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ABSTRACT In recent years, ship detection in satellite remote sensing images has become an important
research topic. Most existing methods detect ships by using a rectangular bounding box but do not perform
segmentation down to the pixel level. This paper proposes a ship detection and segmentation method based
on an improved Mask R-CNN model. Our proposed method can accurately detect and segment ships at the
pixel level. By adding a bottom-up structure to the FPN structure of Mask R-CNN, the path between the
lower layers and the topmost layer is shortened, allowing the lower layer features to be more effectively
utilized at the top layer. In the bottom-up structure, we use channel-wise attention to assign weights in each
channel and use the spatial attention mechanism to assign a corresponding weight at each pixel in the feature
maps. This allows the feature maps to respond better to the target’s features. Using our method, the detection
and segmentation mAPs increased from 70.6% and 62.0% to 76.1% and 65.8%, respectively.

INDEX TERMS Computer vision, object detection, object segmentation, remote sensing.

I. INTRODUCTION
Nowadays, the marine transportation industry is making
advances at a very fast pace. The rapid growth in the number
of ships and shipping volume have also caused an increase in
the number of maritime violations. Automated ship detection
can help to obtain ship distribution information. It plays an
increasingly important role in maritime surveillance, moni-
toring and traffic supervision. It can help to control illegal
fishing and cargo transportation. In recent years, ship detec-
tion in satellite remote sensing images has become an impor-
tant research topic. For example, [1] used structured forest
edge detection, morphological image processing and support
vector machine (SVM) to detect ships from satellite images
downloaded from Google Earth. Synthetic Aperture Radar
(SAR), which allows imaging during both day time and night
time, has attracted the attention of many researchers. There
has been considerable amount of prior work in SAR image
ship detection. Many ship detection methods in SAR images
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are based on CFAR [2]–[4]. In recent years, CNN (convo-
lutional neural network) has become the dominant method
for image classification, target detection and segmenta-
tion [5]–[7]. Many detection methods based on deep learning
have been developed and have achieved good results [8]–[13].
Deep CNN networks, such as Faster R-CNN [10],
YOLO [12] and SSD [13], can detect, localize and predict
the label of the target. In recent years, object detection in
remote sensing satellite images using deep learning methods
has become a hot research topic [14]–[16] and it has become
a trend to detect ships in satellite remote sensing images by
using deep learning methods [17]–[26]. CNN-based methods
have been applied to ship detection in SAR images [21]
and for detecting land targets [22]. They have achieved
better performance than traditional methods. Reference [17]
adopts Faster R-CNN structure, which fuses deep semantic
and shallow high-resolution features in both the RPN and
Region of Interest (RoI) layers, and improved the detec-
tion accuracy of small ships. Kang et al. [18] used Faster
R-CNN for detection and employed CFAR to pick up small
targets.
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FIGURE 1. Detection and segmentation results using our model. (a) Sea
area 1, (b) sea area 2, (c) harbor area.

In summary, previous studies have shown that CNN-based
methods can detect ocean targets more accurately than CFAR
and other feature-based methods. However, the above meth-
ods detect ships by using a bounding box and do not perform
ship segmentation down to pixel level.

Mask R-CNN [27] is a convolutional neural network based
on Faster R-CNN [10]. This neural network can detect targets
and perform semantic segmentation at the same time. In this
paper, we propose a ship detection and segmentation method
based on an improved Mask R-CNN model. We tested our
method on the Airbus ship dataset and achieved very good
results. We added a bottom-up structure and attention mech-
anisms to the Mask R-CNN. The main contributions of our
paper are:
• Propose a method for ship detection and segmentation
by enhancing the Mask R-CNN model. We added a
bottom-up structure to the Mask R-CNN network and
use channel-wise and spatial attention mechanisms to
improve detection and segmentation accuracies.

II. RELATED WORK
We divide prior work on ship detection in satellite remote
sensing images into the two main categories of traditional
methods and deep learning methods.

1) Traditional methods. Traditional methods include sta-
tistical methods, transformation methods and others.
Reference [28] is an example of statistical method,
in which sea cluster histograms to construct anomaly
detection models. It identifies candidate regions and
then delete non-ship objects from the candidate
regions. It uses structural continuity to remove false
alarms. However, this method only performs well in
the sea regions of satellite images from panchromatic
and one band within multispectral and it does not
perform well in the harbor area. Reference [29] pro-
posed a model based on statistical analysis and shape
identification. They perform statistical analysis on the
ship distribution in the sea area to distinguish sus-
pected ship targets from sea, land, islands or strong
waves, and then use shape features such as aspect
ratio, roundness, etc., to detect ships. In the transfor-
mation methods, a transform, e.g., Radon transform,
wavelet transform or Hough transform is applied to the
input image in order to extract features. For example,
[30] proposes to use wavelet decomposition to obtain

high- and low-frequency features of the image. The fea-
tures are then combined by normalization and addition
and a salient feature map is produced. In [31], a new
ship detectionmethod based on complex signal kurtosis
(CSK) in single-channel SAR imagery was proposed.
The method consists of twomain parts: region proposal
and target identification. They first detect potential
ship locations based on the region proposal, and then
identify the ships in these locations.

2) Deep learning methods. In recent years, many remote
sensing satellite ship detection methods based on deep
learning have been proposed. And the deep learning
methods can be divided into two categories accord-
ing to the marking methods used. In the first cate-
gory, ships are labeled at the pixel level [32], [33].
Cheng et al. [32] proposed a FCN-based edge detection
network. In the second category, ships are labeled by
using a bounding box, e.g. in [17] and [20], Faster
R-CNN was used to detect ships. Reference [21] pro-
poses a densely connected multiscale neural network
based on faster-RCNN for multiscale and multi-scene
SAR ship detection. Reference [23] proposes a new
network architecture by using squeeze and excitation
mechanism in Faster R-CNN. Their proposed network
suppresses redundant sub-features and further improve
the ship detection rate in Sentinel-1 images. Refer-
ence [25] proposes the Rotation Dense Feature Pyra-
mid Networks (R-DFPN) to detect ships from different
scenes, including ocean and seaports. Their networks
performed very well in remote sensing images from
Google Earth. Reference [26] proposes a hierarchical
selective filtering layer in their region proposal network
to map features in different scales to the same scale
space, which allows for efficient detection of ships at
different scales. Their network is end-to-end and can
detect inshore and offshore ships ranging in size from
dozens to thousands of pixels.

Most of the methods referenced above can detect ships but
they do not perform ship segmentation down to the pixel level.
The existing ship detection methods using bounding box can
also obtain substantial information of ships for analysis, but
the bounding box also contains background pixels. In this
paper, we propose an improved deep learning neural network
based on Mask R-CNN [27] to simultaneously detect and
segment ships in a single framework. By performing segmen-
tation, the mask of the ship is obtained, which contains no
background pixels. Shape features, such as area and perimeter
of the ship, can be more accurately computed and used in the
classification of the ship or for other analysis tasks.

A. MASK R-CNN
Mask R-CNN [27] is a simple and efficient instance seg-
mentation model that can be used for tasks such as human
pose recognition. It won first place in the COCO 2016 Chal-
lenge. Mask R-CNN combines Faster R-CNN [10] for target
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FIGURE 2. Illustration of the network: the B-CA-SA module represents the
bottom-up structure with channel-wise and spatial attention mechanisms.

detection and FCN [34] for semantic segmentation. After
the Faster R-CNN detects the target, FCN is used for mask
prediction, border regression and classification. The effective
combination of the twomakesMask R-CNN an excellent tool
for object detection and segmentation.

B. ATTENTION MECHANISMS
The use of attention mechanism has produced very good
results in many visual computing tasks, e.g., image classifica-
tion [35] and pose estimation [36]. In [35], an attention resid-
ual learningmechanismwas used to train the residual network
for image classification. The SCA-CNN network proposed
in [37] combines channel-wise and spatial-wise attention in
CNN for image captioning. The SCRDet network proposed
in [14] uses a pixel attention network and a channel attention
network to suppress noise and highlight objects feature to
detect small and cluttered objects. Reference [38] proposes
a squeeze-and-excitation (SE) block to adaptively recalibrate
channel-wise feature responses. This is achieved by explicitly
modeling the interdependencies between channels. Their pro-
posed network can bring significant improvements in the per-
formance of current state-of-the-art CNNs. Inspired by these
attention mechanisms, we use channel-wise attention and
spatial attention in the bottom-up structure of our network.
Experimental results showed that these attention mechanisms
can improve detection and segmentation accuracies.

III. METHOD
Our proposed framework is illustrated in Figure 2. In the
Mask R-CNN, we use FPN [39] to get the feature pyramids.
We add a bottom-up path to shorten the information path
between the lower layers and the topmost feature layer. This
makes it easier for information in the lower layer to propagate
to the top layer [40]. The channel-wise and spatial attention
mechanisms used in the bottom-up path make the feature
maps respond better to target’s features.

A. BOTTOM-UP PATH STRUCTURE
The ResNet101 [41] network is commonly used in Mask
R-CNN to extract features. In deep neural networks, the fea-
tures in the lower layers pass through dozens of network lay-
ers to reach the top layers. After passing throughmany layers,
some of the lower-level information may be lost. However,

FIGURE 3. FPN with bottom-up path structure from N2 to N5. On the left
is FPN structure without any changes.

information contained in the lower level features are impor-
tant for instance segmentation. In PANet [40], Liu et al. pro-
posed a bottom-up path argumentation technique to shorten
the information path and enhance the feature pyramid with
accurate localization signals from the lower levels. Inspired
by PANet [40], we have adopted a similar approach. We use
ResNet and FPN structures to get the feature maps of four
feature levels, namely {P2,P3,P4,P5}. As shown in Figure 3,
the bottom-up augmented path goes from level P2 to level P5,
and the size of the feature maps at each feature level Ni (i =
2, 3, 4, and 5) is the same as that of the corresponding level Pi
(i = 2, 3, 4, and 5). This is then sent to the new feature maps
{N2, N3, N4, N5} to the subsequent network layers instead of
{P2, P3, P4, P5}. Its network structure is shown in Figure 3.

B. CHANNEL-WISE AND SPATIAL ATTENTION
MECHANISMS
1) CHANNEL-WISE ATTENTION
Generally, features obtained at different channels in CNN
contain different semantic information. The features obtained
from different channels are not all equal in terms of impor-
tance. Some channels may not contain any target feature.
As shown in Figure 4, which contains the P3 feature maps
obtained by convolution, different channels contain different
information. Channels 167 and 85 contain useful ship infor-
mation but channel 97 contains information mostly for the
background. When extracting features by convolution, most
existingmethods assign the sameweight to the different chan-
nels and do not carry out channel selection. In our channel-
wise attention mechanism, the channels with higher target
responses are allocated larger weights. This allows us to get
the desired object features.

For the channel-wise attention, we have the convolution
features F = [F1,F2, . . . ,FC ], where Fi ∈ Rw×h denotes the
i-th channel of the feature map F, and C is the total number
of channels. We apply the average pooling operation to each
feature map Fi and produce a channel feature vector V :

V = [V1,V2, . . . ,Vc], V ∈ Rc
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FIGURE 4. Sample features in different channels.

FIGURE 5. Illustration of Channel-wise Attention (CA) and Spatial
Attention (SA).

where Vi represents the feature from the i-th channel after
average pooling. Convolution with a 1 × 1 kernel is then
performed to learn the aggregated features from each chan-
nelVi. The softmax operation is then performed on the feature
vector V so that the sum from all channels is 1.

2) SPATIAL ATTENTION
In object detection from images, the objects we would like
to detect appear in some parts of the image but not the
whole image. Different from the regular CNNnetwork, which
treats each region in the image equally, the spatial attention
mechanism assigns a weight to each pixel in the feature map.
This allows more attention to be paid to pixels that belong
to the foreground region. Many studies have proved the
effectiveness of the spatial attention mechanism in its ability
to reduce background interferences [42], [43]. Our spatial
attention mechanismworks as follows. Given the convolution
features F = [F1,F2, . . . ,FC ], we use a convolution kernel
of size 1 × 1 to generate a feature map summary M. The
softmax operation is then performed on the pixel points of
the featureM so that they sum up to one.

C. FPN AND BOTTOM-UP STRUCTURES WITH SPATIAL
AND CHANNEL-WISE ATTENTION MECHANISMS
In our experiments, we tried different combinations of the
spatial attention and channel-wise attention mechanisms with
the FPN and bottom-up structures.

FIGURE 6. (a) FPN with attention module. (b) Bottom-up structure with
attention module. Four different types of Attention Modules (AM):
Channel-wise Attention (CA) Module, Spatial Attention (SA) Module,
SA-CA module (combination of SA and CA modules), and CA-SA module
(combination of CA and SA modules).

FIGURE 7. (a) Illustration of the building blocks of FPN-AM.
(b) Illustration of the building blocks of B-AM.

1) FPN WITH ATTENTION MODULE (FPN-AM)
We first obtain four levels of feature maps by using
ResNet: {C2,C3,C4,C5}. To generate the feature pyramid
{P2,P3,P4,P5}, we combine the FPN with attention mod-
ule through the following steps. P5 is generated by feature
map C5 by using a convolution kernel of size 1 × 1 and
256 channels. For the other levels, as shown in Figure 7(a),
we up sample the feature map Pi+1 (i= 4, 3, and 2), by using
a up sample factor of 2, then the up sampled feature map is
merged with corresponding feature map Ci (a 1× 1 convolu-
tional layer is used to reduce the channel dimensions to 256)
by element-wise addition to generate a new feature map
Fcp_i. Feature map Fcp_i is then send to the selected attention
module (CA, SA, CA-SA or SA-CA) to obtain feature map
Pi (i = 4, 3, and 2). Finally, we obtain the feature pyramid
{P2,P3,P4,P5} from the FPN-AM structure.

2) BOTTOM-UP WITH ATTENTION MODULE
(BOTTOM-UP-AM)
This structure is similar to FPN-AM. As shown
in Figure 6 (b). N2 is the same as P2. To generate the
feature map Ni+1 (i = 2, 3, and 4), as shown in Figure 7(b),
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Ni (2W×2H×C) is convolved by a convolution kernel of
size 3 × 3, with a stride size of 2. The height and width of
the feature maps are reduced by one-half so that they are of
the same size as Pi+1 (W×H×C). The reduced feature maps
are merged with Pi+1 by element-wise addition to get a new
feature mapNi_half , which is then sent to the attention module
(CA, SA, CA-SA or SA-CA) to get feature map Ni. Finally,
a new feature pyramid {N2,N3,N4,N5} is obtained and then
sent to subsequent network layers.

IV. EXPERIMENTAL RESULTS
We used the dataset for airbus ship detection challenge [46]
in our experiments. Reference [44] improves Mask R-CNN
by replacing NMS in Mask R-CNN with Soft-NMS and
achieved good results in their ship detection and segmentation
experiments. We have implemented the network in [44] and
ran it on the airbus dataset. Mask Scoring R-CNN [45] is
an improved variant of Mask R-CNN obtained by adding to
Mask R-CNN a network block that will learn the quality of
the predicted instance masks. We also ran the Mask Scoring
R-CNN network on the airbus dataset. The bottom-up struc-
ture in our network was inspired by PANet [40], which is
also an improved variant of mask R-CNN. We ran PANet on
the airbus ship dataset and compared the results with ours.
SCRDet [14] proposed a rotating bounding box method to
detect rotated objects in remote sensing images. We also
ran SCRDet on the airbus ship dataset for comparison.
In addition, we also performed ablation studies to verify the
effectiveness of the proposed channel-attention mechanism,
spatial attention and the bottom-up path structure. Experi-
mental results show that our proposedmethod performs better
than baseline Mask R-CNN, Mask Scoring R-CNN [45],
PANet [40], SCRDet [14], and the method in [44].

A. DATASET
As there is a lack of datasets with ground truths for ship
segmentation, Airbus created a large dataset with masks for
the ship regions. They also held a competition onKaggle [46].
The Airbus ship dataset consists of remote sensing images
of ships with sea and harbor in the background. It contains
training and test images with masks for the ships. We selected
and used 42, 500 images from the Airbus ship dataset in
our experiments. For testing, we randomly selected 3, 000
images from our dataset and used the remaining images for
training. The original dataset was encoded in RLE (run-
length encoding) format. To facilitate training, we converted
it into COCO annotation format. In order to compare with
SCRDet [14], we also used horizontal bounding boxes and
oriented bounding boxes to annotate the dataset.

B. IMPLEMENTATION DETAILS
The Pytorch framework was used in our experiments and
the basic code used was Facebook Research’s Mask R-CNN
Benchmark [47]. In our experiments, we use the pre-trained
ResNet-101 model for initialization. The GPU used in our
experiment was a GTX 1080with 8 GBmemory. The training

FIGURE 8. Translation of annotation format: (a) original image, (b)
ground truths in RLE format, (c) ground truths in COCO annotation format,
(d) ground truths in horizontal bounding box format, (e) ground truths in
oriented bounding box format.

and testing images are of size 768×768. For data augmen-
tation, we performed random horizontal flips of the training
images. During training, the batch size was set to 1, initial
learning rate set to 0.001, weight attenuation set to 0.0001 and
synchronized SGD with a momentum of 0.9 was used as
optimizer. The maximum number of iterations was set to
350, 000. In the RPN network, we assign a single scale anchor
point at each level, and we assigned five scales {322, 642,
1282, 2562, 5122} anchor points at each level, respectively
{N2, N3, N4, N5, N6} (N6 is obtained by performing max
pooling on N5), and the anchor points at each level have the
aspect ratio {1 : 1, 1 : 2, 2 : 1}.

C. EVALUATION AND RESULTS
We used ResNet101 as the backbone network to extract fea-
tures and compare with the Mask R-CNN baseline model,
PANet [40], Mask Scoring R-CNN [45], method in [44],
and our methods trained models. We use the standard met-
rics average precision (AP, AP50, AP75, APS , APM , APL)
to evaluate our results. Experimental results are shown
in Table 1, 2, 3, and 4.

1) THE EFFECTS OF SPATIAL AND CHANNEL-WISE
ATTENTION
We chooseMask R-CNN as the baseline in our ablation study.
For fair comparisons, all experimental data and parameter
settings are kept the same.

a: EFFECTS OF SPATIAL ATTENTION
Tables 1 and 2 show that the spatial attention structure
is beneficial in the suppression of noise and in highlight-
ing object information. With the addition of spatial atten-
tion to the FPN structure, ship detection and segmentation
accuracies improved by 4.9% and 3.2%, respectively. In addi-
tion, by adding spatial attention to the bottom-up struc-
ture, the accuracies have improved by 2.3% and 1.9%,
respectively.

b: EFFECTS OF CHANNEL-WISE ATTENTION
Tables 1 and 2 show that the channel-wise attention struc-
ture can assign larger weights to channels which show
higher responses to objects and alleviate the influence of the
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TABLE 1. Detection accuracy in the ablation study of spatial attention, channel-wise attention and bottom-up structure. SA, CA and B stand for spatial
attention, channel-wise attention and bottom-up structure, respectively.

TABLE 2. Segmentation accuracy in the ablation study of spatial attention, channel-wise attention and bottom-up structure.

TABLE 3. Detection accuracy of different methods.

TABLE 4. Segmentation accuracy of different methods.

background. With the addition of channel-wise attention to
the FPN structure, ship detection and segmentation accura-
cies improved by 4.3% and 2.9%, respectively. In addition,
by adding channel-wise attention to the bottom-up struc-
ture, ship detection and segmentation accuracies improved by
2.4% and 2.0%, respectively.

When spatial attention is combined with channel-wise
attention, detection and segmentation accuracies greatly
improved over those of the baseline. When compared to
spatial attention alone or channel-wise attention alone, com-
bining the two caused slight increase or slight decrease in
accuracies.
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TABLE 5. Detection accuracy (or score) of different tasks.

2) THE EFFECTS OF BOTTOM-UP STRUCTURE
As shown in Tables 1 and 2, when the bottom-up structure
is added to Mask R-CNN, the detection and segmentation
accuracies for small ships improved by 5.6% and 3.5%,
respectively. The improvements are likely due to the added
bottom-up structure which shortens the information path and
enhances the feature pyramid with accurate localization sig-
nals from the lower levels. However, detection and segmenta-
tion accuracies for large ships decreased by 9.7% and 6.3%,
respectively. This may be due to the reduction of top-level
feature information caused by the addition of the bottom-
up structure. But, with the addition of bottom-up structure,
ship detection and segmentation mAPs increased by 3.0%
and 1.7% respectively. In addition, we found that B-AM,
which uses bottom-up structure, has slightly better detection
and segmentation accuracies than FPN-AM when the same
attention structure is used.

3) COMPARISONS WITH OTHER METHODS
In this section, we compare our proposed method with the
Mask R-CNN baseline model, PANet [40], Mask Scoring
R-CNN [45], SCRDet [14], and the method in [44]. Com-
parisons of detection and segmentation accuracies are shown
in Table 3, 4, and 5.
Reference [44] improved the Mask R-CNN network by

replacing NMS with Soft-NMS and then use the improved
network for the detection and segmentation of inshore ships.
Their improved network was able to increase the detec-
tion and segmentation accuracies for large-sized ships but
accuracies for small-sized ships were greatly reduced. The
detection and segmentation accuracies for small-sized ships
were 6.6% and 4.1% lower than those of the Mask R-CNN
baseline model, respectively. The reason for lower accura-
cies may be due to that Soft-NMS was proposed mainly for
the detection of overlapping objects in an image. However,
the ships in our data set are basically isolated objects and Soft-
NMS may be less effective than regular NMS. Mask Scoring
R-CNN [45] is an improved variant of Mask R-CNN and
it achieved better performance on the COCO dataset for
instance segmentation but it did not work well on our ship
dataset. It performed worse than the baseline Mask R-CNN
network except for large-sized ships. PANet [40] improved
Mask R-CNN by adding a bottom-up path and an adap-
tive feature pooling mechanism. In our experiments, PANet

improved ship detection accuracy by 2.2%, especially for
medium- and large-sized ships, but ship segmentation accu-
racy was about the same as baseline Mask R-CNN. Our pro-
posed network achieved the largest improvement in detection
and segmentation accuracies: by 5.5% and 3.8%, respectively.
We obtained significant improvements in accuracies for ships
of all sizes (small, medium and large) and especially for
small-sized ships. The effectiveness of our proposed network
has therefore been demonstrated.

As shown in Figure 8 (d) and (e), we converted the
annotation format of the ship data set from rle-mask to
bounding box. Then we train the SCRDet [14] network
on the converted dataset. We used a weight decay value
of 0.0001 and the momentum used was 0.9. We trained for
a total of 350,000 iterations. The learning rate changed from
3e-4 to 3e-6 between the 100, 000th and 200, 000th iterations.
We used mAP@0.5 to evaluate the detection results from the
horizontal bounding box (HBB) and oriented bounding box
(OBB). As shown in Table 5, the accuracy for OBB is 40.6%
and the accuracy for HBB is 74.5%, which are lower than that
of our model with an accuracy of 95.9% (mAP@0.5).

To compare with other methods, we tested our models on
the original Airbus Ship Dataset (with 15,606 images) and
submitted the results to the Kaggle leaderboard. As shown
in Table 5, our model obtained a score of 84.11. Compared
with the Mask R-CNN baseline, Mask Scoring R-CNN,
PANet and the method in [44], our score is slightly better.
Our score is slightly lower than the Kaggle winner’s score
of 85.45. Many participants in the competition, including the
winner, did not publish a paper or provide a detailed descrip-
tion of the method they used. This makes it difficult to com-
pare their methods with ours other than comparing the scores.
However, through the discussions they had among the contest
participants in the discussion forum, many participants used
multiple networks and then combine the results in order to
boost their score on the leaderboard. In contrast, we used
a single end-to-end network, which is a better approach in
practical applications.

D. DISCUSSION
Experiments on the expanded Airbus ship dataset have veri-
fied the effectiveness of our proposed network for ship detec-
tion and segmentation in satellite remote sensing images.
We demonstrated that our network is capable of suppressing
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FIGURE 9. Samples of ships detection and segmentation: (a) original images, (b) ground truths, (c) results from Mask R-CNN baseline model, (d) results
from Mask R-CNN [44], (e) results from Mask Scoring R-CNN model, (f) results from PANet model, (g) results from SCRDet model, (h) results from Mask
R-CNN_B-CA-SA (ours). Ships in the ground truths and objects detected by the models are circled in red.

noise and highlighting object information. This is achieved by
assigning a corresponding weight value to each pixel in the
feature map in the spatial attention mechanism. The channel
attention mechanism assigns large weights to the channels
with high target response, thus avoiding interference from the
background. Both the channel attention and spatial attention
mechanisms are helpful in improving the ship detection and
segmentation accuracies. By adding a bottom-up structure

to the FPN structure of Mask R-CNN, the path between the
lower layers and the top-most layer is shortened. This allows
lower layer features to be more effectively utilized at the top
layer. From our experiments, we also found that the spatial
attention mechanism and the channel attention mechanism
can significantly improve the detection and segmentation
accuracies when used alone. However, compared to spatial
attention alone or channel-wise attention alone, combining
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the two caused a slight decrease in accuracies.We suspect that
combining the two attention mechanisms may cause some
degree of information loss in small targets, and therefore
combining the two does not increase the accuracies. We will
investigate this further in future work.

V. CONCLUSION
We have proposed an end-to-end deep learning network for
ship detection and segmentation in remote sensing satel-
lite images. Our network is constructed by adding attention
mechanisms and a bottom-up structure to the Mask R-CNN
deep learning network. Adding the attention mechanisms and
the bottom-up structure enhances the propagation of infor-
mation from lower-layers to the top layers. This significantly
improved the overall detection and segmentation accuracies
when compared to the baseline model and other methods.
We also observed from our experiments that the detection and
segmentation accuracies of our method for small ships can be
further improved. We will address this in our future work.
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