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ABSTRACT The precision of Rayleigh distribution, as the simplest fading model in Non-Line-of-Sight
(NLOS) channels, is low in high-resolution radars and long-distance communication receivers. Many
currently-available statistical models with a higher precision, including Nakagami-m, Weibull and general-
ized hybrid Gamma models, are used to describe the radar clutter and the reflected signals in communication
receivers. Although the mentioned models in NLOS channels have more accurate matching with the actual
fading, a variety of models and the lack of a comprehensive model in different fading channels make
it difficult to select an appropriate model. In this paper, the generalized Gamma model is analyzed and
evaluated to demonstrate that it adapts to other fading models. Moreover, it also matches with long-term
fading, as well as combined long and short-term fading models. Using a practical sample, it is stated
that the generalized Gamma model is also adaptable to the channels to which none of the other available
closed-form models are suitable. The simulations and the real data results, approved by Kullback-Leibler
and Kolmogorov-Smirnov criteria, prove the claim.

INDEX TERMS NLOS channel, fading model, generalized Gamma distribution, Kolmogorov-Smirnov
criterion.

I. INTRODUCTION
The propagation of electromagnetic waves in wireless chan-
nels develops complicated phenomena such as shadowing and
multipath. The impossibility of presenting an accurate mathe-
matical description for these phenomena, due to the stochastic
nature, makes the analysis of the communication and radar
systems complicated [1]. Nevertheless, the modelling of the
fading and shadowing is essential to analyze wireless com-
munication problems including analyzing the cellular sys-
tems, the performance of multiple-input and multiple-output
(MIMO) networks, and the performance of tracking and
navigation systems in Non-Line-of-Sight (NLOS) channels
in which the distance measurements are contaminated with
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NLOS errors [2]–[4]. Some considerable efforts are made to
statistically model the features of the above effects. Conse-
quently, a wide range of relatively-simple and accurate statis-
tical models is determined and extracted for fading channels
in a specific propagation medium under a special commu-
nication scenarios [1]. Small-scale multipath fading is often
modelled using Rayleigh, Rician and Nakagami-m models,
and large-scale fading (shadowing) is modelled based on a
log-normal distribution [2], [3].

The amplitude distribution of the fully-developed reflected
signals follows a Rayleigh distribution. Nevertheless,
non-Rayleigh distribution is observed in many cases, includ-
ing when the number of scatters is small in a cell resolution
and the scatters are organized based on a certain type of
repeatability, or when scatters constitute the dominant com-
ponents in a cell. There is a group of simple and hybrid
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distributions used to statistically model the non-Rayleigh
distribution of amplitude, including Nakagami, Rician, log-
normal, K and generalized K [5], [6]. Using the lognormal
distribution and the Rayleigh distribution to model the shad-
owing, and the small-scale fading, respectively, results in a
hybrid Rayleigh-lognormal distribution. Given that the form
of the related function is not closed, the Gamma distribution
is used instead of the lognormal, which develops the K
distribution.

Using the Gamma distribution to model the shadowing,
and the Nakagami distribution for modeling the small-scale
random variables related to the envelope of the received sig-
nals results in a closed-form of the hybrid fading probability
density function (PDF), namely the Gamma-Gamma distri-
bution (GK) [3]. The generalized Rayleigh (GR) distribution
is employed to model the long-terms and small-terms of the
signal variables. GR distribution has a simple mathematical
expression, and includes the Rayleigh distribution as a special
case. It also can be used instead of Rayleigh-Lognormal
(RL) and K distributions, and therefore, obviates the need
for using other distributions in wireless channels to model
fading [7]. The κ−µ shadowed distribution also has a strong
flexibility to model different propagation conditions in wire-
less environments. This model unifies all the classic fading
models, i. e., the one-sidedGaussian, Rayleigh, Nakagami-m,
Nakagami-q, Rician, their generalized counterparts, the κ−µ,
η − µ and Rician shadowed fading models [8], [9]. The
generalized Gamma (GG) distribution includes Gamma and
exponential distributions, and is presented as the Weibull dis-
tribution in a special case, and as the lognormal distribution
in a limited case [10].

This paper, based on the tests performed on real data related
to faded signals in the second generation (2G) network [11],
shows that the GG distribution has a higher flexibility com-
pared to simple and closed-form distributions, like GK and
GR, in adapting to RL and K distributions. The simple and
closed-form of the GR distribution facilitates the analysis and
the design of communication systems; nevertheless, compar-
ing the results associated with the adaptation of the GR with
RL and K distributions [7] with those associated with the
adaptation of the GG distribution with these models suggests
that the GG distribution is more flexible in adapting to the
cited hybrid models. In addition, GG model covers other
fading models, including Gamma, Weibull and exponential,
and offers an appropriate closed-form for analyses and eval-
uations. The mentioned adaptation is performed using good-
ness of fit (GOF), such as the Kolmogorov-Smirnov (K-S)
criterion [12]. Some of the results are, however, investigated
using other criteria, including Kullback-Leibler (KL) and
Anderson-Darling (A-D) [13], [14]. A practical experiment
also demonstrates that the GG model is statistically more
adaptable to the received data in NLOS channels compared
to the hybrid models discussed.

The rest of the paper is organized as follows: In section II,
various hybrid distributions of fading and shadowing are
introduced and investigated. Section III demonstrates a higher

degree of compatibility of the GG distribution compared to
that of the simple distributions such as GR, and relatively
complex distributions such as κ − µ shadowed distribution
in similarity to the K and RL based on KL criteria [8], [9],
[15]–[19]. Section IV investigates the signals received from
the directional antenna of cellular network transmitters asso-
ciated with the main, side and back lobes on the LOS/NLOS
and NLOS channels under a multipath condition. Moreover,
the deviation from the Rayleigh distribution is explored based
on the Jakeman criterion [20], [21], and the flexibility of each
model with the practical data is shown based on the K-S
criterion. The paper is concluded in Section V.

II. NON-RAYLEIGH MODELS FOR STOCHASTIC
CHANNELS
Interfering waves received in a communication channel sub-
ject to the multipath phenomenon are represented as [20]:

E = X + jY = Aejϕ =
N∑
i=1

aiejϕi , (1)

in which N represents the number of the reflected signals in a
cell. ai and φi are the reflected amplitude and phase from the
ith path, respectively.X and Y are the real and imaginary parts
of the reflected signal, respectively [20]. When the number
of independent interfering signals, i.e. reflected signals from
independent obstacles, is small, the central limit theorem
does not hold and the distribution of the signal envelope
deviates from Rayleigh. The N value should therefore exceed
a special threshold to realize the Rayleigh distribution for
limited N [20]:

N >>
R4

4
|β − 2|

β = m4/m2
2
=

〈
E4
j

〉
/
〈
E2
j

〉2
, (2)

in which R represents the Rayleigh constant, 〈.〉 denotes the
expectation value, Ej is the amplitude of the jth reflected
signal, and m2 and m4 are the second-order and fourth-order
moments of the probability distribution Ej, respectively.
As N → ∞, the distribution approaches the pure
Rayleigh [20].

The conditions for realizing the Rayleigh distribution in
many other instances, when the number of reflected interfer-
ing waves is not constant and changes instantly, is as [20]:〈

N 2
〉

〈N 〉2
→ 1. (3)

In this case, N is Poisson-distributed, and we have [20]:〈
N 2
〉

〈N 〉2
=

1
〈N 〉
+ 1. (4)

When 〈N 〉 >> 1, the equation (4) approaches 1, and
therefore, the equation (3) will hold. When deviating from
Rayleigh, a mean effective number of scatterers, i. e., Neff (r),
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is defined that affects the statistical behavior of the received
signal, and we have [21], [22]:〈

σ 2(r)
〉

〈σ (r)〉2
= 2

(
1−

1
N

)
+

1
Neff (r)

, (5)

in which N represents the number of reflected signals, and
σ i(r) is the ith moment of the reflected signal. According
to equation (5), deviation from Rayleigh is relatively low for
Neff > 10, and significant for Neff ∼ 1 [22]. Thus, Neff

/
N

can be employed as a criterion based on the moments. The
Kullback-Leibler divergence and Kolmogorov-Smirnov cri-
teria are also used to determine the deviation from Rayleigh.

In the following, some non-Rayleighmodels are discussed,
including K, F, GK, GR, η − µ, κ − µ, κ − µ shadowed
and GG.

A. K DISTRIBUTION
Given the complexity of the Rayleigh-Lognormal equation,
the Gamma distribution is used instead of the lognormal to
obtain a closed-form equation, resulting in the K distribution
as [22, eq. 22]:

fκ (x) =
2d
0(c)

(
dx
2

)c
Kc−1(dx). (6)

in which 0(.) represents the Gamma function and Kν is
the modified second-order Bessel function of degree ν. The
parameters c and d also respectively denote the shape and
scale parameters of the K function [22]. It can be shown
thatK distribution approaches to the Rayleigh distribution for
c > 20 [23].

B. F DISTRIBUTION
The probability density function of the signal envelope, called
F distribution, is obtained by averaging the infinite integral
of the conditional PDF of the Nakagami-m distribution with
respect to the random variation of the rms signal power, and
finally, is demonstrated as [24]:

fX (x) =
2mm(ms�)msx2m−1

B(m,ms)(mx2 + ms�)
m+ms

, (7)

in which m is the fading severity parameter, ms is the
shape parameter of the related Nakagami-m distribution,
� = E[x2] is the the mean power, and B(·, ·) is the beta
function [24].

C. THE GK DISTRIBUTION
The Gamma-Gamma or Generalized-K model is derived
from the F distribution by converting the signal mean power
model to the Gamma distribution. The generalized-K model
is expressed as [3]:

fX (x) =
4m(β+1)/2xβ

0(m)0(k)�(β+1)/2Kα

[
2
(m
�

)1/2
x
]
, (8)

in which α = k−m and β = k+m−1,m and k represent the
shape parameters, and � = E

〈
X2
〉
/k is the average power.

As stated earlier, 0(·) represents the Gamma function, and

Kν is the modified Bessel function of the second-order and
degree ν [3].

D. THE GR DISTRIBUTION
The GR distribution is used for both short and long-term fad-
ing in wireless channels. It has simple mathematical closed-
form, and simplifies the calculation of parameters such as bit
error rate (BER). The GR distribution is given in [7]:

f (x;α, a)=
r (1+ a)

α

exp
{
x2/(2α)

}[
(1+ a) exp

{
x2/(2α)

}
− a

]2 , (9)

in which α > 0 and a > 0 are the shape and scale parameters,
respectively, and x ≥ 0. The function is converted to the
Rayleigh function when a approaches zero [7].

E. THEη − µ DISTRIBUTION [15]
Let γ be a random variable that statistically is η − µ dis-
tributed with mean γ̄=E [γ ] and non-negative real shape
parameters η and µ, i. e., γ ∼ Sηµ (γ̄ ; η, µ), and the related
PDF is given by [15]:

fγ (γ ) =
√
π(1+ η)µ+

1
2µµ+

1
2

0 (µ) γ̄
√
η(1− η)µ−

1
2

(
γ

γ̄

)µ− 1
2

× e−
µ(1+η)2γ

2ηγ̄ I
µ− 1

2

(
µ
(
1− η2

)
2η

γ

γ̄

)
, (10)

where Iν (·) is the ν-th order modified Bessel function of
the first kind, which can be defined in terms of the Bessel
hypergeometric function 0F1 (.) [16, eq. 9.6.47].

F. THE κ − µ DISTRIBUTION [15]
Let γ be a random variable that statistically is κ − µ dis-
tributed with mean γ̄=E [γ ] and non-negative real shape
parameters κ and µ, i. e., γ ∼ Sκµ (γ̄ ; κ, µ), and the related
PDF is as [15]:

fγ (γ ) =
µ(1+ κ)

µ+1
2

γ̄ κ
µ−1
2 eµκ

(
γ

γ̄

)µ−1
2

× e−
µ(1+κ)γ

γ̄ Iµ−1

(
2µ

√
κ (1+ κ) γ

γ̄

)
. (11)

G. THE κ − µ SHADOWED DISTRIBUTION [8], [9]
Let γ be a random variable that statistically is κ−µ shadowed
distributed with mean γ̄=E [γ ] and non-negative real shape
parameters κ , µ and m, i. e., γ ∼ Sκµm (γ̄ ; κ, µ,m), and the
related PDF is given by [9]:

fγ (γ ) =
µµmm(1+ κ)µ

0 (µ) γ̄ (µκ + m)m

(
γ

γ̄

)µ−1
× e−

µ(1+κ)γ
γ̄ 1F1

(
m;µ;

µ2κ (1+ κ)
µκ + m

γ

γ̄

)
, (12)

where 1F1 (.) is the confluent hypergeometric function of
scalar argument [16, eq. 13.1.2], which is a particular case
of the generalized hypergeometric function [8].
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H. THE GG DISTRIBUTION
The distribution of the Gamma family is popular in analyzing
the skewed data. The GG distribution was introduced by
Stacy in 1962, and includes exponential, Weibull, Gamma
and Rayleigh models. The GG distribution is employed to
model data with dissimilar hazard rates. The probability den-
sity function of GG distribution is as [25]:

fX (x) =
α2

0 (α1) β

(
x
β

)α1α2−1
exp

[
−

(
x
β

)α2]
,

for x > 0; α1, α2, β > 0 (13)

in which α1 and α2 represent the shape parameters and β is
the scale parameter [25], [26]. Another formulation for the
GG distribution is as [10]:

fX (x) =
2vx(2vm−1)

0 (m) (�/m)
exp

(
−
mx2v

�

)
x ≥ 0 (14)

in which ν = α2
2 , m = α1 and � = α1

(
β

1
α2

)
.

III. THE FLEXIBILITY OF THE GG DISTRIBUTION IN
SIMILARITY TO THE K AND RL
Although the RL distribution is demonstrated to be useful for
modeling the shadowing in wireless channels, the K distri-
bution is introduced as an alternative to the RL distribution
because of the related closed-form and the similarity to the
RL distribution [27]. The GR model is also proposed given
the better similarity to the RL [7]. Based on the KL criterion,
this section shows that the GG distribution is better adapted to
the RL and K distributions compared to the GR distribution.

A. THE CRITERION OF KULLBACK-LEIBLER DIVERGENCE
For absolutely-continuous probability density functions of f
and g over the domain of Rn with the following conditions:

f (x) = 0→ g (x) = 0, (15)

the relative entropy or the criterion of Kullback-Leibler diver-
gence (KLD) is as [13]:

DKL (f ||g) =

∞∫
0

f (x) log
{
f (x)
g (x)

}
dx. (16)

The following assumptions are considered for simplifying:

DKL(f ||g)=

 0
f (x)
g (x)

=
0
0
= 1

∞ f (x) is not absolutely continuous.
(17)

Given the asymmetry of the KL criterion, the
Jensen-Shannon divergence (JSD) criterion is employed to
have a more effective comparison [28]:

DJSD (f ||g) =
1
2
(DKL (f ||m)+ DKL (g||m)) , (18)

in which m = 1
2 (f + g).

On the other hand, the integral square error (ISE) is as [29]:

DISE (f ||g) =

∞∫
0

(f (x)− g(x))2 dx. (19)

Thus, both JSD and ISE criteria are used to compare the
results.

B. COMPARING THE RESULTS OF GG, GR, η − µ, κ − µ
AND κ − µ SHADOWED IN SIMILARITY TO THE RL
To compare RL(µ, σ ), K (c, d), GR (α, a), Sηµ (γ̄3; η, µ3),
Sκµ (γ̄2; κ2, µ2) and Sκµm (γ̄1; κ1, µ1,m) with the function
GG (υ,m, �), the values−0.2, 0.3 and 0.9 were first used as
the shape parameter d , and the value 2 for the parameter c
according to what discussed in [7], [27], [30].
Table 1 presents the values of the parameters of the dis-

cussed distributions estimated using the moment method.
Table 2 presents the degree of similarity among the functions
by using the ISE and JSD values. According to [7], the GR
distribution is closest to the RL distribution, and the results
in Tables 1 and 2 approximately confirm it for the interval of
−0.2 ≤ d ≤ 0.9.

TABLE 1. Estimating the distribution parameters of K , GR, η − µ, κ − µ,
κ − µ shadowed and GG for c = 2 and −0.2 ≤ d ≤ 0.9.

TABLE 2. The numerical values of integral square error (ISE) and
Jensen-Shannon divergence (JSD) for the K , GR, η − µ, κ − µ, κ − µ
shadowed and GG distribution in the interval −0.2 ≤ d ≤ 0.9.

However, the comparison is now performed for the interval
1.2 ≤ d ≤ 2.2. Table 3 presents the parameters of the model
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TABLE 3. Estimating the distribution parameters of K , GR, η − µ, κ − µ,
κ − µ shadowed and GG for c = 2 and 1.2 ≤ d ≤ 2.2.

TABLE 4. The numerical values of ISE and JSD for the K , GR, η − µ, κ − µ,
κ − µ shadowed and GG distribution in the interval 1.2 ≤ d ≤ 2.2.

estimated using the moment method. The ISE and JSD values
in Table 4 are used to compare the degree of similarity of the
functions. According to the Tables 3 and 4, in this interval
the GG distribution is closer to the RL distribution than the
GR distribution.

On the other hand, Fig. 1 also shows that the GG dis-
tribution is more similar to the K distribution than the GR
distribution over the interval of 1.2 ≤ d ≤ 2.2. Based on [27],
due to the relationship between the K and RL distributions,
theGG distribution is also more similar to the RL distribution
than the GR distribution over the mentioned interval.

Note that, a reliable result, close to K and RL, is also
achieved based on some models such as κ − µ shadowed
distribution. However, the great number of the related param-
eters results in a great deal of computational complexity,
although some efforts have been made to simplify them in
specific applications [17]–[19].

IV. FLEXIBILITY OF THE GG DISTRIBUTION
IN MODELLING THE FADING
A. KOLMOGOROV-SMIRNOV (K-S)
COMPATIBILITY CRITERION
For n samples of a random variable X , i. e., X1, . . . ,Xn,
with X1 < X2 < . . . < Xn, the empirical distribution

FIGURE 1. The compatibility of the K , GR, κ − µ, κ − µ shadowed and GG
function based on ISE for 1.2 ≤ d ≤ 2.2.

function (EDF) is defined as [31]:

Fn(x) =
number of observations ≤ x

n
. (20)

EDF is a statistic that measures the difference between
Fn(x) and the distribution function F(x). The Kolmogorov-
Smirnov convergence is shown as [12]:

D = sup
x
|Fn(x)− F(x)| . (21)

In the above criterion, the term alpha level is used to
refer to a pre-chosen probability, and the term P-value is
employed to indicate a probability that you calculate after a
given study [12].

B. SAMPLE OF PRACTICAL DATA
Due to the robustness of signals to multi-path propagation
and fading in the fourth generation (4G) and fifth generation
(5G) networks in comparison with 2G network, two signals
related to the two base transceiver stations (BTS) with abso-
lute radio frequency channel number (ARFCN) 50 in LOS /
NLOS mode and ARFCN 48 in NLOS mode are employed
in 2G network to obtain more realistic results from the fading
effect and more precise comparison among different fading
models [11]. In cellular communication systems, due to urban
barriers in the signal propagation environment, the channel
response is stochastic and unknown at different time intervals.
Thus, every channel estimation algorithm, including blind
and non-blind, should estimate the channel response reli-
ably using a few number of the received samples. The blind
methods are not used in practical global system for mobile
communications (GSM) [32]. More information about GSM
networks are accessible in [33]. These kind of systems, that
are time-division multiple access (TDMA) - based, send and
receive the data bits as burst. As depicted in Fig. 2, in the

FIGURE 2. The SCH burst framing [33].
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broadcast control channel (BCCH) inGSMnetwork, there are
synchronization channel (SCH) bursts including predefined
bits to synchronize the receiver and transmitter. The training
bits in a (one) SCH burst are as [33]:

Training bits = [1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,

0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,

0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1].

Suppose that the above training bits are equivalent to the
signal St (n). After GaussianMinimum Shift Keying (GMSK)
modulation, the signal is transmitted. At receiver, after decod-
ing the received GSM signal and tracking the SCH bits,
the received signal Sr (n) is obtained that is equivalent to the
training bits. For a frequency band in which the transmitted
signal is nonzero, the channel is estimated as:

sr (n) = h(n) ∗ st (n)

h(n) = F−1
{
Sr (ejw)/St (ejw)

}
, (22)

in which ‘‘∗’’ denotes the convolution operator, h(n) is the
channel impulse response, F−1 is the Fourier inverse func-
tion, Sr (ejw) is the Fourier transform of Sr (n) and St (ejw) is the
Fourier transform of St (n). Since the signal is sampled with
the rate of 1

Ts
= 270 Kbit/s, each channel tap is equivalent

to Ts = 3.7µs in the channel estimation. Fig. 3 illustrates
the location of the test point and the base transceiver sta-
tions (BTS) around it.

FIGURE 3. The location of the starred receiver and transmitters.

According to Fig. 3, each BTS point represents three base
stations including the parameters ARFCN, base station iden-
tity code (BSIC) and Direct denoting the frequency, iden-
tity code, and the angle of the antennas, respectively. The
angle is in degree mode with respect to the north of the
map. The base stations with ARFCN = 50 and ARFCN =
48 are employed for testing. The receiver is approximately
located in the main-lobe of the BTS with ARFCN = 50,
and in the back-lobe of the BTS with ARFCN = 48.

FIGURE 4. Four ensembles of the random process
∣∣h(n)

∣∣.

The central frequencies of the transmitter in the base sta-
tions with ARFCN = 50 and ARFCN = 48 are 945 MHz
and 944.6 MHz, respectively. In both cases, the signal is
recorded using a universal software radio peripheral (USRP),
B210 model, and the channel is estimated 3000 times based
on 14 taps. Fig. 4 shows four ensembles of the randomprocess
|h(n)| with 14 taps. In the following, all taps are compared
using statistical tests.

C. ADAPTATION OF PRACTICAL DATA TO FADING MODELS
Firstly, the received samples from the signal of the BTS with
ARFCN = 50 are investigated. Note that, the samples are
from the main-lobe of the antenna. To compare the adaptation
of the various PDFs, the parameters related to the PDFs are
estimated using the maximum likelihood estimation (MLE)
method, and then, the P-value is calculated based on the
obtained PDFs and the received samples.

TABLE 5. GOF results associated with fading models based on the K-S,
A-D and KLD criteria for the BTS with ARFCN = 50.

If the alpha level exceeds 5% for the result of a test,
the null hypothesis is confirmed, i. e., the PDF confirms
with the data. In other words, when the P-value exceeds 5%,
the adaptation of the related PDF to the received samples is
confirmed. Table 5 shows the results of GOF for the fading
models based on the K-S, A-D and KLD criteria. According
to the results of the Table 5, the fifth tap of the BTS channel
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FIGURE 5. Comparing the values of K-S test in the BTS channel with
ARFCN = 50.

with ARFCN = 50 confirms the Rician distribution based
on the highest level of alpha. In addition, the Weibull and
Nakagami-m distribution functions also sound appropriate
for the data. To have a better comparison, Fig. 5 shows the
P-value in the K-S test for the fifth and sixth taps.

Overally, the results show that the taps 2 and 3 do not match
any of the PDFs. The taps 4, 5 and 6 confirm the Rician and
Weibull distributions. Note that, the fifth tap confirms many
of the distributions and the eighth tap confirms only the F,
GK and K distributions. As predicted, the results confirm
the adaptation of the Rician, Nakagami and Weibull fading
models when the transmitter antenna lies in the direction of
the receiver antenna in LOS and NLOS environment. Never-
theless, the models such as F and K also match the statistical
model related to the received samples suitably.

FIGURE 6. Comparing the adaptation of Rayleigh and K distributions to
the received samples for the 5th tap of the BTS with ARFCN = 50.

Based on the KLD criterion, the PDF obtained from the
received samples is compared with two Rayleigh and K
distributions, and the deviation of the related PDF from the
Rayleigh and K distributions is explored [23]. Fig. 6 com-
pares the adaptation of the Rayleigh and K distributions to
the samples related to the fifth tap of the BTS channel with
ARFCN = 50. The horizontal axis is the constant of the

TABLE 6. GOF results associated with fading models based on the K-S,
A-D and KLD criteria for the BTS with ARFCN = 48.

Rayleigh distribution and the vertical axis shows the KLD.
The best compatibility of the samples with the Rayleigh
distribution is obtained for a Rayleigh constant of 0.28. How-
ever, the best compatibility with the K distribution is hap-
pened for the parameters c= 20 and d= 15.697. As expected,
it is concluded that deviation of the samples from Rayleigh is
less than the deviation from the K function.

The second experiment is repeated for the BTS with
ARFCN= 48 using a similar method. Given that the receiver
is located at the back-lobe of the transmitter antenna, and
the signal is received by the receiver in NLOS environment
and after being collided with and reflected from different
obstacles, and the density of the received signals is lower,
the experiment should be naturally different from the previous
one. Table 6 includes the statistical tests associated with the
seventh tap of the channel. An alpha level over 5% confirms
the adaptation of the distribution. Thus, the P-value more than
0.05 confirms the adaptation of the related PDF.

Given the desirable results obtained for the F and GR dis-
tributions compared to other models, these two distributions
are compatible with the data in the second experiment. The
bar chart in Fig. 7 also shows the comparison of the seventh
and tenth taps of the channel.

FIGURE 7. Comparing the values of K-S test in the BTS channel with
ARFCN = 48.

The κ − µ shadowed distribution is observed to be the
only distribution compatible with the data, which is yielded
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significantly successful test results. The F and GR distribu-
tions are also appropriate to some extent. However, the other
distributions such as K and GK that were introduced as the
suitable PDFs in the conventional methods [3], [22], exhibit
unreliable results.

FIGURE 8. Comparing the adaptation of Rayleigh and K distributions to
the received samples for the 7th tap of the BTS with ARFCN = 48.

Fig. 8 compares the adaptation of the Rayleigh and K
distributions to the samples related to the seventh tap of the
BTS channel with ARFCN = 48. The best compatibility of
the samples with the Rayleigh distribution is obtained for
a Rayleigh constant of 1.39. However, the best compatibil-
ity with the K distribution is happened for the parameters
c = 1.089 and d = 0.9806, and the KLD is 0.5. Thus,
the adaptation to the K distribution results in a lower KLD.
According to Fig. 8, the deviation of the samples from the K
function is lower than that of the Rayleigh.

D. COMPARING THE RESULTS OF THE GG
DISTRIBUTION WITH THE OTHER ONES
Now, the flexibility of the GG distribution is investigated.
To compare the adaptation of the previous distributions to
the GG distribution, the MLE method is employed again to
estimate the parameters of the GG distribution. Based on
Table 5, the fifth and sixth taps of the BTS channel with
ARFCN= 50 on the LOS / NLOS channel confirm the Rician
distribution, as expected, with the strongest alpha level. How-
ever, it is noticeable that the GG function also passes the
alpha level of 5% in this case as demonstrated in Fig. 9.
Thus, the reliability of GG function is also concluded in this
condition. For better comparison, Fig. 10 depicts the various
PDFs estimated based on the MLE method. The parameters
of each PDF are obtained to have the best fit with the received
samples.

In the next test performed on BTS with ARFCN = 48 on
the NLOS channel, as shown in Fig. 11, the GG function
passes the alpha level of 5%, and it is concluded that this
model is also in compliance with these conditions.

According to the results of Table 7, the seventh tap of the
BTS with ARFCN = 48 confirms the GG distribution with

FIGURE 9. Comparing the values of K-S test in the BTS channel with
ARFCN = 50 for the GG model.

FIGURE 10. Illustrating the GG function compared with other functions in
the BTS channel with ARFCN = 50.

the highest alpha level. Several tests in these conditions show
that the GG function offers the highest compatibility with the
fading model comparing to other closed-form functions when
the transmitter antenna is not along that of the receiver and the
reflected signals received by the receiver have a low density.

FIGURE 11. Comparing the values of K-S test in the BTS channel with
ARFCN = 48 for the GG model.

On the other hand, to have a better comparison, Fig. 11
shows the result of the K-S test for the seventh and tenth taps.
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TABLE 7. Comparing the degree of compatibility of the samples with the
GG distribution for different values of the shape parameter

(
α2

)
.

FIGURE 12. Illustrating the GG function with a shape parameter
(
α2

)
of 0.3 compared with other functions in the BTS channel with
ARFCN = 48.

Based on the Fig. 11, the previously-introduced models such
as the F and GR, which were well adapted to model the
different conditions of fading, present a very low level of
similarity compared to the GG model. Fig. 12 depicts the
various PDFs estimated based on the MLE method. The
parameters of each PDF are obtained to have the best fit with
the received samples. For example, the values 0.3, 15.4 and
0.00012 are estimated for α1, α2 and β parameters of the GG
distribution, respectively. To compare the EDF value of the
various models based on real data, and observe the flexibility
of the GG function in both tests, refer to Appendix A.

Note that, only the complicated models such as κ − µ
shadowed distribution, provide significant results, in which
case the GG results are also similar to them (see Appendix B).

Finally, Fig. 13 shows the scatter plot for the probability of
the best fitting versus the GG parameter (α2) related to the

FIGURE 13. The scatter plot for the probability of the best fitting versus
the GG parameter

(
α2

)
.

FIGURE 14. The mean of the best fitting probability versus the GG
parameter

(
α2

)
.

BTS with ARFC = 48. Fig. 14 also shows the mean of the
best fitting probability versus the GG parameter (α2) related
to the same BTS. As observed in Figs. 13 and 14, the highest
density of the shape parameter (α2) of the GG function lies
between zero and one.

V. CONCLUSION
In this paper, the flexibility of the GG distribution is investi-
gated for modeling the long-term fading, and the combined
long and short-term fading, and some noticeable results are
obtained. The results obtained from comparing the JSD and
ISE tests related to the K, GR and κ − µ shadowed models
show that the GG model presents a better similarity with
the RL model. Thus, it is proposed that the GG model is
employed for modeling the long-term fading instead of the
RL. On the other hand, in the LOS / NLOS channel, the GG
model adaptation with the real data is shown. It is also con-
cluded that the results related to the GGmodel are close to the
Rician model based on JSD test. Finally, the fading models
in NLOS channels is also investigated, when the receiver is
located at the back-lobe of the transmitter antenna, and the
density of the received signals is low. The channel is esti-
mated using the train data in the SCH bursts of the GSM sig-
nals. Two types of channel are studied. The main difference
of them is related to the angle between the transmitter and the
receiver antennas. In the first experiment, the receiver antenna
is aligned with the main-lobe of the transmitter, whereas
in the second one, the receiver receives the reflected signal
from the back-lobe of the transmitter antenna. As expected,
the Rician, Weibull and GG are the most compatible models
with the fading model of the samples in the first experiment.
The KLD results also show that the GGmodel is adapted with
the real data and that the related results are close to the Rician
andWeibull models. In the second experiment, the K and GK
models are expected to present a better performance, while
the F, GR and κ−µ shadowed model are the most compatible
models compared to the other models. It is worth noting that
the GG model is significantly compatible with the fading
model of the samples and is better than all other closed-form
models for a shape parameter (α2) between zero and one.
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The results confirm the adaptation of the GG model to the
long-term and composite short-term and long-term fading.

APPENDIX
A. EDF VALUES COMPARISON
In addition to depicting the best fitted curves of the various
PDFs in Figs. 10 and 12, the numerical differences of these
functions, related to the test discussed in section IV-D, are
also demonstrated in Figs. 15 and 16. The EDF value of
the various models based on real data for transmitter with
ARFCN = 50 is shown in Fig. 15, and the same value for
transmitter with ARFCN = 48 is depicted in Fig. 16. It is
obvious that the functions whose EDF is close to the zero
axis have the best fit with the real data.

FIGURE 15. The EDF values comparison among the various models based
on real data for transmitter with ARFCN = 50.

FIGURE 16. The EDF values comparison among the various models based
on real data for transmitter with ARFCN = 48.

B. α − κ − µ SHADOWED DISTRIBUTION
There are models such as α−η−µ, α−κ−µ and α−κ−µ
shadowed distributions that have a good fit in different fading
modes [34]. However, some models do not have a closed-
form, and the number of the related parameters is sometimes
great, therefore, they have more computational complexity.
As an example, the α − κ − µ shadowed model, which

includes a large range of fading models, is compared to the
GG function in the following.

Let γ be a random variable that statistically is α −
κ − µ shadowed distributed with mean γ̄=E [γ ] and
non-negative real shape parameters α, κ , µ and m, i. e., γ ∼
Sακµm (γ̄ ;α, κ, µ,m), and the related PDF is given by [34]:

fγ (γ ) =
mmα

2cµ0 (µ) (µκ + m)mγ̄

(
γ

γ̄

) αµ
2 −1

× exp

(
−
1
c

(
γ

γ̄

) α
2
)

×1F1

(
m, µ;

µκ

c (µκ + m)

(
γ

γ̄

) α
2
)
, (23)

where 1F1 (.) is the confluent hypergeometric function [16],
and:

c =

 0 (µ) (µκ + m)m

mm0
(
µ+ 2

α

)
2F1

(
m, µ+ 2

α
;µ;

µκ
µκ+m

)
α/2. (24)

Table 8 presents the comparison among the α − κ − µ
shadowed model and other ones for transmitter with ARFCN
= 50 in LOS / NLOS mode. Table 9 also shows the results
for transmitter with ARFCN = 48 in NLOS mode.

TABLE 8. GOF results associated with fading models based on the K-S,
A-D and KLD criteria for the BTS with ARFCN = 50.

TABLE 9. GOF results associated with fading models based on the K-S,
A-D and KLD criteria for the BTS with ARFCN = 48.

TABLE 10. The complexity comparing of the flexible models in various
fading modes.

Based on the Tables 8 and 9, the flexible models that are
reliable for both NLOS mode and combined LOS / NLOS
one are only the GG and α − κ − µ shadowed functions.
However, based on the Table 10, the GG function has a
simpler, closed-form and less complex function than the other
ones.
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