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ABSTRACT This paper presents a novel approach to building an interval dynamic model for an industrial
plant with uncertainty by an interval neural network (INN). A new type of randomized learner model,
named interval random vector functional-link network (IRVFLN), is proposed to take advantages of the
inherent RVFLN in rapid modeling. The IRVFLN model is equipped with interval hidden input weights
(and biases), which are randomly assigned from certain distribution/range and remain fixed, and the interval
output weights can be evaluated by solving a couple of least squares problems. The comparative numerical
experiments have verified the good potential of the proposed IRVFLN with the interval learner models
produced by the error back-propagation algorithm. In the following modeling application, some measures
for building IRVFLN with unknown but bounded (UBB) errors requirements are discussed in depth, in order
to modeling an uncertain dynamic plant with IRVFLN by bounded-error data in either known or unknown
error bounds. Finally, as a case study, the IRVFLN is applied to modeling a chemical interval dynamic plant
with recycling, where the simulation results and generalization ability analysis demonstrate that the proposed
method is suitable and effective.

INDEX TERMS Interval neural network (INN), random vector functional-link network (RVFLN), unknown
but bounded (UBB) errors, uncertain dynamic system modeling.

I. INTRODUCTION
In some real-world industrial domains, such as chemi-
cal plants, robotic manipulators, nuclear reactors, elec-
trical machines and large power networks, uncertainties
unavoidably exist due to poor plant knowledge, nonlin-
earities, unknown internal or external noises, environmen-
tal influence, time-varying parameters, changing operating
conditions, etc. Therefore, to build a very accurate model
that can exactly describe the physical plant is of great
challenge [1]–[3]. Technically, conventional models (like
neural networks with point-valued parameters and inputs)
cannot favourably deal with uncertainty issues mentioned
above as the ordinary values (rather than ranges/intervals)
may not reflect the indeterminacy of the practical indus-
trial system. Instead, an interval model, which includes
parameters varying in prescribed ranges that are perturbed
by uncertainties, has a good potential to model the com-
plex dynamics of a plant with their inherent flexibilities
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contributed by the interval components (the parameters,
inputs, and outputs) [4]–[7]. Compared with the other uncer-
tain models, such as the fuzzy set model [8], which requires
the suitable membership functions and the expert rules,
the stochastic model [9], which needs the accurate probability
distribution of uncertainty, and etc., the interval model pos-
sesses the properties of the simplest description of uncertainty
and the least requirements of a priori knowledge.

The system description based on the theory of unknown
but bounded (UBB) errors is an effective way to establish an
interval system model [10], [11]. At present, modelling an
interval nonlinear system using UBB error theory is based on
the assumption that the parameter estimation can be regarded
as a set inversion problem, and, with the help of the interval
analysis-based SIVIA (set inverter via interval analysis) algo-
rithm for the obtainment of an approximate but reliable set of
identification parameters [12], [13]. This kind of technique
optimizes the parameters of the system under the condition
that the models structure is known in advance. However,
with increasing complexity in the process being modelled,
it can be very difficult to determine a priori models structure
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through the process mechanism analysis. Furthermore, when
the SIVIA algorithm is used to estimate the parameters of
an interval system model, it is assumed that the parameters
are compatible with the errors, which implies that the SIVIA
algorithm may return an empty set if an incompatibility is
found [14].

To address the problems that arise when modelling an
uncertain dynamic plant based on UBB theory, we focus on a
new interval modelling method by employing interval neural
networks (INNs) in system design, which can effectively
avoid problems such as the systemmodels structural demands
and the error compatibility requirement. Although several
researchers have studied the development of prediction inter-
vals (PIs) for NN forecasts [15], [16], the existing research
on PIs is to use the point-valued neural network to realize the
interval-valued prediction, which essentially belongs to sta-
tistical regression. Besides some limitations in understanding
and difficulties in the training process of NN-based PI [16],
it is very hard, or impossible to quantify the uncertainties
in the system inputs and parameters, and it is difficult to
provide dynamic long-range interval prediction, i.e., the pre-
vious outputs are fed back from the network itself to reflect
the current point (interval) values to the future ones, while
these are the necessary requirements of an uncertain dynamic
process modeling. Therefore, as the name implies, NN-based
PI models are suitable for forecasting, not modeling. As for
the INN models, these abovementioned requirements are the
fundamental characteristics, so to some extent, we can say
that the INNs are the promotion of NN-based PIs. In fact,
the research on the design of interval system controller based
on INN models has achieved preliminary results [17]–[19].

Similar to [20], we further give the following definition: a
neural network is called an INN if one of its input, output,
or weight sets is interval-valued, and it follows the rules of
interval arithmetic. This concept was introduced since the
early 90’s [21]–[24], and exhibited similar principles in terms
of various perspectives, such as granular neural networks
[25], [26]. Some researchers convert interval value into point
value by some methods, and then use conventional point-
valued neural network for processing, such as interval prob-
abilistic neural network (IPNN) [27], interval radial basis
function network (IRBFN)IRBFN [28], not within the scope
of our discussion as they do not meet our above definition of
network operation on interval arithmetic.

For problem-solving, error back-propagation (BP)
algorithm is usually applied for training the interval feed-
forward neural network (termed IBPNN for simplifica-
tion) [20]–[24], but still suffers from drawbacks such as
the local minima solution, slow convergence and huge
uncertainty in learner architecture and parameter settings.
In this work, we extend the random vector functional-link
network (RVFLN) [29]–[31] to interval version, named inter-
val RVFLN (IRVFLN), by combing the trivial architecture of
RVFLN (without direct link from inputs to the outputs) with
some interval analysis principles [32]. Similar as performed
in RVFLN, the hidden weights (and biases) of IRVFLN are

randomly assigned with interval values and remain fixed.
The output weights however are expressed as intervals with
both lower and upper bound components, which can be
analytically evaluated by solving two separate least squares
problems.

Since the bounded errors in the UBB method can be
described by intervals, it is easy to model an interval plant
by using the IRVFLN under the condition of known error
bounds. While in the condition of unknown error bounds,
which is a modelling problem that cannot be settled in the
UBB method, considering that a real (or point) value is a
special case of an interval and resorting to the weighted strat-
egy, the penalty factor is employed to improve the IRVFLN
learning algorithm. In this way, the IRVFLN can be adapted to
modelling an interval system with either known or unknown
error bounds. Our experimental results on four numerical
examples and an industrial case study for interval modelling
of an uncertain recycling plant have demonstrated a good
potential of IRVFLN in uncertainty modelling tasks.

In summary, there are three aspects to the contributions,
as described below. First, a novel strategy is proposed to
model a dynamic uncertain system using the INN to over-
come the problems existing in the UBB errors method. Sec-
ond, a new type of randomized learner model, named interval
random vector functional-link network (IRVFLN), is pro-
posed to take advantages of the inherent RVFLN in rapid
modeling. Finally, an improved IRVFLNwith penalty factors
in learning algorithm is applied to model a dynamic industrial
plant by bounded-error data in either known or unknown error
bounds.

The remainder of this paper is organized as follows. The
basics of the interval arithmetic, RVFLN and UBB method
are reviewed in Section II. Section III details the architecture
of IRVFLN and the proposed learning algorithm. Experi-
mental study on four artificial examples with the comparison
with IBPNN is presented in Section IV, with the robustness
analysis for random selection range of IRVFLN. Considering
the situation of unknown error bounds, an improved IRVFLN
learning algorithm is proposed by adding penalty factors,
and then it is used to model an uncertain dynamic chemical
recycling plant in Section V, the generalization ability of the
proposed network in the recurrent formation with the joint
inputs (points and intervals) is also discussed in this section.
Section VI concludes this work with further remarks.

II. PRELIMINARIES
A. INTERVAL OPERATIONS
Here, we briefly review some preliminaries for interval arith-
metic, which is a generalization of ordinary arithmetic to
closed intervals [32]. A continuous subset A = [a

−
, ā] of a

real number set is called an interval, and the lower and upper
bounds of the interval are represented by a

−
and ā, respectively.

In this paper, interval numbers are denoted by upper case
letters such as A and B, interval vectors are described by
bold upper case letters such as A and B, real numbers are
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FIGURE 1. Structure of RVFLN.

represented by lower case letters such as a and b, and vectors
are represented by bold lower case letters such as a and b.
Some interval arithmetic operations are defined as follows:

Addition:

A+ B = [a
−
+ b
−
, ā+ b̄]. (1)

Subtraction:

A−B = [a
−
− b̄, ā− b

−
]. (2)

Multiplication:

A× B = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)]. (3)

Division (excluding division by an interval B containing
zero):

A/B= [min(a/b, ā/b, a/b̄, ā/b),max(a/a, ā/b, a/b, ā/b)].

(4)

The sigmoid function, which is used as the activation func-
tion of hidden nodes, is extended to the case of an interval
input as

f (Net) = {f (x)|x ∈ Net}. (5)

where Net is an interval input and

f (x) = 1/(1+ exp( - x)). (6)

Since the sigmoid function (6) is a strictly increasing func-
tion, the interval output in (5) can be calculated as

f (Net) = f ([net, net]) = [f (net), f (net)]. (7)

B. RANDOM VECTOR FUNCTIONAL-LINK NETWORK
A RVFLN can be viewed as a classical single-layer feed-
forward network with the hidden weights (and biases) ran-
domly assigned and output weights evaluated by least squares
method [29]. A typical architecture of RVFLN is shown
in Fig.1.

The relationship between the inputs and outputs of the
RVFLN with the structure l-m-n can be defined as follows

yk (x) =
m∑
j=1

βjk · f (wTj · x + θj), k = 1, 2, · · · , n. (8)

where βjk is the output weight linking the jth node of the
hidden layer and the kth node of the output layer; x =
(x1, x2, · · · , xl)T is the input vector; wj = (w1j,w2j, ...,wlj)T

is the hidden weight vector that links the input layer and the
jth node of the hidden layer; θj is the hidden-layer bias of
the jth node; l, m and n are the numbers of input, hidden and
output layer nodes, respectively; and f (·)is a basis function of
the hidden layer nodes.

In RVFLN, the parameters of the hidden layer
(wj and θj) are assigned randomly from [−λ, λ], λ > 0,
and this is done independently from the training samples; the
linear parameters βjk of the output layer can be tuned using
quadratic optimization techniques, and then the problems of
local optimization and slow convergence can be effectively
solved [29].

C. PROBLEM FORMULATION UNDER UBB CONDITION
The UBB problem is described below

y = f (x, q)+ e. (9)

where the input and output samples are real values, that is
(xi, yi), and the error belongs to an interval, that is ei ∈
Ei =

[
ei, ēi

]
, where ei and ēi are error bounds. The task of

parameter estimation is to determine the parameter set Q to
make the error E be satisfied, where q ⊂ Q,E = {Ei}.
When the error bounds ei,ēi are known, according to the

output measured data and error, we can obtain the desired
output interval, which is Yi =

[
yi − ēi, yi − ei

]
. Expand

model f to the interval form F , and redefine the model (9)
as follows

Y = F (x,Q) . (10)

Then, the parameter estimation can be transformed into
a regression problem. We can find the optimal solution of
the interval parameter set Q according to the real input and
interval output data pairs of (xi,Yi).

If we only consider the mapping relationship and neglect
the model’s internal structural features, we can easily estab-
lish themathematical model of an uncertain system according
to the input and output data by using INN. The model rela-
tionship is as follows

Y = F(x,Q) = INN (x,W, 2). (11)

where W and 2 are the network parameters. This means
that the interval network structure is adopted instead of the
theoretical model structure, the interval parameters of the
system are replaced by the interval parameters of the network,
and the learning process of the network parameters is used
instead of the interval parameters identification. This new
approach can effectively solve the problems that existed in
the uncertain system parameter estimation under the UBB
condition and provide a new way to model uncertain systems.

When the error bounds are unknown, which means that ei
and ēi are not available, then the system output yi is just a
random real value between a certain range, and we cannot
obtain the output interval Yi =

[
yi − ēi, yi − ei

]
. In this

case, the parameter estimation of (10) cannot be determined
by using the UBB method. At present, there is no effective

VOLUME 8, 2020 9811



Guan et al.: Modeling Uncertain Dynamic Plants With INNs by Bounded-Error Data

FIGURE 2. Structure of the IRVFLN.

approach to solve this problem in the UBB modelling field,
which motivates us to employ INNs for problem-solving.

III. INTERVAL RANDOM VECTOR FUNCTIONAL-LINK
NETWORK
A. ARCHITECTURE OF IRVFLN
The IRVFLN has three layers, including the input layer, hid-
den layer and output layer. The weights in the network have
interval values, and the activation function of the hidden unit
is the sigmoid function. Here, for simplicity, we assume that
the IRVFLN has one output, and then the point input/interval
output architecture of IRVFLN with the structure l-m-1 is
described in Fig.2

Where Wij = [wij, w̄ij] is an interval that links the ith
node of the input layer with the jth node of the hidden layer,
i = 1, 2 . . . , l, j = 1, 2, . . . ,m, and l and m are the numbers
of input and hidden layer nodes, respectively. 2j = [θ j, θ̄j]
is the interval bias of the jth hidden node, Bj = [β

j
, β̄j] is

an interval that links the jth hidden unit with the output unit,
xp = (xp1, xp2, ..., xpl)T is the point-valued input vector of
the pth sample, and Yp = [y

p
, ȳp] is an interval output of the

pth sample. The activation function is denoted by f (·).
Different from the point-valued RVFLN, the parameters

of the hidden layer (Wj = (W1j,W2j, ...,Wlj) and 2j ) in
the IRVFLN are intervals and assigned randomly from the
uniform distribution interval [−λ, λ], λ > 0, which means
that they are the subintervals of [−λ, λ]. The training task is
to determine the interval parameters Bj of the output layer by
using the quadratic optimization technique.

The output of the jth hidden unit can be written as

Upj = [upj, ūpj] = f (
l∑
i=1

Wijxpi −2j). (12)

where

upj = f

 l∑
i=1
xpi≥0

wij · xpi+
l∑
i=1
xpi<0

w̄ij · xpi − θ̄j

 . (13)

ūpj = f

 l∑
i=1
xpi≥0

w̄ij · xpi +
l∑
i=1
xpi<0

wij · xpi − θ j

 . (14)

The output can be denoted as follows

Yp = [y
p
, ȳp] =

m∑
j=1

BjUpj. (15)

where

y
p
=

m∑
j=1
βj≥0

β
j
· upj +

m∑
j=1
βj<0

β
j
· ūpj. (16)

ȳp =
m∑
j=1
β̄j≥0

β̄j · ūpj +
m∑
j=1
β̄j<0

β̄j · upj. (17)

For simplicity, define uupj and ulpj as

ulpj =

{
upj , β

j
> 0

ūpj, β
j
< 0

, uupj =

{
ūpj, β̄j > 0
upj, β̄j < 0

(18)

Substituting (18) with (16) and (17), then we have the
following

y
p
=

m∑
j=1

β
j
· ulpj, ȳp =

m∑
j=1

β̄j · uupj. (19)

B. LEARNING ALGORITHM
Given the structure of IRVFLN described in Fig. 2, we know
that the network inputs are point values, while the output
is an interval. Thus, the training dataset can be described
as {(x1,D1) , (x2,D2) , · · · , (xP,DP)}, where xp denotes the
point-valued input and Dp = [dp, d̄p] denotes the inter-
val output,p= 1, 2, · · · ,P, which means the pth sample of
total P.

Our objective is to let the network output interval suffi-
ciently approximate the target interval. From that purpose,
we can formulate the learning cost function as follows

ET =
P∑
p=1

Ep =
1
2

P∑
p=1

((
y
p
− dp

)2
+
(
ȳp − d̄p

)2)
. (20)

Technically, the parameters Bj = [β
j
, β̄j] need to be tuned

to ensure that the IRVFLN can obtain an optimal performance
when the gradient of the error function in (20) vanishes with
respect to Bj, as we detail in the following.
First, the derivative of the cost function with respect to β

j
and β̄j, respectively, to be zero:

∂ET
∂β

j

=

P∑
p=1

∂Ep
∂β

j

=

P∑
p=1

(y
p
− dp) ·

∂y
p

∂β
j

= 0. (21)

∂ET
∂β̄j
=

P∑
p=1

∂Ep
∂β̄j
=

P∑
p=1

(ȳp − d̄p) ·
∂ ȳp
∂β̄j
= 0. (22)

Since the derivation process of ∂ET
∂β

j
is similar to ∂ET

∂β̄j
,

we only give the derivation process of ∂ET
∂β

j
. Based on (21),
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we have

P∑
p=1

(
m∑
h=1

β
h
· ulph − dp) ·

∂y
p

∂β
j

= 0. (23)

which leads to

P∑
p=1

(
m∑
h=1

β
h
· ulph

)
·

∂y
p

∂β
j

=

P∑
p=1

dp ·
∂y

p

∂β
j

. (24)

From (19), we get
∂y

p
∂β

j
= ulpj. Then, (24) can be written as

follows

P∑
p=1

(
ulpj ·

m∑
h=1

β
h
· ulph

)
=

P∑
p=1

(
ulpj · dp

)
. (25)

Now we can rewrite (25) into the matrix form, that is

ULT · UL · β = ULT · d. (26)

where β =
[
β
1
, β

2
, · · · , β

m

]T
,d =

[
d1, d2, · · · , dp

]T
,and

UL =

 ul11 · · · ul1m
...

. . .
...

ulP1 · · · ulPm


Similarly, as for the upper component, we have

UUT
· UU · β̄ = UUT

· d̄. (27)

where β̄ =
[
β̄1, β̄2, · · · , β̄m

]T ,d̄ = [d̄1, d̄2, · · · , d̄P]T ,and
UU =

 uu11 · · · uu1m
...

. . .
...

uuP1 · · · uuPm


Combine (26) with (27), we obtain the evaluation of the

output weight β, the lower component, and β̄, the upper
component, as follows

β =
(
ULT · UL

)−1
·

(
ULT · d

)
. (28)

β̄ =
(
UUT

· UU
)−1
·

(
UUT

· d̄
)
. (29)

Combine the above results, the following Algorithm 1
is obtained to describe our proposed learning scheme for
building IRVFLN model.
Remark 1: From (18), we can see that if we want to obtain

UU and UL, the value of the attribute Bj =
[
β
j
, β̄j

]
(i.e.

positive or negative) must be known. Therefore, we randomly
assign a value of Bj at first.
Remark 2: The matrix

(
ULT · UL

)
and

(
UUT

· UU
)
in

(28) and (29) may not always be reversible. To overcome
this issue, one can use the generalized pseudo inverse for
problem-solving.

Algorithm 1 IRVFLN Algorithm
Require:Training dataset X = {Xp}(p= 1, 2, · · · ,P),
the sigmoid active function f (·), number of nodes: l input,
m hidden, n output.
Ensure: Trained IRVFLN model
1: Initialize the IRVFLN structure.
2: Initialize the weights Wij and biases 2j: randomly set
Wij and 2j.
3: Calculate the outputs of the hidden layer for all sam-
ples in X, i.e., calculate upj(Xp),ūpj(Xp). For convenience,
define two temporary variables φ

pj
(Xp) and φ̄pj(Xp) in the

following procedure.
4: for p=1 to P do
5: for j= 1 to m do
6: for i =1 to l do
7: if xpi ≥ 0 then
8:

(
φ
pj
(Xp), φ̄pj(Xp)

)
←(

l∑
i=1

wij · xpi − θ̄j,
l∑
i=1

w̄ij · xpi − θ j

)
9: else
10:

(
φ
pj
(Xp), φ̄pj(Xp)

)
←(

l∑
i=1

w̄ij · xpi − θ̄j,
l∑
i=1

wij · xpi − θ j

)
11: end if
12: end for
13:

(
upj(Xp), ūpj(Xp)

)
←

(
f (φ

j
(Xp)), f (φ̄j(Xp))

)
14: end for
15: end for
16: Randomly assign values to β and β̄, and then calculate
ulpj and uupj according to (18).
17: Construct the matrixUL andUU according to (26) and
(27), respectively.
18: Calculate β and β̄ according to (28) and (29), respec-
tively.
19: Return IRVFLN model.

IV. PERFORMANCE EVALUATION
This section investigates the performance of IRVFLN and
then compares it with the popular model IBPNN, and then
analyzes the effectiveness of the random selection range to
the network regression capability.

A. ANALYSIS WITH NUMERICAL DATASETS
Four sets of datasets obtained from the test functions are
considered in order to analyze the performance of IRVFLN
on regression tasks.

Func1: Y = sin x + [0.2, 0.6], x ∈ U [0, 1],
Func2: Y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5 ·

[0.3, 0.6] , xi ∈ U [0, 1] ,
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Func3: Y =
√
(x2x3 − 1/(x3x4))/x1 + [0.1, 0.5], x1 ∈

U [0, 100], x2 ∈ U [40π, 560π ], x3 ∈ U [0, 1], x4 ∈ U [1, 11]
Func4: Y = 0.79 + 1.27 · [−1, 1] · x1x2 + 1.56x1x4 +

3.42x2x5 + 2.06x3x4x5, xi ∈ U [0, 1], (i = 1, 2, 3, 4, 5).
These functions are Sin, Friedman #1, Friedman #3, and

Multi. The domain variables of all the functions are randomly
generated using a uniform probability distribution U [a, b],
where a and b are the lower and upper bounds of the corre-
sponding variables, respectively. The number of the training
data [xi,Yi] generated is 1000 for all datasets.
To suit the performance analysis of the interval values,

we define the root mean square error (RMSE) of the output
lower bound, upper bound and midpoint as follows:

RMSEL =

√√√√√ 1
P′

P′∑
p=1

(y
p
− dp)

2. (30)

RMSEU =

√√√√√ 1
P′

P′∑
p=1

(
yp − dp

)2
. (31)

RMSEM =

√√√√√ 1
P′

P′∑
p=1

[
MID(Yp)−MID(Dp)

]2
. (32)

where RMSEL , RMSEU and RMSEM are the RMSE of the
outputs lower bound, upper bound andmidpoint, respectively,
and P′ is the number of testing samples. In (32), MID means
the midpoint of an interval, i.e. MID(Yp) = (y

p
+ ȳp)/2.

It should be stated that the RMSEM will be mainly used
in practice because the midpoint of the output interval of
an IRVFLN indicates the prediction value of the uncertain
system.

To illustrate the performance superiority of the proposed
IRVFLN, we compare the IRVFLN with the conventional
IBPNN. Due to the different learning processes of the
IRVFLN and IBPNN, the selection of the network structure is
also different. To compare the IRVFLN and IBPNN reason-
ably and effectively, the optimal results for both networks are
selected for comparison. For the IRVFLN, the trial-and-error
method described in the next subsection IV-B can be used to
determine the network structure and the distribution range for
each test function, where we set 1-80-1 and λ = 2 for Func1,
5-40-1 and λ = 1 for Func2, 4-80-1 and λ = 1 for Func3,
and 5-70-1 and λ = 2 for Func4.

Similarly, the trial-and-error method can also be used
to determine the network structure of the IBPNN for each
regression task, which means to set a suitable hidden
node number to obtain an optimal performance for the
IBPNN. Comprehensively considering the network’s abil-
ity to approximate and converge, the network structure of
IBPNN for each test function is given as 1-5-1, 5-8-1, 4-8-1,
and 5-7-1. Unlike the IRVFLN, the IBPNN adopts the iter-
ative training process. Therefore, we need to assign the ter-
mination condition in the calculation process. There are two

TABLE 1. Comparison of training performance between IRVFLN and
IBPNN.

TABLE 2. Comparison of the RMSEs between IRVFLN and IBPNN.

conventional options for the termination, namely, by giving
the iteration number or limiting the iteration accuracy. Here,
to ensure the optimization of the cost function, we use the
latter method. That is, if the absolute error between two
iterative times is less than 0.0001, stop the training process.

Table 1 shows the performance comparison between
the IRVFLN and IBPNN in the training process based on the
above four datasets. By considering the training time and the
average error (ET /P), we can see that the IRVFLN can obtain
a faster training speed and a smaller average error.

After training of the two type interval networks, the pre-
diction performance will be evaluated on the testing dataset.
Fig. 3 shows the test results, where the dotted blue line indi-
cates the upper and lower bounds of the samples, while the
solid red line indicates the upper and lower bounds of the net-
work outputs. The left diagram is the prediction results of the
IRVFLN and the right diagram is that of the IBPNN. We can
see that the IRVFLN has better prediction accuracy. If the
test function is simple, the two types of interval networks
have similar forecasting precision, whereas if the test function
is relatively complicated, the IRVFLN is significantly better
than the IBPNN. Table 2 shows the RMSEs of the IRVFLN
and IBPNN from the Fig. 3 results, which indicates that the
IRVFLN performs better than the IBPNN.

B. ROBUSTNESS ANALYSIS FOR RANDOM SELECTION
RANGE
In the process of constructing an IRVFLN, there are two
relatively difficult problems. One is how to set the uniform
distribution range λ, which determines how to randomly
assign the initial values of the weight Wj and the bias 2j,
and the other is how to set the node number m in the hidden
layer. Here, we use a trial-and-error method to choose the
distribution range [−λ, λ] and the hidden node number m.
That is, we randomly initialize the hidden weights and biases
in different distribution ranges and select the different hidden
nodes. Then, we train the IRVFLN using the testing function
or a real process dataset. Finally, we analyze the RMSE
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TABLE 3. Setting analysis of the distribution range and hidden nodes.

FIGURE 3. Comparison of the test results between IRVFLN and IBPNN.

of the validation dataset to determine the final parameters
of λ and m.

The prior mentioned function Fun1, i.e. Y = sin x +
[0.2, 0.6], x ∈ U [0, 1], is selected to show the trial-and-error
method to choose the distribution range λ and the hidden
node number m, and the simulation results are demonstrated
in Table 3. The detailed steps are that, for a given hidden node
number m, the uniform distribution selected for the weight
Wj and the bias 2j is [−λ,+λ], where different values are
assigned to λ to examine the generalization performance. All
choices for λ are assessed using a 10-fold cross-validation
procedure. For each λ, we run the algorithm 10 times for each
experiment. For each run, the algorithm randomly initiates

the hidden weights and biases in the range [−λ,+λ], calcu-
lates the other parameters based on the training datasets, and
then verifies the IRVFLNs performance over one validation
dataset. The performance measurements from all folds are
collected and averaged over the ten iterations. Due to the
randomness of the weights, biases and data sampling, each
λ value is simulated ten times for more reliable results. Then,
the results from all simulations are averaged, which means
that the RMSEL and RMSEU in Table 3 are the averaged
values on the testing dataset.

The simulation results shown in Table 3 indicate that the
choice of random selection range has a significant impact
on the network performance, and the uniform distribution
[−2, +2] (λ = 2) and the hidden nodes m = 80 seem to
be relatively satisfactory.

V. APPLICATION STUDIES OF MODELING AN UNCERTAIN
INDUSTRIAL PLANT
In this section, the application to modelling an uncertain
system with the proposed network under UBB condition is
discussed, and some substantial improvements are proposed.

A. APPLICATION ANALYSIS UNDER UBB CONDITION
The application of the IRVFLN under UBB condition con-
tains two cases: one is that the error bounds are known, and
the other is the error bounds are unknown.

Case 1: the error bounds are known
The architecture and the learning algorithm of the IRVFLN

in sections III-A and III-B can be used to model an interval
plant when the error bounds are known. In Y = f (x, q) +
[e, ē], we know the lower bound e and the upper bound ē.
Based on that, the point-valued input and interval output sam-
ple pairs can be obtained. Thus, we can train the parameters
of the IRVFLN to obtain an INN prediction model.

Case 2: the error bounds are unknown
In the industrial processes, we usually obtain the input-

output datasets with point values in the case of the error
bounds being unknown. For the uncertain system, the out-
puts of the system are different, even with the same input,
due to some random parameters that exist. Thus, the output
actually can be seen as an interval, although the interval
bounds are unknown. For instance, for the interval function
Y = sin(x) + E , if the bounds e and ē are unknown, then it
can be rewritten as y = sin(x) + rand[e, ē], where rand(·)
means obtaining a random value from an interval. The output
can be qualitatively shown in Fig. 4 through several iterations,
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FIGURE 4. Interval function output of unknown error bounds.

where the dotted blue lines indicate the unknown upper and
lower bounds of the samples, while the solid red dots indicate
the point values.

In fact, we should generate the sample output as much as
possible so that we can ensure that the randomly generated
target output is trained to fall within the predicted range of
the proposed network as much as possible.

For the unknown error bounds, we propose two methods.
One method is to generate a large amount of data. For dif-
ferent outputs of the same input, we take the maximum and
minimum values to form an output interval. Then, we convert
it into case 1 and use the proposed IRVFLN in section III to
solve it.

Another direct method is to treat the point output as a
special interval, which has the same upper and lower bounds.
Then, the different outputs of the same input are all put into
the IRVFLN as independent samples for training. We also
select the function of Func1 in subsection IV-A, i.e. y =
sin (x) + rand[0.2, 0.6], x ∈ [0, 1], to verify the above
method. We run the function ten times with the same inputs,
and then we randomly obtain 10 outputs under the same
inputs and produce a total of 5000 pairs of input and out-
put samples to be the training dataset. Afterward, we run
it another time to obtain 50 pairs samples to be the testing
dataset. Set the IRVFLN structure as 1-80-1 with the uniform
distribution [−2, +2], and then train the IRVFLN according
to the algorithm in section III. Afterward, we use the testing
dataset to verify the network performance, and the result is
shown in Fig. 5, where the solid red line represents the target
value and the dotted blue line represents the output of the
network.

We can see that although the overall trend is forecasted,
the target point value is not ideally contained in the output
range, and the number of the target value that has fallen inside
the output interval is only 24, which is 48% of the 50 total
target values.

To solve this problem, we improve the learning algo-
rithm in subsection III-B to address the form of input-
output point values. Here, we establish a model whose
input and output are point values. The dataset form is
{(x1, d1) , (x2, d2) , · · · , (xP, dP)}, where xp is the pth sample
input, and dp is the pth sample output.

FIGURE 5. Testing result of unknown error bounds.

The training target is to make the sample output dp as much
as possible included in the output interval of the network Yp =
[y
p
, ȳp], i.e. yp ≤ dp ≤ ȳp. Without loss of generality, let

dp = dp = d̄p, then the target is rewritten as

y
p
≤ dp ≤ d̄p ≤ ȳp. (33)

Aiming at this issue, we redefine the cost function with the
penalty factor as follows.

ET =
P∑
p=1

Ep =
P∑
p=1

(
vpEp + v̄pĒp

)
. (34)

where

Ep =
1
2

(
y
p
− dp

)2
, Ēp =

1
2

(
ȳp − d̄p

)2
. (35)

vp and v̄p are the penalty factors in Ep and Ēp, defined as
follows:

vp =

{
δ, dp ≥ yp
1, dp < y

p

, v̄p =

{
δ, d̄p ≤ ȳp
1, d̄p > y

p

(36)

where σ is a very small positive constant less than 1.
From the cost function, it can be seen that when the

IRVFLN output is satisfied with (33), the penalty factor is
very small and the weights are changed slightly. However,
when the output is not met (33), the penalty factor is 1,
the weights are changed significantly, and the learning effect
of the network is more obvious. The learning algorithm can
be derived from the cost function (34) in the same manner as
in subsection III-B, finally, we have

β =
(
ULT · VL · UL

)−1
·

(
ULT · VL · d

)
. (37)

β̄ =
(
UUT

· VU · UU
)−1
·

(
UUT

· VU · d̄
)
. (38)

where

VL = diag
(
v1, v2, · · · , vp

)
VU = diag (v̄1, v̄2, · · · , v̄P)

Then, we train the network using the improved algorithm
with the penalty factor. The network setting, training and
testing datasets are the same as the IRVFLN aforementioned
when no penalty factor is used. The testing result is shown
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FIGURE 6. Testing result with the penalty factor of unknown error bounds.

in Fig. 6, where the solid red line represents the target value
and the dotted blue line represents the output of the network.

As is shown in Fig. 6, the improved algorithm makes
more target points fall in the output intervals. The number
of target points in the output intervals is 42, which is 84%
of the 50 total target values, and the number that is no more
than 20% of the network output range is 8. The results show
that the improved algorithm with the penalty factor can effec-
tively forecast the output interval, and the percentage of the
point target contained within the output interval is ideal.

B. INTERVAL MODELLING OF AN UNCERTAIN RECYCLING
PLANT
Plants with a recycling operation are often encountered in
practical process industries. Taiwo [33] pointed out that it is
more reasonable to build an interval model to describe a plant
with recycling incorporating a recycling compensator. How-
ever, as far as we know, there are almost no papers exploring
the challenging problem associated with the modelling of
such an interval plant.

We select the transfer function of the recycling operation as
the benchmark interval plant model, which can be described
as follows [33].

G(s) =
y(s)
u(s)

=
4s+ 0.5

2s2+8.25s+1−0.5kR exp(−τ s)+0.975 exp(−8s)
.

(39)

where kR is the steady gain of the recycling operation,
kR ∈ [1.17, 2.73], τ is system delay and τ ∈ [4.8, 11.2].

Case 1: modelling of known error bounds
When the error bounds are known, we need to generate the

point input and interval output samples to be the training and
testing datasets. Then, the model (39) should be rewritten as

G(s) =
Y (s)
u(s)

=
4s+ 0.5

2s2+8.25s+1−0.5KR exp(−Ts)+0.975 exp(−8s)
.

(40)

where KR = [1.17, 2.73] and T = [4.8, 11.2].

FIGURE 7. Network evaluation of known error bounds.

Model (40) is a point-valued input and interval-valued out-
put transfer function, which can be used to generate the point-
interval sample pairs according to the interval operations. The
system input is selected as u (k) = 0.05∗sin(2πk/1000)(k =
1, 2, · · · , 2000), and then 2000 total samples are obtained,
of which 1950 pairs are used as the training dataset
and the remaining 50 pairs are used as the testing
dataset.

Considering that the midpoint of the IRVFLN output
interval is used as the prediction value, we then select the
network inputs as u(k), u(k − 1), u(k − 2), u(k − 3), u(k − 4),
MIDY(k-1), MIDY(k-2), MIDY(k-3), and MIDY(k-4). That
means there are nine neurons in the input layer, in which
there are three previous inputs (point values) and four pre-
vious outputs (point values), the output neuron is 1 as
Y(k) (interval value), and the hidden layer neurons are set
as 80. Then, the structure of the IRVFLN is 9-80-1 with
the recurrent formation of point inputs and interval
output.

After training the IRVFLN using the conventional learning
algorithm in subsection III-B, the network prediction perfor-
mance is verified on the testing dataset. The testing result
is shown in Fig. 7, where the solid red line represents the
network output intervals and the dotted blue line indicates the
target intervals. We can see that the boundary of the network
output is close to the target, which demonstrates that the pro-
posed IRVFLN can effectively forecast the output interval of
the uncertain system. The RMSE is also calculated according
to (30)-(32), they are RMSEL = 0.0560, RMSEU = 0.0511
and RMSEM = 0.3035.

It should be stated that the learning algorithm with the
penalty factor in subsection V-A can also be applied in this
situation, where the sample pairs have the point-interval for-
mation. The same training and testing datasets as above are
used, which lead to almost the same simulation results as
those in Fig. 7. That indicates that the basic IRVFLN model
can satisfy the requirements of the interval plant modelling
under known error bounds.

Case 2:modelling of unknown error boundsWhen the error
bound is unknown, we need to generate the sample pairs in the
form of point-point form input-output data. Then, model (39)
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FIGURE 8. Network evaluation of unknown error bounds.

should be rewritten as

G(s) = y(s)/u(s)

= (4s+ 0.5)/
{
2s2 + 8.25s+ 1− 0.5

·rand(KR) · exp[−rand(T ) · s]+ 0.975 exp(−8s)} .

(41)

Model (41) is a real-valued input and real-valued output
transfer function, which can be used to generate the point-
point sample pairs. The system input is also selected as
u (k) = 0.05 ∗ sin(2πk/1000), but the sampling number is
selected as k = 1, 2, · · · , 10000, which is five times of that
in the situation of known error bounds. Then, 10000 total
samples are obtained, of which 9950 pairs are used as the
training dataset, and the remaining 50 pairs are used as the
testing dataset. The network structure, the input variables and
the output variable are the same as that in the situation of
known error bounds in Case 1.

Use the improved algorithm in subsection V-A to train the
IRVFLN and then to verify it on the testing dataset. The
test result is shown in Fig. 8, in which the solid red line
represents the network output intervals and the dotted blue
line represents the target real values. The absolute number of
the target values in the output intervals is 44, in the network
output range not exceeding 5% is 3, and in the output range
not exceeding 10% is 3. Because the target samples are the
real values, the RMSEL and RMSEU are meaningless, and
the RMSEM is 0.0144.
From the test results, we can see that the target values are

mostly included in the output intervals, which indicates that
the proposed IRVFLN can predict the output of an uncertain
system in the condition of unknown error bounds.

C. DISCUSSION
The IRVFLN model mentioned above is the recurrent forma-
tion with the point inputs and interval output. Considering
the properties of the interval network, the interval inputs and
interval output model of IRVFLN can also be set up, even
for the joint inputs of points and intervals, because the point
value can be treated as a special interval with zero width.
In practical dynamic modeling, the inputs of control variables
are usually point values, but the feedback variables of the

FIGURE 9. Network evaluation of interval output feedback.

previous outputs may be the intervals in the prediction appli-
cation because the prediction values are intervals, which can
reflect the predicting uncertainties to the future forecasting in
the long-range prediction. That is not difficult for INNs but is
hard to implement for the NN-based PIs mentioned in [16].

The IRVFLN model in section III should be minor modi-
fied to possess the capacity in processing the interval inputs.
Then from (12), the output of the jth node of the hidden layer
can be obtained as

Upj =
[
upj, ūpj

]
= f

(
l∑
i=1

(Wij · Xpi)−2j

)
. (42)

where

upj = f

(
l∑
i=1

[
wij, w̄ij

]
·

[
xpi, x̄pi

]
− θ̄j

)
. (43)

ūpj = f

(
l∑
i=1

[
wij, w̄ij

]
·

[
xpi, x̄pi

]
− θ j

)
. (44)

The interval multiplication in (43) and (44) is calculated
according to interval arithmetic rule (3).

Model (40) (i.e. Case 1 in the previous subsection) is
used to generate sample pairs, producing the same training
dataset and testing dataset. Considering the previous output
intervals are fed back to the input, then the network inputs are
selected as point variables u(k), u(k − 1), u(k − 2), u(k − 3),
u(k − 4), and interval variables Y(k-1), Y(k-2), Y(k-3), Y(k-4),
which construct a joint input vector. The network structure is
also set to 9-80-1, and the learning algorithm with penalty
factors in subsection V-A is selected to train the IRVFLV
model with the interval feedback. The testing result is shown
in Fig. 9, in which the red line represents the network output
intervals and the blue line indicates the target intervals.

From Fig. 9, we can see that the target intervals are all
contained by the network output bounds. Compared with
Fig.7, the prediction intervals are wider than that ones, that
means the interval feedback imposes a greater impact on the
prediction output then the point feedback. That is a reasonable
illustration because intervals contain more information then
points, and the current uncertainty will affect the following
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uncertainties prediction. It can conclude that with the predic-
tion steps increase, the network output interval will become
more wider, therefore the prediction range should be limited
in the interval output feedback.

VI. CONCLUSION
This work proposes a new type of randomized learner model,
called interval random vector functional-link network, for
dealing with uncertainty system modelling problems. Distin-
guished from the architecture of RVFL network, the hidden
input weights (and biases) in the presented IRVFLN model
are expressed by intervals with lower and upper bounds that
are randomly assigned. With the help of some properties in
interval arithmetic theory, the output weights of IRVFLN
model can be represented by intervals, of which the lower and
upper components can be evaluated by solving least squares
problems. We compare the proposed IRVFLN model with
interval learner models produced by the back-propagation
algorithm on four artificial examples, the results have verified
the advantages of IRVFLN model.

As an important application area, the INNs can be used to
model an uncertain system based on the bounded error data,
which is a conventional field dominated by the UBB error
theory method. Different from the developed NN-based PIs
algorithms, the INNs not only can predict the output intervals,
but also can describe the uncertainties in the input/output
and the network parameters with intervals, possessing the
potential to be the long-range prediction with the interval
outputs feedback, such that they can be used in the controller
design [17]–[19].

The detailed approach is proposed to model an uncer-
tain industrial process system under the condition of known
or unknown bounds, the simulations demonstrate that the
IRVFLN is suitable and effective, which opens a new direc-
tion for uncertain system modeling.

One limitation of our work should be mentioned with more
clarification, that is, IRVFLN still suffer from some issues
that inherit from RVFL networks, such as reported in [34].
In contrast, the advanced learner model, stochastic configu-
ration networks (SCNs), proposed by Wang et al. [35], can
exhibit more good potential in industrial system modelling
with preferable learning ability and sound generalization per-
formance, andwill essentially improve the proposed IRVFLN
and produce more advanced interval randomized models.
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