predictive model or the adjusted (corrected) SCS
runoff predictive model was removed from the test group,
the overall reliability value for the test group would reduce
by 0.53% from 0.995 to 0.989. As such, runoff predictions
from the conventional SCS CN runoff predictive model are
considered to have inconsistent or different characteristics
when compared to the other two models.

For the newly calibrated SCS runoff model, the AUROCC
value is 0.893 and statistically significant (p = 0.014) with
the asymptotic 95% confidence interval range [0.643, 1.0]
which indicates that the model can effectively predict runoff
amount within ±10% error margin to fulfil the aim and
objective of this study. On the other hand, AUROCC
value for the conventional SCS CN runoff predictive model
showed low value of 0.483 and statistically insignificant
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TABLE 4. Area under the ROC curve.

(p = 0.890) results. ROCC of the model also fluctuated
along the diagonal line (Figure 3) to show that the SCS CN
model or Eq. (2) is not capable to predict runoff amount
effectively within the ±10% error margin across different
rainfall classes. AUROCC analyses outcomes were tabulated
below in Table 4:

IV. CONCLUSION
This study presented a new method to calibrate the SCS CN
runoff model according to the catchment specific P − Q
dataset with inferential statistics. H01 and H02 were rejected
at α = 0.01 confidence interval level. Therefore, the SCS
CN model cannot be used to predict runoff conditions of
Sungai Kerayong catchment. Blind adoption of this model
will commit the type II error.

The supervised non-linear genetic optimisation technique
has proven to be able to calibrate the conventional SCS CN
runoff model with the help from inferential statistics. When
compared to other models, newly calibrated runoff model or
Eq. (3) out-performed against all other models with high E
index value, low BIAS and low RSS with the smallest runoff
prediction error. The derived CN value is 98 with 99% CI
from 97.8 to 99.5 to represent the high ground saturation
runoff conditions of the Sungai Kerayong catchment. This
study proved that the conventional SCS CN runoff predictive
model or Eq. (2) can be calibrated according to the catchment
specific rainfall and runoff conditions to predict urban runoff
accurately. This newmethodology is capable to develop a fea-
sible and statistically significant rainfall-runoff model swiftly
using catchment specific P− Q dataset.
Cronbach’s Alpha reliability test concluded that the runoff

predictions of the conventional SCS CN runoff predictive
model or Eq. (2) are different from the newly calibrated SCS
runoff predictivemodel or Eq. (3) and the adjusted (corrected)
SCS runoff predictive model or Eq. (6). ROCC analyses were
used to determine if a runoff predictive model is capable of
achieving high true positive result to predict runoff amount
within ±10% error margin. The ROCC analysis showed that
the newly calibrated SCS runoff predictive model and the
adjusted (corrected) SCS runoff predictive model were capa-
ble to predict runoff amount effectively at different rainfall
depths which is an important criteria to meet under this study.
In the top two quartiles of rainfall depths (P > 30 mm),
both newly calibrated SCS runoff predictive model and the
adjusted (corrected) SCS runoff predictive model were capa-
ble to predict nine out of twelve runoff events within ±10%
error margin. Contrary, SCS CNmodel only predicted six out
of twelve events within ±10% error margin.

Sungai Kerayong catchment has 12 rainfall events with
rainfall depths greater than 30 mm which generated
23 million m3 of runoff volume and the averaged runoff

coefficient of those events was at 85% saturated ground con-
dition. This study showed that the proposed newly calibrated
SCS runoff prediction model was capable to predict high
runoff volume with significantly improved accuracy when
compared to the conventional SCS CN model.

Twenty-five storms generated almost 29 million m3 of
runoff (11,548 Olympic size swimming pools) from the Sun-
gai Kerayong catchment in this study. 75%-94% of the rain
water became runoff from these storms and was lost through
the catchment, without efficient drainage infrastructure in
place, the average flood depth reached 6.5 cm in this catch-
ment while the actual flood depth will be deeper at the
low flood ponding area near to the outlet of the catchment.
It is recommended to review the water resource management
policies, flood prevention and mitigation plans for Sungai
Kerayong catchment.
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