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ABSTRACT Filters are the fastest among the different types of feature selection methods. They employ
metrics from information theory, such as mutual information (MI), Joint-MI (JMI), and minimal redundancy
and maximal relevance (mRMR). The determination of the optimal feature selection set is an NP-hard
problem. This work proposes the engineering of the Genetic Algorithm (GA) in which the fitness of solutions
consists of two terms. The first is a feature selection metric such as MI, JMI, and mRMR, and the second
term is the overlapping-coefficient that accounts for the diversity in the GA population. Experimental results
show that the proposed algorithm can return multiple good quality solutions that also have minimal overlap
with each other. Numerous solutions provide significant benefits when the test data contains none or missing
values. Experiments were conducted using two publicly available time-series datasets. The feature sets are
also applied to perform forecasting using a simple Long Short-Term Memory (LSTM) model, and the
solution quality of the forecasting using different feature sets is analyzed. The proposed algorithm was
compared with a popular optimization tool ‘Basic Open-source Nonlinear Mixed INteger programming’
(BONMIN), and a recent feature selection algorithm ‘Conditional Mutual Information Considering Feature
Interaction’ (CMFSI). The experiments show that the multiple solutions found by the proposed method have
good quality and minimal overlap.

INDEX TERMS Feature selection, genetic algorithm, machine learning, deep learning, optimization
methods, forecasting.

I. INTRODUCTION
Time-series data contains observations recorded at regular
time intervals. The record may contain one (univariate) or
multiple variables (multivariate). The term ‘lag-variables’
is used to denote those variables that hold previous data.
An example of univariate data is the record of water demand
for every 15 minutes at a water-supply plant [1]. A sta-
tionary time-series refers to the time-series whose statisti-
cal properties (mean, variance and autocorrelation) remain
unchanged over time. We can apply different types of trans-
formations to convert a non-stationary time-series into a sta-
tionary one. Most of the forecasting methods uses stationary
time-series and produce reliable results. Reliable forecasting
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using time-series data has a significant commercial benefit
in many organizations. For example, a power distribution
company may want to predict the power demand for the next
few minutes, months, or even years, to adjust its generation
capability. Although simplemethods such as linear regression
can do forecasting, they are usually not as reliable. The reli-
able methods of forecasting include: Auto-Regressive Mov-
ing Average (ARMA), Neural Network (NN), and different
types of Deep Learning (DL)-models. The introduction of
Long Short-TermMemory (LSTM) andGatedRecurrent Unit
(GRU) cells have significantly improved the performance of
DL models to learn the complicated time-data relationships
and make reliable predictions. Recent research shows that in
forecasting, DL-basedmodels have outperformed the NN and
ARMA based models [1], [2]. Some examples that employed
NN or DL based methods and univariate time-series data for
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reliable forecasting are: Forecasting the power generation of
a wind-farm for the next 24 hours [3], short-term forecasting
(i.e., up to nine days) of the residential electrical power load
using data of the previous three months [4], and, short term
(15min and 24 hours) forecasting of water demand using data
collected from district metering areas [1], to name a few.

In Machine Learning (ML) and DL, the lag-variables are
termed as features. The feature selection problem can be
thought of as a pre-processing step in the application of any
ML or DL based forecasting method, and consists of the
selecting a subset of features that can capture the charac-
terises of all lag-variables [5]. Features selection has many
benefits, such as: (i) it reduces the training time of the model;
(ii) it helps in simplifying the complexity of forecasters;
(iii) it improves the accuracy of the model; and (iv) it also
avoids over-fitting by eliminating unnecessary variables from
the feature set. For instance, when some lag-variables contain
noise, then their inclusion in the feature set causes over-fitting
of the model. The feature selection can eliminate variables
containing noise from the feature set. In the absence of feature
selection, the forecaster might need to deal with a large num-
ber of lag-variables for good quality forecasting that could
lead to the well-known curse of dimensionality problem [6].

Feature selection techniques can be categorized into
three types: (i) Filter methods; (ii) Wrapper methods; and
(iii) Embedded methods. Filter methods assume complete
independence between the data and the learning model and
employ a statistical metric that has no connection with the
learning model to rank and select the best features [7].
Wrapper based methods consider the problem as a search
problem and evaluate different combinations of a subset
of features until the best one is found. This method is
time/computationally intensive because it involves training
of the DL or ML model for each new feature combination.
Finally, the embedded methods consider the feature selection
as part of the learning process [8]. The filter methods are the
fastest among all types and have shown good performance in
many applications [7].

Filter based methods often employ techniques from infor-
mation theory such asMutual Information (MI), Joint Mutual
Information (JMI), and Conditional Mutual Information
(CMI). These techniques are instrumental in selecting a sub-
set of features that improve the quality of the DL model.
In information theory, the MI of two random variables is a
measure of the mutual dependence between them. Although
Pearson-correlation can also serve the same purpose, it can
only determine linear relationships. Therefore, it is rarely
employed in feature selection. In the context of time series
data, one variable is the value at time t , and the other variable
is any value at time t-x, where x is a non-zero positive integer.
The JMI and CMI techniques involve three or more variables.
JMI refers to the dependence of the output on composite
variables, for example, the dependence of the values at time
t on the composite of values at t − x and t − y, where x and
y are different, non-zero positive integers. The CMI metric
computes the dependence of the output variable on a second

variable when a third variable is also known, for example,
the dependence of the values at time t on the values at t − x,
when the values at time t − y are already known.
The number of features is usually large, and therefore,

the problem becomes intractable. Both constructive and iter-
ative heuristics are useful in solving the feature selection
problem [3], [9]–[11]. In practice, data often contains noise
or missing values. The application of population-based meta-
heuristics have an advantage that they provide robustness
again noise and missing data by determining alternate feature
selection sets of almost equal quality. The population-based
metaheuristics return a population (or archive) of unique solu-
tions. By enforcing diversity in population, they can ensure
that all solutions are unique and also have good values of the
feature selection metric.

The contribution of this work is the obtaining of multiple
good quality unique feature selection sets. To accomplish this
we employ GA. Feature selection metrics such as MI, JMI,
and Minimal Redundancy and Maximal Relevance (mRMR)
are used as objective functions. During the selection of the
next generation in GA, we include a bias along with the
fitness function using the overlap coefficient to enforce diver-
sity in the population. We employed multiple metrics (MI,
JMI, and mRMR) because all of these can contribute to
reliable forecasting, and we demonstrate that our proposed
heuristic remains useful with all of these metrics.

This article is organized as follows. In the next section
(Section II) we present some recent heuristics that have been
employed which use CMI or MI to perform feature selec-
tion. In Section III, we present some relevant definitions.
Section IV presents the proposed heuristic in detail. Com-
plexity analysis is presented in Section V. In Section VI,
we show the experimental results and their analysis. The last
section contains the conclusion.

II. RELATED WORK
The feature selection is an NP-hard problem [12], [13] and
therefore it should be solved using heuristic or metaheuristic
algorithms. To find better heuristics for the feature selection
problem, Battiti et al. introduced the use of MI metrics [14].
Since then, many new methods based on MI and CMI have
been developed. In this section, we summarize some recent
work in the area of feature selection methods based on MI
and CMI metrics. We include both forecasting and classifi-
cation methods because a majority of the previous research
focused on classifiers. The forecasting problem is different
from the classification problem in the following aspects.
In the forecasting problem, the data items spans over a sig-
nificant amount of time, and hence, the number of possible
features can be huge. In the classifier, the number of attributes
(i.e., the maximum features) is not huge. The outcome of the
forecaster has a vast range, whereas, in classifiers, the number
of classes is a small number, such as from 3 to 10 [11].

Naghibi et al. modeled the NP-hard feature selection
problem as a (0-1)-quadratic integer programming and also
relaxed that to a semi-definite programming problem which
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is a convex optimization problem [9]. The search consists
of forward and backward selection heuristics. The forward
search is a constructive method which iteratively adds new
features in the selection set, and the backward search itera-
tively removes redundant features from the selection set.

Sensitivity analysis [15] has also been used in feature
selection. Barraza et al. compared CMI and the sensitivity
analysis approach for the feature selection problem [10].
In sensitivity analysis, we determine the significance of each
feature by varying its value within a permissible range and
observe the effect on the output (i.e., forecast). Barraza et al.
compared a simple constructive method of feature selection
based on MI with a method based on sensitivity analysis,
and reported that the results of these approaches are quite
different from each other. They found that both approaches
have advantages and disadvantages. The sensitivity analysis
approach is more suitable in the case of a lesser number of
available features [10].

Babel et al. applied the MI based feature selection in
rain forecasting [16]. They compared the MI based approach
with two conventional methods. The first approach manually
selects features from temporal data of the past rainfalls, and
the second approach uses the meteorological data, other than
the rainfall data, in feature selection. In their experiments,
the MI-based method performed better than the conventional
approaches. TheMImetric helps in selecting relevant features
and has been successfully applied in many applications such
as feature selection in the problem of recognition of human
gait [17], which has a large number of features.

In CMI-based methods, the objective function contains
terms to account for the relevancy and redundancy of features.
Liang et al. pointed out that that interaction among features
is also common in classification data sets [11]. Therefore,
the objective function should also include a term to account
for the interaction of any feature with the selection set. They
defined interaction as follows: A new feature can have inter-
action with the selection set when the value of its CMI with
the output, given a selection set, is higher than the value
of its MI with the output. They named their algorithm as
Conditional Mutual Information Considering Feature Inter-
action (CMFSI), and evaluated its performance on several
classification problems.

III. PROBLEM DEFINITION
A. PRELIMINARIES
Let X denote a random variable that can have up-tom discrete
values,i.e., X = {x1, x2, . . . , xm}. The entropy of X measures
its uncertainty. Let us consider a simple example to under-
stand the concept of entropy. Suppose we have time-series
data of temperatures of two cities A and B. The weather of
city A remains almost constant and hot throughout the year.
On the other hand, city B has all seasons and irregular rains,
storms, and cold waves. The time-series data of city A has
fewer number of distinct values as compared to the data of
city B. Therefore, the time-series data of city B has a high

entropy as compared to city A. Mathematically, it can be
given by:

H (X ) = −
m∑
i=1

p(xi)log p(xi) (1)

p(xi) represents the probability of xi. The joint entropy of two
random variables X and Y (where Y = {y1, y2, . . . , yn}) is
given by:

H (X ,Y ) = −
m∑
i=1

n∑
j=1

p(xi, yj)log p(xi, yj) (2)

p(xi, yj) refers to the joint distribution probabilities of
xi and yj. The conditional entropy of X when the output of
Y is known, can be given by

H (X |Y ) = −
m∑
i=1

n∑
j=1

p(xi, yj)log p(xi|yj) (3)

p(xi|yj) indicates the conditional probability of xi when the
outcome of yj is known. MI detects relationship between two
random variables (X , Y ) and also measures it quantitatively.
Let us consider a simple example to understand the concept
of MI. Suppose that we have two variables X and Y . X rep-
resents the score of students in the final exam, and Y denotes
the score of students in the class tests. From the scores of class
tests, we can get information about the scores of students in
the final exam, and vice versa. Therefore,X and Y have a high
value of MI. Mathematically, it can be given by

I (X;Y ) =
m∑
i=1

n∑
j=1

p(xi, yj)log
p(xi|yj)
p(xi)

(4)

Using (1) and (2), we can re-write the above equation as:

I (X;Y ) = H (X )− H (X |Y ) (5)

The CMI involves at-least three random variables (X , Y ,
and Z ), and is equal to the mutual information shared by
X and Y when Z is known, i.e.,

I (X;Y |Z ) = H (X |Z )− H (X |Y ;Z ) (6)

We can extend MI to more than two variables to quan-
titatively express the interaction among different random
variables [18]. For three variables (X , Y , Z ), the multi-
information can be given as

I (X;Y ;Z ) =


I (X;Z )+ I (Y ;Z )− I (X ,Y ;Z )
I (Z ;X |Y )− I (Z ;X )
I (Z ;Y |X )− I (Y ;Z )
I (X;Y |Z )− I (X;Y )

(7)

I (X ,Y ;Z ) denotes the mutual information of the joint distri-
bution of X and Y relative to Z.
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B. FEATURE SELECTION PROBLEM AND
PERFORMANCE METRICS
Given a vector of past observations D = {d(t − 1), . . . ,
d(t − N )} (where, t is the time variable) of any physical
quantity such as water, or power demand, wind flow, etc.,
the forecasting problem consists of predicting the values of
the physical quantity for the current time t , which is denoted
by d(t). Assuming that the selection set of features contains
up toK features (K ≤ N ), the selection set can be represented
as F = {t − α1, t − α2, . . . , t − αK }, where αi (∀ i = 1
to K ) are non-zero positive integers and indicate different
time steps. The feature selection methods should determine
suitable values of the set α = {α1, α2, . . . , αK }. The goal of
feature selection method is to select a minimum number of
features (i.e., smallest K value) that carry maximum infor-
mation about the output. Many performance metrics exist
for the feature selection problem that evaluate a selection
set based on two criteria: (i) relevancy, and, (ii) redundancy,
of the features. The relevancy of a feature is the dependence
of the output on it. Redundancy refers to the situation when
the feature set contains several features, and although each
feature individually has a strong relationship with the out-
put, the relationship of some features becomes unnecessary
because of the other features present in the selection set.

Some popular information-theory based metrics used in
feature selection methods are: (i) MI [19]; (ii) JMI [20], and
(iii) mRMR [21]. Mathematically, these objective functions
can be expressed as follows.

MI(F) =
K∑
i=1

I (d(t − αi); d(t)) (8)

JMI(F) =
K−1∑
i=1

K∑
j=i+1

I (d(t − αi), d(t − αj); d(t)) (9)

mRMR(F) =
K∑
i=1

I (d(t − αi); d(t))

−
1

K−1

K−1∑
i=1

K∑
j=i+1

I (d(t−αi); d(t−αj)) (10)

Equation (8) shows a simple MI measure which is the
summation of the MI value of each feature with the output
(or d(t)). In (9), I (d(t − αi), d(t − αj); d(t)) denotes the
JMI and it can re-written using (7) as follows: I (d(t − αi),
d(t − αj); d(t)) = I (d(t − αi); d(t)) + I (d(t − αj); d(t)) -
I (d(t − αi); d(t − αj); d(t)). The JMI measure is suitable to
select the most relevant features. However, in some cases,
it also mis-estimates the redundancy of features [22]. In the
mRMRmetric, as shown in (10), the relevance of the features
is determined using the MI between the features and the
output, and the redundancy of the features is determined
using MI values between the features. We should find the
selection sets that minimize the MI, JMI, and mRMR val-
ues. The computation of MI is a linear operation, whereas
the computation of JMI and mRMR have a complexity

of O(N 2), using pre-computed values of the entropy (3)
and MI (4).

IV. PROPOSED HEURISTIC
Genetic Algorithm (GA) is a popular population-based meta-
heuristic for finding solutions to NP-hard combinatorial opti-
mization problems. The population (of size M ) comprises
chromosomes, where each chromosome represents a com-
plete feature selection set. The number of attributes in a
chromosome is equal to the size of the feature selection set,
i.e.,K .We denote the population of GA using POP as follows.

POP =


α1,1 α1,2 α1,3 . . . α1,K
α2,1 α2,2 α2,3 . . . α2,K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αM ,1 αM ,2 αM ,3 . . . αM ,K

 (11)

In the above matrix, each row represents a chromosome
(or a feature selection set), and variables αi,j denote the
feature tαi,j, where i, j are non-zero positive integers.

Algorithm 1 Overview of the GA Algorithm

1 Set parametersM , pµ;
2 Initialize the population POP withM random solutions,
and sets CHD, zP, zC to { } (where zP and zC store
the fitness values of chromosomes in the POP and CHD
sets);

3 while Stopping criterion not reached do
4 for i in 1 to M do
5 Evaluate fitness of POPi and store it in zP

i

6 η = {}, POP′ = {}, i = 1 ;
7 while i ≤ M do
8 Apply the tournament selection method to select

two chromosomes (POPx and POPy) from POP,
s.t. x, y /∈ η and are non-zero positive integers ;

9 Apply the single-point crossover operator on
POPx , POPy to create two off-spring CHDi and
CHDi+1;

10 Apply mutation operation with probability pµ on
CHDi and CHDi+1;

11 Insert x and y into η;
12 i = i + 2 ;

13 for i in 1 to M do
14 Evaluate Fitness of CHDi and store it in zC

i

15 SelectM chromosomes from POP ∪ CHD, and store
them in POP

16 return POP;

Algorithm 1 gives an overview of GA. The algorithm has
two parameters: M , and pµ. M is the population size, and
pµ is the probability of mutation. GA returns more diverse
solutions when the size of its population is large. However,
a large population also increases the computation time. In our
cases, the objective functions (MI, JMI, or mRMR) are com-
putationally simple. Therefore, it is possible to use a large
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size population without any significant effect on the runtime
of the heuristic. The variable CHD denotes the offspring
chromosomes and has dimensions equal to that of POP.

The linear arrays zP and zC hold the fitness values of the
chromosomes of the main population (POP) and offsprings
(CHD). The population is initialized to random solutions,
i.e., solutions in which features are chosen randomly from
possible values (1 to N ).
The stopping criterion of the main loop of the GA could be

themaximum number of iterations or runtime. The evaluation
step lies from lines 4 to 5 in the pseudo-code and computes the
fitness of all chromosomes of the population. The fitness is
the objective function, i.e., MI, JMI, or mRMR. The step after
the computation of fitness values is to generate offsprings,
which is an iterative process. The nested while loop that lies
from line 7 to 12 performs the tasks of generating chromo-
somes. In each iteration of the nested while loop, the algo-
rithm first selects two parent chromosomes from POP using
binary tournament selection technique [23], and then applies
the single-point crossover [23] to generate two new offspring
referred to in the pseudo-code as CHDi and CHDi+1. The
offsprings also undergo mutation. The mutation operation
tries to change the value of each attribute of the chromosome
to a random value with a probability of pµ. In the nestedwhile
loop , the parents chosen in any iteration do not take part in
the binary tournament selections in the successive iterations.
The number of offspring is kept equal to the population
size M . The last step in the optimization loop is to select
M chromosomes from the combined POP and CHD sets and
replace the POP with the newly selected chromosomes. The
selection of chromosomes is based on their fitness values. The
method to select chromosomes consists of two steps as given
below:

1) Elitism: Here the chromosome with best fitness value
(i.e., the value of MI, JMI or mRMRmetric) are always
selected to remain in the population [24].

2) Biasing the fitness value: Here a bias factor that
accounts for the diversity of the solution is added into
its fitness values. The selection of chromosomes for the
population of the next iteration uses modified fitness
values.

In the following, we also discuss the algorithm that selects
chromosomes for the population of the next iteration to keep
the population size unchanged. Algorithm 2 describes the
method using pseudo-code. In the first step, we combine
the fitness values of the population and offspring into zO,
and initialize two sets SS and POP’ to empty sets. The
set SS stores the indices of chromosomes (from both POP
and CHD sets) that constitute the population of the next
iteration. The second and third lines of the algorithm per-
form elitism and make sure that the chromosome having the
best fitness remains in the next iteration. In the fifth line,
we modify the fitness values of the chromosomes based on a
diversity-metric. The diversity metric used in this work is the
‘overlapping-coefficient’ [25]. The overlapping-coefficient
between any two chromosomes X and Y can be defined as

follows:

overlap(X ,Y ) =
|X ∪ Y |

min(|X |, |Y |)
(12)

In (12), the overlap coefficient between X and Y is
equal to the ratio between the number of common features
(i.e., attributes having identical values) in them to the size
of the chromosome which is equal to K in this work. The
average overlap coefficient is given below

ôverlap(X ) =

∑
Y∈{POP∩CHD−X} overlap(X ,Y )

M
(13)

In (13), the average overlapping-coefficient of X is equal
to the sum of the overlapping-coefficient of X with all
chromosomes present in the POP and CHD sets, excluding,
the overlapping-coefficient of X with itself,

In Algorithm 2, lines 5 to 7 indicate that we choose
up-to M -1 solutions from the combined POP and CHD sets
that have high fitness values for the population of the next
iteration.

Algorithm 2 Procedure to Select Chromosomes for the
Population of the Next Iteration

1 zO
= zP

∪zC , and SS = {} POP’ = {} ;
2 Find the maximum fitness value and its index i in zO

i ;
3 Insert i into SS, and change the value at index i in zO

i to
−∞ ;

4 Modify all fitness values in zO by adding the average
overlapping-coefficient into them (13) ;

5 Find the bestM − 1 values and their indices in zO
i ;

6 Insert the indices corresponding to the bestM -1 fitness
values into SS;

7 Fill the set POP’ with the chromosomes of POP and
CHD sets that have their index present in SS;

8 set POP = POP’;
9 return POP;

V. TIME COMPLEXITY ANALYSIS
In this section, we present a brief analysis of the time
complexity of the proposed heuristic. The proposed heuris-
tic is described using two algorithms, Algorithm 1 and
Algorithm 2. In Algorithm 1, the time complexity of the
evaluation of fitness values of the population or offspring
is as follows: When the objective function is MI, then it is
O(MK ), and when the objective function is equal to JMI or
mRMR then it is O(MK 2). A call of tournament selection
includes a linear operation of complexity O(M ) to split POP
into two parts. The determination of the best fitness values in
each part can be implemented usingmax-heap that has a com-
plexity of O(M ). Therefore, the complexity of binary tourna-
ment selection is O(M ). The application of the single-point
crossover operator includes the task to determine a random
point in the chromosomes, which is a constant time operation.
The crossover operation is a linear operation of complexity
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FIGURE 1. Results of the optimal feature selection using the MI metric on the test problem daily minimum temperature.

O(M ). The mutation is also a linear operation and has a time
complexity equal toO(M ). The overall time complexity of the
generation of up to M offspring is equal to O(MK ), because
the genetic operations are linear in nature.

Algorithm 2 contains many memory copy steps that have
constant time complexity. The task to determine the max-
imum value in zO can be implemented using a max-
heap, which has a time complexity equal to O(M ′), where
M ′ = 2M . The step to modify the fitness values of all chro-
mosomes is a linear operation of complexity O(M ′). The
task to find M − 1 best values from zO can be imple-
mented using the heap-sortingwhich has a time complexity of
O(M ′log2M

′). Therefore, the time complexity of Algorithm 2
is O(M ′log2M

′). The time complexity analysis of the GA
shows that the evaluation of the fitness values is computa-
tionally time-intensive than any other part of the algorithm.
The term ‘evaluation count’ is used to represent the number of
times the objective function is computed before the algorithm
converges to its best solution.

VI. EXPERIMENTAL RESULTS
This section shows and analyzes the experimental results
of our design of the GA for solving the feature selection
problem. We compare the performance of the proposed work
with two existing heuristics: (i) Basic Open-source Non-
linear Mixed INteger programming (BONMIN) [26], [27],
and, (ii) CMIFSI [11]. BONMIN is a popular open-source
tool for solving Mixed Integer Non-Linear Programming
problems, and is a part of several widely used optimiza-
tion integrated development environments (IDEs) such as
AMPL IDE [27]. The CMFSI is a feature selection method
based on conditional mutual information proposed recently
by Liang et al. [11]. Two time-series data sets from a public
repository, Machine Learning Mastery [28] were used. The
first dataset is the daily record of minimum temperature
from 1981 to 1990 for the city of Melbourne, Australia.
The second dataset contains the history of the monthly

count of the number of sunspots from 1749-1983 of Zurich,
Switzerland. In this article, we refer to the first dataset
as ‘‘minimum-temperature’’, and the second dataset as
‘‘monthly-sunspots.’’

TABLE 1. Parameters of the LSTM model.

In the experiments, we employed the feature selection sets
obtained by the proposed and existing methods to perform
forecasting using the datasets mentioned above. Table 1 lists
the parameters of the LSTM model used in this work. The
LSTM model consists of three layers. The input layer has
units equal to the feature size (K ), the hidden layer consists
of up to ten LSTM neurons, and the model has one out-
put that contains forecast for the time t . The datasets are
divided into training and test sets in proportions specified
in Table 1. The quality of the forecaster is equal to the
Root Mean Squared Error (RMSE) between the forecasted
values and the actual values. A small value of RMSE indi-
cates good quality of selected features. The quality of feature
selection set obtained from LSTM forecaster is expressed as
LSTMQ.

A. PERFORMANCE ANALYSIS USING FEATURE
SELECTION METRICS
In the conducted experiments, we vary the size of the feature
set (K ) from 3 to 18, keeping the total number of features (N )
fixed to 100. The parameter values of the GA algorithm are
as follows:M = 150, and pµ = 0.05.
Figs. 1, 2, and 3 show the results of the feature selection

metrics (MI, JMI, and mRMR) for the proposed method,
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FIGURE 2. Results of the optimal feature selection using the JMI metric on the test problem daily minimum temperature.

FIGURE 3. Results of the optimal feature selection using the mRMR metric on the test problem daily minimum temperature.

the BONMIN tool, and CMFSI algorithm. The x-axis indi-
cates the number of features (K), and the y-axis shows the
values of the feature selection metrics. Each result has three
attributes: max, average, and min. The max, average, and min
indicate the maximum value, average value, and minimum
value of the set of solutions return by the proposed algo-
rithm. Although the proposed algorithm has a population size
of 200, we used the best 150 solutions (or solutions of the first
three quartiles) in terms of the feature selection metrics for
analysis. The BONMIN and CMFSI return only one solution,
and, hence, the max average and min point to the same value.
From the plots it can be observed that the best solution of the
set of solutions returned by the proposed algorithm in terms of
any feature selection metric is equal to the solution returned
by the BONMIN tool and slightly better than the CMFSI
algorithm. The plots also show that although the proposed
algorithm returns a diverse set of solutions, there is a small
difference in the values of their feature selection metrics. The
results indicate that one can determine numerous alternative
feature sets that are almost equal to each other in terms of
different feature selection metrics.

TABLE 2. Average LSTMQ values for the feature sets found by BONMIN
and CMMFSI.

B. PERFORMANCE ANALYSIS USING LSTMQ
In this sub-section, we first determine the forecasting quality
(i.e., LSTMQ) of the feature sets returned by the BONMIN
tool and CMFSI algorithm, and then analyze the forecasting
quality of the proposed algorithm with the help of the fore-
casting quality of the BONMIN tool, and CMFSI algorithm.
BONMIN returns a different solution for each combination
of K and a feature selection metric, whereas CMFSI returns
different solutions for different values of K . Since the train-
ing of DL models is NP-complete [29], we executed up to
twenty trials of training-testing for each feature set found
by BONMIN tool and CMFSI algorithm. Table 2 shows
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FIGURE 4. Results of the optimal feature selection using the MI metric on the test problem monthly sunspots.

FIGURE 5. Results of the optimal feature selection using the JMI metric on the test problem monthly sunspots.

FIGURE 6. Results of the optimal feature selection using the mRMR metric on the test problem monthly sunspots.

the average LSTMQ values of all trials for the feature sets
returned by the BONMIN tool and CMFSI algorithm. QB
denotes the average LSTQM values of BONMIN, and QC
indicates that of CSFSI. The columnQB contains three values
(a, b, c), where a, b, and c denote the average LSTQM values
when the feature selection metrics are: MI, JMI, and mRMR.

In this subsection, the population size of GA (M ) is equal to
100, and the analysis uses all solutions of the population. The
sizes of the feature sets (K ) are 3, 6, and 9.

The remaining part of this subsection discusses the analysis
of the forecasting quality of the different solutions returned
by the proposed algorithm. We trained and tested the LSTM
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FIGURE 7. Relationship between the MI values, LSTMQ, and overlapping-coefficient when the test problem is daily-minimum temperature, and the
number of features is equal to: (a) K = 3, (b) K = 6, and (c) K = 9.

FIGURE 8. Relationship between the JMI values, LSTMQ, and overlapping-coefficient when the test problem is daily-minimum temperature, and the
number of features is equal to: (a) K = 3, (b) K = 6, and (c) K = 9.

model using each solution (or chromosome) generated by the
proposed heuristic. In the following paragraphs we present a
brief analysis of their characteristics.

Figs 7(a)-(c), show the results for the test problem ‘daily
minimum temperatures’, when the feature selection metric
is MI, and the value of K varies from 3 to 9. Fig. 7(a)
shows that for K = 3 up-to 25% solutions have LSTMQ
values better than QB and QC (where, QB, QC equal to
2.30). For these 25% solutions, MI values lie in the range
1.2 and 1.65, and overlapping-coefficient values lie in the
range 0.24 and 0.31. Please refer to Table 2 for the value
of QB, and QC . In Fig. 7(b), for the value of K equal to
6, we notice that an increase in feature size improves the

forecasting quality of the proposed algorithm. Now, up to
66% solutions have quality better than or equal to QB, and
74% solutions have quality better than or equal toQC (where,
QB = 2.3 and QC = 2.32). The overlapping-coefficient
and MI values of these solutions lie in the following ranges:
0.24 to 0.51, and 1.9 to 2.91, respectively. In Fig. 7(c), the per-
centage of solutions having LSTMQvalue better thanQB, and
QC increases to 77% and 80% respectively, and the values of
the overlapping-coefficient of these solutions lie in the range
of 0.28 and 0.56.

Figs. 8(a), (b), and (c) show the results when the JMI
metric used, and the test problem is ‘daily minimum tem-
perature’. From Figs. 8(a), (b), and (c), we can find out
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FIGURE 9. Relationship between the mRMR values, LSTMQ, and overlapping-coefficient when the test problem is daily-minimum temperature, and the
number of features is equal to: (a) K = 3, (b) K = 6, and (c) K = 9.

FIGURE 10. Relationship between the MI values, LSTMQ, and overlapping-coefficient when the test problem is monthly-sunspots, and the number of
features is equal to: (a) K = 3, (b) K = 6, and (c) K = 9.

that the percentage of solutions having forecasting quality
better than or equal to QB and QC , the percentages are as
follows: (i) For K = 3, 6, and 9, up to 50%, 77%, and
68% solutions have LSTMQ values better or equal toQB; and
(ii) For K = 3, 6, and 9, up to 50%, 78%, and 88% solutions
have forecasting quality better than or equal to QC . The
average overlapping-coefficient values of the solutions whose
quality is better than QB and QC lie in the following ranges:
(i) 0.23 to 0.29, for K = 3; (ii) 0.2 to 0.46, for K = 6; and
(iii) 0.14 to 0.56,for K = 9.
Figs. 9(a), (b), and (c) contain the results when mRMR

metric is employed and the test problem is ‘daily mini-
mum temperature’. Figs. 9(a), (b), and (c) show that the
percentage of solutions having forecasting quality better than
or equal to QB and QC are as follows: (i) For K = 3,

31% solutions are better than QB and QC (ii) For K = 6,
4% and 62% are better than QB; and QC ; and (iii) For K = 9,
4% and 84% are better than QB; and QC , respectively. The
average overlapping-coefficient values of the solutions whose
quality is better than QB or QC lie in the following ranges:
(i) 0.23 to 0.28, for K = 3; (ii) 0.32 and 0.49, for K = 6; and
(iii) 0.23 and 0.0.53, for K = 9.
Figs 10, 11, and 12 show the relationship between

a feature selection metric, LSTMQ, and overlapping-
coefficient values for the test problem ‘monthly-sunspots’.
Figs 10(a), (b) and (c) show results when MI was used as
an objective function, and it conveys the following infor-
mation: (i) When K = 3,6 and 9, then 10%, 15%, and
23% solutions are better than or equal to QB, and 60%,
41%, and 90% solutions are better than QC ; (ii) The average
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FIGURE 11. Relationship between the JMI values, LSTMQ, and overlapping-coefficient when the test problem is monthly-sunspots, and the number of
features is equal to: (a) K = 3, (b) K = 6, and (c) K = 9.

FIGURE 12. Relationship between the mRMR values, LSTMQ, and overlapping-coefficient when the test problem is monthly-sunspots, and the number of
features is equal to: (a) K = 3, (b) K = 6, and (c) K = 9.

overlapping-coefficient values of the solutions which are
better than both QB and QC lie in the following ranges:
(a) 0.24 to 0.29, for K = 3; (b) 0.16 to 0.43, for K = 6; and
(c) 0.29 to 0.55, for K = 9.
The results in Fig. 11 were obtained when the JMI met-

ric was employed. The figure delivers the following impor-
tant information: (a) When K = 3, then up 8% and 63%
solutions are better than QB and QC , respectively. Further-
more, the average overlapping-coefficient of those solution
lie from 0.24 to 0.28; (b) When K = 6, then up 27% and
43% solutions are better than QB and QC , respectively. The
average overlapping-coefficient values of those solution lie

from 0.17 to 0.44; and (c) When K = 9, then up 36% and
89% solutions are better than QB and QC , respectively. The
average overlapping-coefficient of those solution lie from
0.22 to 0.63.

Finally, Figs 12(a),(b) and (c) show the results when the
mRMR metric is used and the test problem in monthly-
sunspots. The plots show that when K = 3, 6, and 9,
then 31%, 60%, and 61% solutions of the population have
LSTMQ values better than both QB and QC . The aver-
age overlapping-coefficient values of the solutions that have
LSTMQ values better than QB and QC lie in the follow-
ing ranges: (i) from 0.21 to 0.28, for K = 3; (ii) from
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0.17 to 0.47, for K = 6; and (iii) from 0.29 to 0.52,
for K = 9.

From the results presented in this subsection, we can infer
the following about the performance of the proposed algo-
rithm. The proposed algorithm can make efficient use of the
increase in the feature set size and can find out many good
quality solutions. The uniqueness of solutions reduceswith an
increase in the feature size. However, there always exist some
unique solutions which have minimal overlap with others.
Figs. 13 and 14 show the average overlapping -coefficient
values of the solutions when the value of the number of
features (K ) is large and equal to 9. The results indicate the
presence of one or several solutions that have minimal aver-
age overlapping-coefficient value. Therefore, the solutions of
minimal overlap with other solutions exist for both small and
large values of K .

FIGURE 13. The average overlapping-coefficient values of the solutions
returned by the proposed algorithm with LSTMQ values better than QB
and QC , when K = 9, and the test problem is ‘Daily minimum
temperature.’

FIGURE 14. The average overlapping-coefficient values of the solutions
returned by the proposed algorithm with LSTMQ values better than QB
and QC , when K = 9, and the test problem is ‘Monthly-sunspots.’

VII. CONCLUSION
Three prominent ‘filter type’ information theory-based met-
rics employed in the feature selection methods are as follows:
MI, JMI, and mRMR. The problem of feature selection is
NP-hard. The heuristics have been employed to solve it in
the past. This work investigates using GA, a population-
based metaheuristic, to find many alternative solutions of
good quality. The alternate solutions provide possibility of
selecting the best in case of noise or missing values in the
test set. We applied GA and enhanced the fitness function
by the addition of the overlapping-coefficient term. The GA

implementation applies elitism in selecting chromosomes
for the next generation. We conducted experiments using
two publicly available time-series data sets and analyzed the
results in detail. The experimental results on both problems
showed that the proposed approach can find feature sets of
better quality. The diversity of solutions is high in small size
feature sets. However, when the feature size is large, then
some solutions still have high diversity.
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