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ABSTRACT This paper addresses several issues including robust semipassivity and practical stability
analysis for a switched nonlinear system with structural uncertainties. First, robust semipassivity is firstly
defined to describe the overall semipassivity property of switched nonlinear systems without requiring the
conventional semipassivity property of each active subsystem. Then, the robust semipassive system is shown
to be practically stable. Second, a state-dependent switching law is designed to render the switched system
robust semipassive. This switching law is a generalization of KYP lemma. Third, robust semipassification
for a switched nonlinear system is achieved by the design of a state-dependent switching law and a set of
feedback controllers. Finally, a composite state-dependent switching law is designed to render the feedback
interconnection of switched nonlinear systems robust semipassive. The effectiveness of the obtained resultsis
verified by two numerical examples.

INDEX TERMS Switched nonlinear system, semipassivity, practical stability, robust semipassification.

I. INTRODUCTION
The passivity first proposed by Willems [1] is a useful tool
for the analysis and design of nonlinear systems. Since the
storage function of a passive system can be selected as a
Lyapunov function candidate, a passive systemwas stabilized
by a simple output feedback controller [2]–[6]. Many uncer-
tainties exist in the real world, such as external disturbances,
unknown parameters, structural uncertainties. In the past,
robust control was often used to address structural uncer-
tainties. Problems concerning the robust passivity, robust
passification and stabilization were solved by combining the
robust control with passivity theory in [7], [8]. However, it is
difficult to achieve passivity or exact feedback passification
due to the large number of system uncertainties. The sys-
tem can be feedback passive outside a ball containing the
origin. To describe this property, the semipassivity concept
was proposed in [9], [10]. Many physical and biological
systems are semipassive [9]–[12]. Compared to passive sys-
tems, semipassive systemsmay produce energy itself. Similar
concepts have been proposed, such as almost passivity [13],
quasi-passivity [14]–[17] and set passivity [18], [19]. The
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conditions of quasi-passivity and quasi-passification and the
ultimate boundedness of state trajectories of uncertain non-
linear systems were obtained in [14]–[17].

On the other hand, switched systems have received much
attention from the control community due to their practical
and theoretical applications [20]–[31]. A switched system is
composed of a finite number of subsystems and a switching
signal. Many practical systems can be effectively modeled as
switched systems. Such systems include robotic, mechanical
systems, gene regulatory networks, switching power con-
verters, and so on [20]–[26]. Therefore, the analysis and
synthesis problems of switched nonlinear systems, especially
stability and passivity analysis, have been widely studied
in [32]–[35]. For switched nonlinear systems with the struc-
tural uncertainties, robust passivity, and robust stabilization
problems have been investigated in [35], [37]. So far, there
have been no results on semipassivity. However, similar
property (i.e. quasi-passivity) of switched nonlinear systems
has been investigated in [38]–[40]. In [38], practical stabil-
ity was achieved by the average dwell time method under
the condition that at least one subsystem was quasi-passive.
A quasi-passivity concept of switched systems was firstly
defined using multiple storage functions and multiple supply
rates in [41], where each active subsystem was required to
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be quasi-passive. The ultimate boundedness of trajectories
for quasi-passive switched systems are obtained for a given
switching signal. Amore general quasi-passivity concept was
given in [42]. This quasi-passivity property allowed some
active subsystem be non-quasipassive. A semipassive system
behaves as a passive system outside a sufficiently large ball.
Thus, the globally practical stability can be obtained by a
simple output feedback. However, a switched system does
not necessarily inherit properties of the individual subsys-
tems. Multi-model switching may lead to undesirable or even
unbounded trajectories, even if each subsystem is semipas-
sive. To the best of our knowledge, when each subsystem is
not semipassive, the problems of semipassivity, semipassifi-
cation and stabilization for switched nonlinear systems have
been not fully investigated and remain open and challenging.
This motivates the present study.

In this paper, we will study the robust semipassivity and
robust semipassification and practical stability of switched
nonlinear systems with structural uncertainties. Compared
with the existing results, this paper makes four main contri-
butions. First, a semipassivity concept for a switched system
is proposed. This passivity property describes the overall
semipassivity property of switched nonlinear systemswithout
requiring the conventional semipassivity property of each
active subsystem. Compared with robust passivity, robust
semipassivity means that each active subsystem is required
to be passive outside some ball. Thus, globally practical
stability is obtained. Second, a more general state-dependent
switching law is designed to render the switched system
robust semipassive. This result is a generalization of the
robust KYP lemma in [8]. Compared with the well-known
min-switching law proposed in [41], which requires the sub-
system corresponding to the smallest Lyapunov function was
actived, the designed switching law means subsystem cor-
responding to the smallest continuous function is selected.
This provides more freedom for the design of the switching
law. Third, robust semipassification for uncertain switched
nonlinear systems is achieved by the design of controllers
and a state-dependent switching law. Finally, the semipas-
sivity property is shown to be preserved for feedback inter-
connected switched nonlinear systems by the design of a
composite state-dependent switching law, while practical sta-
bility is not preserved in general. This switching law allows
interconnected switched systems to switch asynchronously.

Notation: ‖x‖ =
(
xT x

) 1
2 =

(
n∑
i=1
|xi|2

)1
2

: the norm of

a vector (x1, x2 . . . , xn)T ; C1 functions: continuously dif-
ferentiable functions. Class K∞ functions γ : R+ → R+,
continuous, strictly increasing functions with γ (0) = 0 and
γ (r)→∞ as r →∞

II. PRELIMINARIES AND PROBLEM FORMULATION
The switched nonlinear system under consideration is
described by

ẋ = fσ (x)+1fσ (x)+ gσ (x) uσ
y = hσ (x)

(1)

for the state x (t) ∈ Rn and the switching signal σ (t) :
[0,∞) → I = {1, 2, · · · ,M}, which is assumed to be a
piecewise constant function depending on time. ui ∈ Rm and
hi(x) ∈ Rm denote the input and output vectors of the i-th
subsystem, respectively, and fi (x) , hi (x) , gi (x) are smooth
functions. The structural uncertainty of the i-th subsystem is
characterized by 1 fi (x) = ei (x) δi (x), in which ei : Rn →
Rn×m is a known matrix whose entries are smooth functions
of the state and δi : Rn → Rm is an unknown vector-valued
function belonging to

5i = {δi (x)| ‖δi (x)‖ ≤ 0i (x) , δi (0) = 0} (2)

for a given smooth function 0i : Rn → R+. The switch-
ing signal can be characterized by the following switching
sequence

6 = {x0; (i0, t0), (i1, t1), . . . , (ik , tk ), . . . , |ik ∈ I , k ∈ N },

(3)

in which t0, x0 and N denote the initial time, the initial
state, and the set of nonnegative integers, respectively. When
t ∈ [tk , tk+1) , σ (t) = ik , i.e. the ik -th subsystem is active.
The assumptions on fi (x) , hi (x) ,1fi (x) ensure existence
and uniqueness of the trajectory of system (1) for all initial
conditions and switching signals.
Assumption 1 [20]: σ has finite number of switchings on

any finite time interval.
Remark 1: This assumption is commonly adopted

by [20], [26], [30], [32] to rule out Zeno behavior, which is
obviously unacceptable in practice.

Now, we give the definition of robust semipassivity.
Definition 1: System (1) is said to be robust semipassive

under the switching signal σ (t) if there exists a nonnegative
function S (σ (t) , x) : I × Rn → R+, called a storage
function, such that

S (σ (t) , x (t))− S (σ (t0) , x (t0))

≤

∫ t

t0
yT uσ(τ) (τ )dτ −

∫ t

t0
Hσ(τ) (x (τ )) dτ (4)

holds for all admissible 1fσ , x0 and ∀ui, t0 ≤ t < ∞,
where the continuous function Hi (x) is nonnegative outside
the ball with radius ρ, i.e., ∃ρ > 0, such that ‖x‖ ≥ ρ ⇒

Hi (x) ≥ Q (‖x‖) for some nonnegative continuous function
Q (•) defined for all ‖x‖ ≥ ρ. If Q (•) is positive definite
for all ‖x‖ ≥ ρ, then, system (1) is said to be robust strictly
semipassive.
Remark 2: A semipassive system behaves similar to a

passive system for large enough ‖x‖. If ρ = 0 then Def-
inition 1 can degenerate into robust passivity definition of
switched nonlinear systems in [36]. Inequality (4) shows that
the total stored energy is no more than the total supplied
energy from outside and inside the system in any finite inter-
val [t0, t]. This implies that some subsystems may not be
semipassive on active time intervals. If the storage functions
are common, Definition 1 reduces to the traditional semipas-
sivity definition in [9]–[12].
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The concept of practical stability is defined as follows.
Definition 2: System (1) is globally practically stable if for

any given constant δ ≥ 0, a set of controllers ui, i ∈ I and a
switching signal σ (t) can be designed such that the closed-
loop system possesses the following properties

(a) (Uniform boundedness) there exists ε > 0 such that for
all t0 ≥ 0, ‖x0‖ < δ implies ‖x (t)‖ < ε.
(b) (Uniform ultimate boundedness) for every initial con-

dition x (t0) = x0, there is a constant T = T (x0,R) ≥ 0 such
that x (t) ∈ BR

1
={x ∈ Rn | ‖x‖ ≤ R } holds for t ≥ t0 + T .

This paper will investigate robust semipassivity, robust
semipassification and globally practical stability for
system (1).

III. PRACTICAL STABILITY ANALYSIS
This section will show that robust semipassive switched non-
linear system is globally practically stable.
Theorem 1: Suppose that there exists a storage function

S (σ (t) , x) = Sσ(t) (x) with nonnegative continuous func-
tions Si (x) , i ∈ I such that system (1) is robust semi-passive
under the switching signal σ (t).i) If there exist class K∞
functions β1, β2 satisfying

β1 (‖x‖) ≤ Si (x) ≤ β2 (‖x‖) (5)

for all i ∈ I then system (1) with ui = 0 is uniformly bounded.
ii) If, in addition, system (1) is robust strictly semipassive,
then system (1) is globally practically stable.
Proof: i)Uniform boundedness
Consider system (1) with ui = 0. For any t > t0, there

exists positive integer k such that t ∈ [tk , tk+1). It follows
from (4) and the conditions of Theorem 1 that

S (σ (t) , x (t))− S (σ (t0) , x (t0))

= Sik (x (t))− Si0 (x (t0))

≤

∫ t

t0
−Hσ (x (τ )) dτ. (6)

First, let 0 < δ ≤ ρ and ‖x0‖ ≤ δ. If ‖x (t)‖ ≤ ρ, t ≥ t0,
then it follows from (5) that ‖x (t)‖ ≤ ρ ≤ β−11 (β2 (ρ)) ≤

β−11 (η), t ≥ t0, η ≥ β2 (ρ). Alternatively, if there exists T >
t0 such that ‖x (T )‖ > ρ, then it follows from the continuity
of x (t) that there exists τ < T such that ‖x (τ )‖ = ρ and
‖x (t)‖ ≥ ρ, t ∈ [τ,T ] . Since (5) and (6) hold, we have

β1 (‖x (t)‖) ≤ Sik (x (t)) ≤ Si0 (x (t0)) ≤ β2 (δ) ,

which implies that ‖x (t)‖ ≤ β−11 (β2 (ρ)) ≤ β
−1
1 (η). Next,

let δ > ρ, assume ρ < ‖x (t0)‖ < δ. For every t̄ > 0 such
that ‖x (t)‖ ≥ ρ, t ∈

[
t0, t̄

]
. Since (5) and (6) hold, we have

β1 (‖x (t)‖) ≤ Sik (x (t)) ≤ Si0 (x (t0)) ≤ β2 (δ), which
implies that ‖x (t)‖ ≤ β−11 (β2 (δ)), t ∈

[
t0, t̄

]
. Next, if there

exists T > t0 such that ‖x (T )‖ ≤ ρ, then it follows as in the
proof of the first case above that ‖x (t)‖ ≤ β−11

(
β−12 (δ)

)
.

Hence, system (1) with ui = 0 is uniformly bounded.
ii) Uniform ultimate boundedness
First, let 0 < δ ≤ ρ and ‖x0‖ ≤ δ. As in the proof of i),

we have ‖x (t)‖ ≤ ρ ≤ β−11 (β2 (ρ)) ≤ β
−1
1 (η), t ≥ t0.

Next, let δ > ρ, assume ρ < ‖x (t0)‖ < δ. In this case,
it follows from i) that ‖x (t)‖ ≤ β−11 (β2 (δ)) , t ≥ t0.
Suppose, ad absurdum, that ‖x (t)‖ ≥ β−12 (η) > ρ,

t ≥ t0,. i.e., β
−1
2 (η) ≤ ‖x (t)‖ ≤ β−11 (β2 (δ)) , t ≥ t0. Since

Q (x) is a continuous function, according to Weierstrass’
theorem, k = minQ (x) > 0 exists. Therefore,

Sik (x (t)) ≤ −k (t − t0)+ Si0 (x (t0)) ,

which implies that

β1 (‖x (t)‖) ≤ Sik (x (t)) ≤ Si0 (x (t0)) ≤ β2 (δ)− k (t − t0)

It Now, let t > β2 (δ)
/
k + t0. It follows that β1 (‖x (t)‖) < 0,

which is a contradiction. Hence, there exists T = T (δ, η) > 0
such that ‖x (T )‖ < β−12 (η). Thus, from the proof of i),

we have ‖x (t)‖ ≤ β−11

(
β2

((
β−12 (η)

)))
= β−11 (η),

t ≥ T , which implies system (1) is ultimately bounded.
Therefore, system (1) is globally practically stable.
Remark 3: The globally practical stability is obtained

in Theorem 1, even if each subsystem is not semipassive.
This implies that the conditions given in Theorem 1 are
weaker than non-switched result in [11], [12]. When ρ = 0,
the globally practical stability result can degenerate into the
asymptotic stability result in [36]. Therefore, Theorem 1 is a
generalization of stability analysis result in [36].

IV. ROUST SEMIPASSIVITY
This section will give a sufficient condition for system (1)
to be robust semipassive by the design of a state-dependent
switching law. It is a generalization of the ‘‘min-switching’’
law.
Theorem 2: Suppose that there exist C1 nonnegative func-

tions Si (x), class K∞ functions Qi, continuous functions
Vi (x), ηij (x) , βij (x) ≤ 0, constants αi ≥ 0, λi > 0 for
i, j ∈ I , such that the following inequalities hold

LfiSi (x)+
∥∥∥(LeiSi (x))T∥∥∥0i (x)

+

M∑
j=1

βij (x)
(
Vi (x)− Vj (x)

)
≤ αi − Qi (‖x‖) , (7)

LgiSi (x) = hTi (x) , (8)
Si (x)− Sj (x) = ηij (x)

(
Vi (x)− Vj (x)

)
. (9)

Design the switching law as

σ (t) = argmin
i∈I
{Vi (x)} . (10)

Then, system (1) is robust semipassive under the switching
law (10).
Proof: Differentiating Si (x) along the i-th subsystem of

system (1) together with (7) and (10) gives

Ṡi =
∂Si
∂x

(fi (x)+1fi (x)+ gi (x) ui)

≤ LfiSi (x)+
∥∥∥(LeiSi (x))T∥∥∥0i (x)+ yT ui

≤−Qi + αi + yT ui −
M∑
j=1

βij (x)
(
Vi (x)− Vj (x)

)
. (11)
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According to the switching law (10), the switch-
ing sequence is described as (3) with the property
Vik+1 (x (tk+1)) = Vik (x (tk+1)) .
From (9), we have

Sik+1 (x (tk+1)) = Sik (x (tk+1)) . (12)

When t ∈
[
tp, tp+1

)
, the ip-th subsystem is active,

i.e., σ (t) = ip, so (11) implies

Ṡip ≤ −Qip + αip + y
T uip . (13)

Integrating (13) over [s, t] for tp+1 > t > s ≥ tp yields

Sip (x(t))− Sip (x(s)) ≤
∫ t

s
[(αip + y

T uip − Qi)dτ . (14)

Define the storage function as S (σ (t) , x) = Sσ(t) (x).
For t0 ≤ t < ∞, we can find some integer k satisfying
t ∈ [tk , tk+1) . From (12) and (14), we have

S (σ (t) , x (t))− S (σ (t0) , x (t0))

= Sik (x (t))− Sik (x (tk))

+

k−1∑
p=0

(
Sip
(
x
(
tp+1

))
− Sip

(
x
(
tp
)))

+

k∑
p=1

(
Sip
(
x
(
tp
))
− Sip−1

(
x
(
tp
)))

≤

∫ t

t0
(ασ(τ) + yT uσ(τ) − Qσ(τ) (‖x (τ )‖))dτ. (15)

Let Hi (x) = Qi (‖x‖)−αi. Therefore, system (1) is robust
semipassive under the switching law (11).
Remark 4: Inequality (7) and equation (8) imply that each

subsystem of system (1) is not required to be semipassive.
If αi = 0, βij = 0, (7) and (8) imply that the robust KYP
conditions in [8] hold on the active time interval. Therefore,
(7) and (8) are weaker than the robust KYP conditions. When
Vi = Si, the switching law (11) reduces to the well-known
‘‘min-switching’’ law.

V. FEEDBACK SEMIPASSIFICATION
This section will solve the robust semipassification problem
by designing a state-dependent switching law and feedback
controllers for the switched nonlinear systems.

Consider system (1) with the common output y = h (x) .

ẋ = fσ (x)+1fσ (x)+ gσ (x) uσ ,

y = h (x) . (16)

System (16) is said to be robust feedback semipassive if state
feedback controllers ui = αi (x) + βi (x) wi, i ∈ I and a
switching law σ for system (16) can be designed such that
the resulting closed-loop system is robust semipassive from
wi to y.
Under some hypotheses in [36], we can find a global

diffeomorphism T (x) =
(
zT , yT

)T
=
(
φT (x) , hT (x)

)T and
feedback controllers ui = [ai (z, y)]−1

[
vi − b0i (z, y)

]
that

transform each subsystem of (16) into robust version of the
normal form in [8]:

ż = f 0i (z, y)+ f
1
i (z, y) δ̃i (z, y) ,

ẏ = vi + b1i (z, y) δ̃i (z, y) . (17)

Thus, (16) can be presented as follows:

ż = f 0σ (z, y)+ f
1
σ (z, y) δ̃σ (z, y) ,

ẏ = vσ + b1σ (z, y) δ̃σ (z, y) , (18)

where f 0i , f
1
i , δ̃i are smooth and

∥∥∥δ̃i (z, y)∥∥∥ ≤ 0i (T−1 (z, y)) =
0̃i (z, y).
Now, we will provide sufficient conditions of semipassifi-

cation in the following theorem.
Theorem 3: Consider system (18). Suppose that for any

i, j ∈ I , there are continuous functions Ui (z), nonnegative
smooth functions Wi (z), class K∞ functions Qi, continuous
functions βij (z) ≤ 0, γi (z) > 0, θij (z) and constants ci ≥ 0
satisfying

Lf 0i (z,0)
Wi (z)+

γi (z)
2

∥∥∥Lf 1i (z,0)Wi (z)
∥∥∥2 + 1

2γi (z)
0̃2
i (z, 0)

+

M∑
j=1

βij (z)
(
Ui (z)− Uj (z)

)
≤ ci − Qi (‖z‖) , (19)

Wi (z)−Wj (z) = θij (z)
(
Ui (z)− Uj (z)

)
. (20)

Then, the robust semipassification problem of system (16) is
solvable.
Proof: As in [8], we have

f 0i (z, y) = f 0i (z, 0)+ f̃
0
i (z, y) y,

Lf 1i Wi (z) = Lf 1i (z,0)Wi (z)+ yT f̃ 1i (z, y) ,

0̃i (z, y) = 0̃i (z, 0)+ Pi (z, y) y.

Design the controllers as

vi = Bi(z, y)−
1
2
y+ wi, (21)

where Bi (z, y) = −

[
Lf̃ 0i

Wi (z)
]T
−

γi(z)
2 B1i (z, y) −

1
2γi(z)

B2i (z, y) with

B1i (z, y) =
(
f̃ 1i (z, y)+ b

1
i (z, y)

) (
f̃ 1i (z, y)+ b

1
i (z, y)

)T
y

+2
(
f̃ 1i (z, y)+ b

1
i (z, y)

) (
Lf 1i (z,0)Wi (z)

)T
,

B2i (z, y) = Pi (z, y)
[
2 0̃i (z, 0)+ Pi (z, y) y

]
.

Let Si (z, y) = Wi (z)+ 1
2y

T y, i ∈ I . Differentiating
Si (z, y) , i ∈ I together with (19) and (21) gives

Ṡi (z, y)

= Lf 0i (z,0)
Wi (z)+yT

([
Lf̃ 0i (z,y)

Wi (z)
]T
+vi

)
+

(
Lf 1i (z,0)Wi (z)+yT

(
b1i (z, y)+ f̃

1
i (z, y)

))
δ̃i (z, y)
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≤ Lf 0i (z,0)
Wi (z)+yT

([
Lf̃ 0i (z,y)

Wi (z)
]T
+vi

)
+
γi (z)
2

∥∥∥(Lf 1i (z,0)Wi (z)+yT
(
b1i (z, y)+ f̃

1
i (z, y)

))∥∥∥2
+

1
2γi (z)

(
0̃i (z, 0)+Pi (z, y) y

)2
≤ Lf 0i (z,0)

Wi (z)+
γi (z)
2

∥∥∥Lf 1i (z,0)Wi (z)
∥∥∥2+ 1

2γi (z)
0̃2
i (z, 0)

+yT
([
Lf̃ 0i (z,y)

Wi (z)
]T
+
γi (z)
2

B1i (z, y)+
1

2γi (z)
B2i (z, y)+vi

)
= Lf 0i (z,0)

Wi (z)+
γi (z)
2

∥∥∥Lf 1i (z,0)Wi (z)
∥∥∥2+ 1

2γi (z)
0̃2
i (z, 0)

+yT
([
Lf̃ 0i (z,y)

Wi (z)
]T
+
γi (z)
2

B1i (z, y)+
1

2γi (z)
B2i (z, y)

+Bi(z, y)+wi −
1
2
y
)

= Lf 0i (z,0)
Wi (z)+

γi (z)
2

∥∥∥Lf 1i (z,0)Wi (z)
∥∥∥2

+
1

2γi (z)
0̃2
i (z, 0)+y

Twi −
1
2
yT y

≤ −

M∑
j=1

βij (z)
(
Ui (z)− Uj (z)

)
+ci − (Qi (z)+

1
2
yT y)

≤ −

M∑
j=1

β̃ij (z, y)
(
Vi (z, y)− Vj (z, y)

)
+ci − Q̃i (z, y) ,

where β̃ij (z, y) = βij (z) ,Vi (z, y) = Ui (z) + 1
2y

T y and
Q̃i (z, y) = Qi (z)+ 1

2y
T y are class K∞ functions.

Since (20) holds, we have

S1
i
(z, y)− S1

j
(z, y) = θij (z)

(
Vi (z, y)− Vj (z, y)

)
. (22)

Design the switching law as σ (t) = argmin
i∈I
{Vi (z, y)}.

The rest of the proof is similar to that of Theorem 2.
Remark 5: When Ui = Wi, ci = λi = 0, these conditions

reduce to the robust passification conditions of switched non-
linear systems in [36].

VI. SEMIPASSIVITY OF INTERCONNECTED
SWITCHED SYSTEMS
In this section, a composite state-dependent switching law is
designed to render the feedback interconnection of uncertain
switched nonlinear systems robust semipassive.

Consider the switched systems

H1 :
ẋ1 = f 1

σ1

(
x1
)
+1f 1

σ1

(
x1
)
+ g1

σ1

(
x1
)
u1
σ1
,

y1 = h1
σ1

(
x1
)
,

(23)

where x1 ∈ Rn1 is the state and σ1 (t) : [0,∞) → I1 =
{1, 2, · · ·M1} denotes the switching signal of system (23).
The switching sequence is described as
61 = {(i10, t

1
0 ), (i

1
1, t

1
1 ), . . . (i

1
j1
, t1
j1
), . . .

∣∣∣i1j1 ∈ I1 , j1 ∈ N }
and

H2 :
ẋ2 = f 2

σ2

(
x2
)
+1f 2

σ2

(
x2
)
+ g2

σ2

(
x2
)
u2
σ2
,

y2 = h2
σ2

(
x2
)
,

(24)

in which x2 ∈ Rn2 is the state; σ2 (t) : [0,∞) → I2 =
{1, 2, · · ·M2} denotes the switching signal of system (24).
The switching sequence is

62 = {(i20, t
2
0 ), (i

2
1, t

2
1 ), . . . , (i

2
j2 , t

2
j2 ), . . .

∣∣∣i2j2 ∈ I2 , j2 ∈ N }.
Moreover, 1 f q

iq
(x) = eq

iq
(x) δq

iq
(x) , q = 1, 2, where eqiq is a

knownmatrix whose entries are smooth functions of the state,∥∥δqiq (x)∥∥ ≤ 0qiq (x) , δqiq (0) = 0 is an unknown vector-valued
function and 0qiq : R

nq
→ R+ is a given smooth function. The

feedback interconnection of H1 and H2 is shown in Fig. 1.

FIGURE 1. Feedback interconnection.

This interconnected switched system H is formed through
u1σ1 = r1σ1 − y

2, u2σ2 = r2σ2 + y
1, where dim r2σ2 = dim h1σ1 =

dim u2σ2 and dim r1σ1 = dim h2σ2 = dim u1σ1. The input and

output of the interconnection system H are uσ =
(
r1σ1
r2σ2

)
and

y =
(
y1

y2

)
. The switching signal is created by the merging

switching signal technique, i.e.σ =
(
σ1
σ2

)
: [0,∞) → I =

I1 × I2 =
{(
i1, i2

) ∣∣i1 ∈ I1; i2 ∈ I2 }. Thus, system H has
M1 · M2 subsystems. The switching sequence generated by
the composite switching signal is described as

6 =
{
(i0, t0) , (i1, t1) , · · ·

(
ij, tj

)
, · · ·

∣∣ij ∈ I , j ∈ N } , (25)

where t0 = t10 = t20 , ij =
(
σ1
(
tj
)
, σ2

(
tj
))
=

(
i1
j1
, i2
j2

)
.

In the following, we will discuss robust semipassivity of
feedback interconnected system H .
Theorem 4: Suppose that there exist nonnegative smooth

functions V q
iq (x

q), continuous functions Sqiq (x
q), class K∞

functions Qqiq , functions βqiqjq (x
q) ≤ 0, δqiqjq (x

q) ≤ 0,
η
q
iqjq (x

q), smooth functions µqiqjq (x
q) with µ

q
iqiq (x

q) =

0, µqiqjq (0) = 0, νqiqjq (x
q) with νqiqjq (0) = 0, νqiqjq (x

q) = 0,
constants αqiq ≥ 0, λqiq > 0 such that

∂Sqiq
∂xq

f qiq
(
xq
)

+

∥∥∥∥(LeqiqSqiq (x))T
∥∥∥∥0qiq (xq)+ Qqiq (∥∥xq∥∥)

+

M1∑
j1=1

β
q
iqjq
(
xq
) (
V q
iq
(
xq
)
− V q

iq
(
xq
))
≤ α

q
iq , (26)

Lgqiq
Sqiq (x) = hqTiq (x) , (27)(

Sqiq
(
xq
)
−Sqiq

(
xq
))
=η

q
iqjq
(
xq
) (
V q
iq
(
xq
)
−V q

iq
(
xq
))

(28)
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hold for all iq, jq ∈ Iq, q = 1, 2. Design the switching law as

σ (t) =
(
σ1

(
x1 (t)

)
, σ2

(
x2 (t)

))
, (29)

where σq (xq (t)) = arg min
iq∈Iq

{
V q
iq (x

q)
}
, q = 1, 2. Then,

the feedback interconnected system H is robust semipassive
under the switching law (29).
Proof: Let S(i1,i2)

(
x1, x2

)
= S1

i1
(
x1
)
+ S2

i2
(
x2
)
,(

i1, i2
)
∈ I .

Differentiating S(i1,i2)
(
x1, x2

)
gives

Ṡ(i1,i2)

=

∂S1
i1

∂x1

(
f 1
i1

(
x1
)
+1f 1

i1

(
x1
)
+ g1

i1

(
x1
)
u1
i1

)
+

∂S2
i2

∂x2

(
f 2
i2

(
x2
)
+1f 2

i2

(
x2
)
+ g2

i2

(
x2
)
u2
i2

)
≤ Lf 1

i1
S1
i1

(
x1
)
+

∥∥∥∥∥
(
Le1

i1
S1
i1

(
x1
))T∥∥∥∥∥01

i1

(
x1
)
+ y1T u1

i1

+Lf 2
i2
S2
i2

(
x2
)
+

∥∥∥∥∥
(
Le2

i2
S2
i2

(
x2
))T∥∥∥∥∥02

i2

(
x2
)
+ y2T u2

i2

≤ −

M1∑
j1=1

β1i1j1

(
V 1
i1

(
x1
)
− V 1

j1

(
x1
))

−

M2∑
j2=1

β2i2j2

(
V 2
i2

(
x2
)
− V 2

j2

(
x2
))

−Q1
i1

(∥∥∥x1∥∥∥)+y1T u1i1+α1i1−Q2
i2

(∥∥∥x2∥∥∥)+y2T u2i2+α2i2 .
(30)

Substituting u1
i1
= r1

i1
− y2, u2

i2
= r2

i2
+ y1 into (30) gives

Ṡ(i1,i2)
≤ −Q(i1,i2) + y

1T r1i1 + y
2T r2i2 + α

1
i1 + α

2
i2

−

M1∑
j1=1

β1i1j1

(
V 1
i1

(
x1
)
− V 1

j1

(
x1
))

−

M2∑
j2=1

β2i2j2

(
V 2
i2

(
x2
)
− V 2

j2

(
x2
))

≤ −Q(i1,i2) + y
T u(i1,i2) + α(i1,i2)

−

M1∑
j1=1

β1i1j1

(
V 1
i1

(
x1
)
− V 1

j1

(
x1
))

−

M2∑
j2=1

β2i2j2

(
V 2
i2

(
x2
)
− V 2

j2

(
x2
))
, (31)

where α(i1,i2) = α1
i1
+ α2

i2
, u(i1,i2) =

(
r1
i1
, r2
i2

)T
, y =(

y1, y2
)T
,Q(i1,i2) = Q1

i1
(∥∥x1∥∥)+ Q2

i2
(∥∥x2∥∥).

According to the switching law (29), the switching
sequence is described as (3) with ik = (σ1 (tk) ,

σ2 (tk)) =
(
i1
k1
, i2
k2

)
,∀k ∈ N and

V q
iq
kq+1

(
xq
(
tq
kq+1

))
= V q

iq
kq

(
xq
(
tq
kq+1

))
, q = 1, 2.

Thus,

Sq
iq
kq+1

(
xq
(
tq
kq+1

))
= Sq

iq
kq

(
xq
(
tq
kq+1

))
, q = 1, 2. (32)

From (31), we have

Ṡik ≤ −Qik + y
1T uik + αik . (33)

The storage function of system H is chosen as

S
(
σ (t) , x1, x2

)
=Sσ(t)

(
x1, x2

)
= S1σ1(t)

(
x1
)
+ S2σ2(t)

(
x2
)
.

For t0 ≤ t < ∞ there exists nonnegative integer k such that
t ∈ [tk , tk+1). From (32) and (43), we have

S (σ (t) , x (t))− S (σ (t0) , x (t0))

= Sik (x (t))− Si0 (x (t0))

= Sik (x (t))− Sik (x (tk))

+

k−1∑
p=0

(
Sip
(
x
(
tp+1

))
− Sip

(
x
(
tp
)))

+

k∑
p=1

(
Sip
(
x
(
tp
))
− Sip−1

(
x
(
tp
)))

≤

∫ t

t0

(
yT uσ(τ) + ασ(τ) − Qσ(τ)

)
dτ

+

k1∑
p=1

(
S1i1p

(
x1
(
t1p
))
− S1

i1p−1

(
x1
(
t1p
)))

+

k2∑
p=1

(
S2i2p

(
x2
(
t2p
))
− S2

i2p−1

(
x2
(
t2p
)))

≤

∫ t

t0

(
yT uσ − Hσ

)
dτ,

where ασ = α1σ1 + α
2
σ2
,Hσ = ασ − Qσ .

Therefore, the feedback interconnected system H is semi-
passive under the switching law (29).
Remark 6: If βqiqjq (x

q) = 0, (26) and (27) imply that H1
and H2 are both semipassive. In Theorem 4, H1 and H2 are
not required to be semipassive. However, H1 and H2 are both
semipassive under the switching law (29). Thus, the intercon-
nection of H1 and H2 are semipassive under the switching
law (29). The designed switching law allows interconnected
switched systems to switch asynchronously. This provides
more design freedom. This result is generalization of the
semipassivity Theorem of non-switched system in [12].
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VII. EXAMPLES
In this section, we present two numerical examples to demon-
strate the effectiveness of the results.
Example 1: Consider system (1) described by

f1 (x) =
(
−x31+2x1+x2+1,−x1−10x2

)T
, 1f1(x)=x cos t,

g1 (x) = (0, 0.5x2)T, g2 (x)=(2x1, 0)T , 1f2(x)=0.5x sin t,

f2 (x) =
(
−7x1 − 2x2 + 4, 0.25x2 + x1 − x52

)T
y = h1 (x) = x22 , y = h2 (x) = 2x21 . (34)

Let S1 (x) = x21 + x22 and S2 (x) = 0.5x21 + 2x22 . Then, dif-
ferenting S1 (x) and S2 (x) along the trajectory of system (34)
yields

Ṡ1 ≤ 16 (S1 − S2)−
(
x21 + 2x22 − 1

)
+ yT u1,

Ṡ2 ≤ 6 (S2 − S1)−
(
0.5x21 + x

2
2 − 2

)
+ yT u2.

The switching law is designed as σ (t) = arg min
i=1,2
{Si (x)}.

According to Theorem 2, system (34) is robust semipassive.
Therefore, based on Theorem 1, system (34) with ui = 0 is
practically stable.

A simulation is conducted to verify our method. The sim-
ulation results are depicted in Figs.2-5 for the initial states
x (0) = (10.2,−12.5). In contrast with the system in [36],
the state response of system (34) shown in Fig.4 converges
into a ball. The switching signal is shown in Fig.5. Therefore,
the closed-loop system is globally practically stable. The sim-
ulation results well illustrate the effectiveness of the proposed
approach.

FIGURE 2. State response of subsystem1.

Example 2: Consider system (1) consisting of two subsys-
tems described by

f1 (x) =
(
−3 (x1 + x2)3 + (x1 + x2) x22 − x2 + 2, x2

)T
,

1f1 (x) = x cos t, g1 (x) = (1,−1)T ,

f2 (x) =
(
−3 (x1 + x2)+ x1x22 + 1, x2 + x1 + x32

)T
,

1f2 (x) = x (x1 + x2)2 sin t, g2 (x) = (−1, 1)T , y = x2,

(35)

FIGURE 3. State response of subsystem2.

FIGURE 4. State response of the switched system.

FIGURE 5. Switching law.

By the coordinate transformation z = x1+ x2, y = x2. (35)
can be transformed into the following form:

ż = −3z3 + zy2 + 2+ z cos t,

ẏ = y+ y cos t − u1,

ż = −2z+ zy2 + 1+ z3 sin t,

ẏ1 = z+ y3 + z2y sin t + u2.

Choose the functions W1 (z) = 1
2z

2 and W2 (z) = 1
2z

4 ,
which satisfy

Ẇ1 = zż ≤ 3
(
z2 − z4

)
− z2 + 1+ z2y2,

Ẇ2 = 2z3ż ≤ 2z2
(
z4 − z2

)
− z4 + 2z4y2 + 1.
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FIGURE 6. State response of the switched system.

Consider the systems involving variables (z, y). Choose the
storage functions Si (z, y) = Wi (z)+ 0.5y2. Then,

Ṡ1 (z, y) ≤ 3
(
z2−z4

)
−z2+1+z2y21+2y

2
1−y1u1,

Ṡ2 (z, y) ≤ 2z2
(
z4−z2

)
−z4+2z4y2+1+z2y2+y4+zy+yu2.

Design the controllers as:

u1 = 3y+ z2y+ v1,

u2 = −
(
2z4 + z2 + y3 + 1

)
y− z+ v2.

Then,

Ṡ1 (z, y) ≤ 6 (S1 − S2)− 2S1 + 1+ yv1,

Ṡ2 (z, y) ≤ 4z2 (S2 − S1)− 2S2 + yv2 + 1.

The switching law is designed as σ (t) = 1, when S1 − S2 ≤
0, and σ (t) = 2, when S2 − S1 ≤ 0. Then, system (33) is
feedback equivalent to a semipassive system.

Therefore, according to Theorem 1, system (35) with
vi = −y is globally practically stable.
The simulation was performed with the initial state

(z (0) , y1 (0)) = (15.4,−23.7). The simulation results are
shown in Figs. 6,7. In contrast with the system in [36],
the state response of system (35) shown in Fig.6 converges
into a ball under the switching signal shown in Fig.7, which
indicates system (35) is globally practically stable. This ver-
ifies the effectiveness of the proposed design method.

Compared with existing results, the method presented
in this paper has two distinct features. First, the practical
stabilization problem for none of the subsystems of sys-
tem (34) is solvable, as shown in Figs 2,3 in Example 1.
It is impossible to solve this problem by the common Lya-
punov function method, the average dwell time approach,
adopted in [20], [38]. These methods required that the stabi-
lization problem for at least a subsystem is solvable. Second,
the method adopted in this paper required the problem of
each subsystem is solvable when it was active. Therefore,
the conditions required by the common Lyapunov function
method, the average dwell timemethod and the novel average
dwell time methods are not satisfied [29].

FIGURE 7. Switching law.

VIII. CONCLUSION
This paper has studied robust semi-passivity, robust semi-
passification and practical stability for a class of uncertain
switched nonlinear systems. The state-dependent designed
switching law is more general than the well-known ‘min-
switching’ law. The semipassivity property is shown to be
preserved for the feedback interconnected switched nonlinear
systems by the design of a composite state-dependent switch-
ing law, while practical stability is not preserved in general.
This switching law allows interconnected switched systems
to switch asynchronously.

There are relevant problems that need to be investigated.
One of such problems is how to solve the stabilizatin problem
using semipassivity for uncertain switched nonlinear systems
with any same relative degree.
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