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ABSTRACT Time Between Events (TBE) charts have advantages over the traditional control charts when
monitoring high quality processes with very low defect rates. This article introduces a new discrete TBE
control chart following discrete Weibull distribution. The design of the proposed chart is derived analytically
and discussed numerically. Moreover, the performance is assessed by using the Average Run Length (ARL)
and the Coefficient of Variation of Run Length (CVRL). Besides simulation studies, the proposed scheme
is also illustrated using four real data examples.

INDEX TERMS Average run length, discrete Weibull distribution, coefficient of variation, process
monitoring.

I. INTRODUCTION
Statistical process control (SPC) is a quality control method,
which is used to monitor a process by using statistical meth-
ods. There are two-source of variations in statistical process
control. The first one is the chance variation also known as the
common cause of variation that represents natural or inherent
variability of a process. A process with the common cause of
variation is known as the in-control process. The variations
which are unstable over time are known as the assignable or
special cause of variation. For example variation caused due
to operator absent, computer crashes, machine malfunction,
or poor design, etc.

Control chart is a powerful tool of SPC tool-kit, which is
used to monitor whether process is in-control or not. Depend-
ing on the nature of data there are two major types of control
charts, i.e., variable and attributes control charts. To monitor
count data, attribute control charts are used and the most
common attribute charts are p (for defective proportion),
np (for numbers of defective), c (for unbounded defects), and
u (for defects per unit) charts. On the other hand, variable
control charts like X̄ , S, S2, are commonly used to monitor
the continuous data.

The modern development of technology has led to high
quality processes with a very low defect rate. Many practical
problems, however, may occur while using the traditional
control charts for monitoring such processes. These problems
include high false alarm rate, absurd control limits, etc.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

In order to overcome these problems, Time-Between-Events
(TBE) charts are used. These charts examined the time inter-
val ‘‘T’’ between successive occurrences of events. These
charts are most effective in the case of high yield production
with a low defect rate [1]. The discrete version of TBE charts
is known as the cumulative conforming control (CCC) charts.
Similarly, the continuous version of the TBE charts is known
as the cumulative quantity control (CQC) chart proposed by
Chan et al. [2] based on the exponential distribution and later
generalized by Zhang et al. [3] using the gamma distribution,
while Calvin [4], Goh [5], Xie et al. [6], and Chan et al. [7]
proposed the CCC charts based on the geometric distribution.
Zhang et al. [8] proposed a generalization of CCC chart by
using group inspection denoted by CCCG, where G denotes
the ‘‘Group’’. In order to improve the sensitivity of process
deterioration, approximately unbiased ARL design is also
introduced. Some recent contribution in this direction can
be seen in Ara et al. [9], Rahali et al. [10], Chen et al.
[11], Zhang et al. [3], Shamsuzzaman et al. [12], Ali and
Shah [13], Tahir and Xie [14], and references cited therein.

A major problem in the SPC is the estimation of the
parameter in the presence of drift at the start-up of process
[15]–[18]. Liu et al. [19] used TBE charts to present a
comparison among the exponential CUSUM, the exponential
EWMA, and the CCC-r charts by using ATS as a performance
measure. CCC charts have also used for designing economic
control chart [20], [21].

In the literature, runs rules are also suggested to improve
the sensitivity of the charts [22]. Emura and Lin [23] com-
pared some rules required for the normal approximation to
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binomial and also suggested rules of approximation, includ-
ing np > 15 or p ≥ 0.1 and np ≥ 10. Ali et al. [24] presented
an overview about some recent contributions in high quality
process monitoring.

In order to model the lifetime of a component or a device,
some well known probability distributions, i.e., exponen-
tial, lognormal, Weibull, and normal are commonly used to
model continuous random variable. In practice, situations
may occur where lifetime is not measured on a continu-
ous scale. For example, the number of runs/cycles to fail-
ure when the components are prior to cyclical loading or
on/off switching devices, etc. In such situations, the life-
time of a component or a device is modeled as a discrete
random variable and geometric and negative binomial are
the most common models used in reliability analysis. As a
discrete analogue of continuous distribution introduced by
Khalique [25], negative binomial and geometric distributions
can be used as an alternative for gamma and exponential
distributions, respectively. In reliability engineering, how-
ever, the Weibull distribution is commonly used because of
different values of the shape parameter, i.e., it models failure
rate in different dimensions like increasing, decreasing and
constant. The discrete analogue of continuous Weibull is the
discrete Weibull distribution introduced by Nakagawa and
Osaki [26]. This distribution is also known as the Type-I
discreteWeibull. Barbiero [27] used Type-III discreteWeibull
distribution for modeling failure reliability data. Different
methods of parameter estimation including the Maximum
Likelihood Estimation (MLE), Method of Moments Estima-
tion (MME), and the Method of Proportion were discussed.

Poisson distribution is used for equidispersed data whereas
negative binomial is suitable for overdispersed data. To deal
underdispersed data, however, discreteWeibull distribution is
more suitable [28]. Peluso et al. [29] showed that

• regardless the value of q, the distribution is suitable for
overdispersed data for 0 < β ≤ 1,

• the distribution is suitable for underdispersed data for
β ≥ 3 irrespective the value of q. Furthermore, the distri-
bution approaches to Bernoulli distribution for β →∞.

• depending on the value of q the distribution is suitable
for over-and underdispersed data for 1 < β < 3.

Thus, the main aim of this study is to introduce a new CCC
chart using discrete Weibull distribution and to study its per-
formance assuming average run length (ARL) and coefficient
of variation of run length (CVRL) as the performance mea-
sures. It is worthmentioning that other performancemeasures
like median run length (MRL) and standard deviation of run
length (SDRL) are also common in practice but these are not
scaled free measures [30]. The CVRL is a scale free measure.

The rest of the study is divided as follows. Section 2
presents introduction about the discrete Weibull distribution
while Section 3 presents the construction of the discrete
Weibull distribution control chart. Section 4 presents appli-
cations of discrete Weibull chart using some real data. The
performance of the discrete Weibull chart using ARL is dis-
cussed in Section 5 whereas Section 6 concludes the study.

FIGURE 1. Hazard rate for different values of β.

II. THE DISCRETE WEIBULL DISTRIBUTION
Let Z be a random variable with probability mass func-
tion (PMF) given as

P(Z = z) = q(z)
β

− q(z+1)
β

, z = 0, 1, 2, · · ·

β > 0, 0 < q < 1 (1)

The PMF given in Eq. 1 is known as the Type-I discrete
Weibull distribution [26]. It has two parameters, β and q, rep-
resenting the shape and scale parameters, respectively. The
Cumulative Distribution Function (CDF) of the distribution
can be written as

F(z) = 1− q(z+1)
β

(2)

The survival function is

S(z) = P(Z ≥ z) = 1− F(z) = q(z)
β

and the corresponding hazard function is

h(z) =
P(z)
S(z)
= 1− q(z+1)

β
−(z)β (3)

The distribution has increasing, decreasing, and constant
hazard rate for β > 1, β < 1 and β = 1, respectively,
as shown in Figure 1. The mean of the distribution can be
obtained numerically by specifying β and q, that is,

E(Z ) =
∞∑
i=1

zP(Z = z; q, β) =
∞∑
i=1

q(i)
β

(4)

By substituting q = 1−p and β = 1, the distribution reduces
to geometric, i.e.,

P(Z = z) = (1− p)(z) − (1− p)(z+1) = pqz (5)

III. CONTROL CHARTS BASED ON DISCRETE WEIBULL
DISTRIBUTION
Let Z be the inter arrival time between two nonconformities
with PMF given in Eq. 1. In order to construct the CCC chart
[2], first fix the probability of Type-I error (false alarm rate) α
and then equate F(z) in Eq. 2 to α

2 , 1−
α
2 and 1

2 , to get Lower
Control Limit (LCL), Upper Control Limit (UCL), and the
Central Limit (CL) respectively, as follows.

LCL =
[
ln(1− α/2)

ln(q)

]1/β
− 1 (6)

UCL =
[
ln(α/2)
ln(q)

]1/β
− 1 (7)

CL =
[
ln(1/2)
ln(q)

]1/β
− 1 (8)

10124 VOLUME 8, 2020



S. Ali et al.: CCC Chart Assuming Discrete Weibull Distribution

TABLE 1. Numbers of fires in Greece.

TABLE 2. Number of failures of software.

The chart can be constructed by plotting each observed value
of Z against the respective sample number. Further, whenever
the plotted point is below the LCL, indicates that the defect
rate may have increased, i.e., process deterioration. On the
other hand, if a plotted point falls above the UCL, it indicates
that the defect rate may have been decreased, i.e., process
improvement.

In many practical situations, directional changes are of
greatest interest, e.g., in manufacturing of air-crafts, it is
highly important to detect a manufacturing error increase as
a minor fault may lead to a major destruction. On the other
hand, decrease in manufacturing error might not be taken
seriously and in such cases, the one-sided control chart would
be more preferable than two-sided charts. For a one-sided
control chart, set F(z) equal to α or 1 − α to get the lower
or upper control limit, i.e.,

LCL =
[
ln(1− α)
ln(q)

]1/β
− 1 (9)

UCL =
[
ln(α)
ln(q)

]1/β
− 1 (10)

The following are the steps to implement the proposed control
chart in practice.

Step-1 Take Phase-I data set and estimate the parameters
of the discrete Weibull distribution using the maxi-
mum likelihood method. The R code to estimate the
parameters is given in the appendix.

Step-2 Establish the control limits using the estimated
parameters.

Step-3 Check the Phase-I data set against the established
control limits. If there is any out-of-control data
point discard it and reconstruct the control limits.
Repeat this step until there is no out-of-control data
point in the Phase-I data set.

Step-4 Use the control limits constructed in Step-3 for
monitoring the future data. Declare the monitoring
process out-of-control if any data point falls below
the LCL. Similarly, declare the process improved if
any data point falls above the UCL.

IV. REAL DATA APPLICATIONS
This section illustrates the real data applications of all the
previously defined control charts. In all the following cases
the full data are used as the Phase-I sample, and parameters
of the discrete Weibull distribution are estimated to construct

FIGURE 2. Cumulative count control chart for discrete Weibull and
geometric distributions.

control limits and monitor data to highlight the superiority of
the proposed chart.

A. CASE STUDY 1
The first data set is provided by Karlis and Xekalaki [31],
which consists of the number of fires in Greece for period
from 1st July 1998 to 31st August 1998. The data are reported
in Table 1 and to establish a control chart based on the discrete
Weibull distribution, it is assumed that the data follow the
discrete Weibull distribution. The values of the estimated
parameter are q̂ = 0.8798 and β̂ = 1.1306 with 0.0228 and
0.0823 as the standard errors, respectively. For geometric
distribution, p̂ = 0.1563 and its standard error is 0.0129.
For the discrete Weibull distribution, assuming α = 0.0027,
we have LCL = 0, CL = 3, and UCL = 32, respectively.
Similarly for the geometric chart, we have LCL= 0, CL = 3,
and UCL = 37, respectively. From Fig. 2, it is clear that only
one sample point, i.e., 43rd point, lies outside the UCL of
both charts and the chart constructed assuming the discrete
Weibull detect it more quickly than the geometric chart.

B. CASE STUDY 2
Nikora [32] provided data about the number of software
failures investigated over 62 weeks. The data set is listed
in Table 2, and the proposed control scheme is applied to the
data in order to monitor the failure rate. The estimated values
of parameters, assuming the discrete Weibull distribution are
q̂ = 0.6948 and β̂ = 1.0354 with 0.0544 and 0.1222 as the
standard errors, respectively. For the geometric distribution,
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FIGURE 3. Cumulative count control chart for discrete Weibull and
geometric distributions.

FIGURE 4. Cumulative count control chart for discrete Weibull and
geometric distributions.

FIGURE 5. Hazard plot for the Dengue Fever Data.

we have p̂ = 0.3179 with standard error 0.0333. By assuming
α = 0.0027, the discrete Weibull chart’s limits are LCL = 0,
CL = 1, UCL = 15 while LCL = 0, CL = 1, UCL = 16 for
the geometric chart.

From Figure 3, it is clear that all the points lie within the
control limits for both charts (discrete Weibull and geomet-
ric), and thus, we conclude that the software failure rate is
in-control.

C. CASE STUDY 3
In this example, a data set is taken from Greenwood and
Yule [33], reporting the accidents of women working on the

FIGURE 6. TTT plot for the Dengue Fever Data.

FIGURE 7. Control Charts for the Dengue Fever Data.

TABLE 3. Numbers of accidents on H.E. shells.

TABLE 4. TBE (in hours) for Dengue Fever Patients Registration.

H.E. Shells for five weeks. The frequency distribution is
given in Table 3. The estimated parameter value using the
geometric distribution is p̂ = 0.6825 with standard error
0.0151. For the discrete Weibull, the estimated parameter
values are q̂ = 0.3114 and β̂ = 0.9673, whereas the standard
errors are 0.0181 and 0.0536, respectively. For the discrete
Weibull chart, we have LCL = 0, CL = 0, UCL = 5 while
LCL = 0,CL = 0, UCL = 5, respectively, for the geometric
chart using α = 0.0027.
FromFigure 4, it is evident that both charts, neither discrete

Weibull nor geometric chart signalled any sign regarding the
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FIGURE 8. Detecting process deterioration using α = 0.0027.

improvement or deterioration of the process. Thus, the pro-
cess is in-control.

D. DENGUE FEVER OUTBREAK MONITORING
Since 2010, Pakistan has been experiencing an epidemic
of dengue fever which is an infectious fever. Despite
the efforts of the Government of Pakistan, the high
cost of prevention has limited the ability of Pak-
istan to control epidemics. During the current year,
42 deaths (https://reliefweb.int/report/pakistan/over-25000-
dengue-cases-reported-year) have been caused by dengue so
far and health practitioners attribute the lower mortality rate
to better availability of surveillance and curative measures.
To study the outbreak of the dengue fever in Islamabad,
a TBE data set of dengue fever patients is collected from a
hospital and listed in Table 4. The estimated parameters of

the discrete Weibull and geometric distributions with their
standard errors are listed in Table 5. Furthermore, model
selection criteria, like Akaike Information Criterion (AIC),
Bayesian Information criterion (BIC), and the logarithm of
the likelihood are also listed in the same table. From the
model selection criterion AIC, it is clear that both distri-
butions fit equally well. However, the hazard function plot,
Figure-5, indicates increasing hazard and hence, the discrete
Weibull distribution should be used rather than the geometric
distribution which has a constant hazard function. This con-
clusion is also supplemented by the smoothed TTT plot [34],
[35] depicted in Figure 6, which suggests increasing hazard
rate distribution will be suitable for the data. In Figure-7 the
proposed and geometric charts are depicted and it is clear
that the discrete Weibull chart detects outbreak signal more
quickly.
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FIGURE 9. Detecting process improvement using α = 0.0027.

TABLE 5. Estimated Parameters using Dengue Fever Data with Model Selection Criteria.

V. PERFORMANCE EVALUATION USING ARL AND CVRL
There are many criteria which can be used to assess the
performance of control charts at a particular shift or for a
range of shifts. Among them, Average Run Length (ARL) is
the most commonly used criterion to evaluate performance
of a chart at a particular shift. The number of observations
taken before a signal of point beyond control limits is known

as the Run Length (RL). The ARL is defined as the expected
number of points plotted within limits of a control chart until
an out-of-control signal occurs. TheARL is a discrete random
variable because it takes integer values. Let the CCC chart
is constructed such that αL and αU denotes the false alarm
probabilities for LCL and UCL, respectively, and α = αL +
αU is the overall Type-I error for the two-sided chart.
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TABLE 6. Study of ARL for case-1 based on β0 = 1.5, q0 = 0.0005, β1 ∈ {1,1.2,1.4,1.5,2}, q1 ∈ {0.005,0.01,0.1} and α = 0.0027.

Let ARLL , ARLU , and ARLL∩U denote the ARLs for the
lower, upper and two sided control charts, respectively, then,

ARLL =
1

F(LCL)

Using Eq. 2 and Eq. 9, we get

ARLL =
1

1− q

(
ln(1−αL )
ln(q0)

)β1/β0
1

(11)

Similarly,

ARLU =
1

1− F(UCL)

Using Eq. 2 and Eq. 10 we have,

ARLU =
1

q

(
ln(αU )
ln(q0)

)β1/β0
1

(12)

Also,

ARLL∩U =
1

1− F(UCL)+ F(LCL)

After simplification, we get

ARLL∩U =
1

1+ q

(
ln(α)
ln(q0)

)β1/β0
1 − q

(
ln(1−α)
ln(q0)

)β1/β0
1

(13)

In control chart design, shape parameter has a significant
effect and its valuemust be selected carefully while construct-
ing control charts. As control chart design is based on ARL,
a large value of ARL0 (in control ARL) is always desirable
but on the other hand, its variance may increase. Due to large
variations in the frequency of false alarm, a signal raised by
the control chart may be overlooked. Hence, in cases where
performance of control chart is under consideration, the coef-
ficient of variation (CV) of ARL should also be recorded.

To assess the effect of rate and shape parameter for the
discrete Weibull distribution chart, the ARL can be studied
in four different cases as discussed below.

A. CASE-1 (TD-IHR)
For discreteWeibull distribution, the hazard rate is increasing
when β > 1 and can be denoted as IHR. If q is increasing
then process is totally deteriorating and is denoted by TD and
hence, the overall situation can be labeled as the TD-IHR.

Let the in-control values of q and β are q0 = 0.0005
and β0 = 1.5. To study the performance, let q increases
from 0.0005 to q1 ∈ {0.005, 0.01, 0.1} and β0 = 1.5 to
β1 ∈ {1, 1.2, 1.4, 1.5, 2}. Table-6 lists the computed value
of ARL and CV of the run length.

In order to identify deterioration, the lower-sided chart
and the two-sided chart should be compared. From Table-6,
it is clear that the two-sided chart quickly detects shift in
the scale parameter ‘‘q′′ for different values of the shape
parameter. In the lower-sided chart, assuming different values
of q, the ARL increases with the increase in β, whereas the
ARL increases for all values of β at q = 0.0005 and it
decreases for q = 0.1 for the two-sided chart. The results
of Table-6 are also depicted in Figure 8.

B. CASE-2 (PI-IHR)
For discreteWeibull distribution, the hazard rate is increasing
when β > 1 and this case is denoted as the IHR. If q is
decreasing, then the system shows partial improvement and
can be named as the PI. Thus, the overall situation can be
labeled as the PI-IHR. Let q0 = 0.0005 and β0 = 1.5 and q
is decreasing from 0.0005 to q1 ∈ {0.0003, 0.0001, 0.00005}
while β = 1.5 to β1 ∈ {1, 1.2, 1.4, 1.5, 2} with α = 0.0027.
The ARL and CV of run length are reported in Table-7.

From Table-7, it is observed that the two-sided chart per-
forms better than the upper-sided chart as it quickly detects
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TABLE 7. Study of ARL for case-2 based on β0 = 1.5, q0 = 0.0005, β1 ∈ {1,1.2,1.4,1.5,2}, q1 ∈ {0.0003,0.0001,0.00005} and α = 0.0027.

TABLE 8. ARL study of PI-IHR case based on β0 = 1.5, q0 = 0.0005, β1 ∈ {0.1,0.3,0.45,0.50,0.55,0.8}, q1 ∈ {0.0003,0.0001,0.00005} and α = 0.0027.

shift in the scale parameter for different values of β. Further
the values of ARL increases with the increase of β for the
two-sided chart while it decreases in the case of upper-sided
chart. For β > 1.5, the ARL values in the last two columns
of the table are much larger than for β < 1.5 in the two-
sided chart. Similarly, in the case of the one-sided chart, for
β > 1.5, the ARL values in the last two columns are smaller
than for β < 1.5. Table-7 is graphically shown in Figure 9.

C. CASE-3 (TI-DHR)
For discrete Weibull distribution, the hazard rate decreases
when β < 1 and can be denoted as the DHR. If q is decreasing
then process is totally improving and is denoted by TI, thus,
the overall situation can be labeled as the TI-DHR. Assuming

the in-control values q0 = 0.0005 and β0 = 0.5, suppose that
q decreases from 0.0005 to q1 ∈ {0.0003, 0.0001, 0.00005}
and β = 1.5 to β1 ∈ {0.1, 0.3, 0.45, 0.50, 0.55, 0.8} for out-
of-control situations. Then, the resulting values of ARL are
tabulated in Table-8.

For detecting process improvement, the upper-sided and
the two-sided charts are investigated. From Table-8, it can
be seen that, again, the two-sided chart detects shift quickly
as compared to the one-sided chart. In two-sided chart case,
the ARL is less sensitive to variations for different values
of q at β = 0.1, 0.3, 0.45, however, for β > β0, the ARL
is much sensitive to the shape parameter for q = 0.0001
and 0.00005. This conclusion is supplemented by the CVRL.
That is, the efficient chart has small CVRL values. In the
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TABLE 9. Study of ARL for case-4 based on β0 = 0.5, q0 = 0.0005, β1 ∈ {0.1,0.3,0.45,0.5,0.55}, q1 ∈ {0.005,0.01,0.1} and α = 0.0027.

upper-sided chart, for all values of q, the ARL decreases
for different values of the shape parameter β. The graphical
depiction of Table-8 is provided in Figure 9.

D. CASE-4 (PD-DHR)
For discreteWeibull distribution, the hazard is called decreas-
ing hazard when β < 1 and this situation can be labelled
as the DHR. If q is increasing then the system is partially
deteriorating and can be labeled as the PD. Therefore, in this
case, the overall situation can be named as the PD-DHR.
Assuming the in-control q0 = 0.0005 and β0 = 0.5, while
for out-of-control situation q is decreasing from 0.0005 to
q1 ∈ {0.005, 0.01, 0.1} for β1 ∈ {0.1, 0.3, 0.45, 0.5, 0.55},
the resulting values of the ARL and the CV are listed
in Table-9.

In the case of PD-DHR, the performance of the two-
sided and the upper-sided charts can be examined from
Table-9 and it can be observed that for the lower sided chart,
the value of ARL increases for different values of β. For q1 ∈
{0.0005, 0.005, 0.01}, the lower-sided chart outperforms at
β = 0.1, 0.3 the two-sided chart. For β > 0.3, the one-
sided chart performs better than the two-sided chart and this
conclusion is also supplemented by the CVRL.

In all the above reported cases, it is assumed that in control
value of ARL is 370 by assuming Type-I error α = 0.0027,
i.e., ARL0 = 1/α. The CV of the run length is also reported
in Tables 6-9 which is

√
1− 1/ARL. It is noticed that the

performance of discrete Weibull control chart is not the same
over different values of β and q, e.g., the two-sided chart
performs better in the TD-IHR, PI-IHR, TI-DHR cases. Sim-
ilarly, in the case of PD-DHR, the lower-sided chart performs
better for detecting deterioration in the process. The variation
in performance is due to the characteristic of the distribution,
i.e., IHR, DHR or constant hazard rate.

VI. CONCLUDING REMARKS
In time-between-events (TBE) charts, the occurrence of an
event follows Poisson process and it is assumed that the time
between two non-conformities follows exponential distribu-
tion, which is only suitable for constant failure rate. Contrary
to this, here we proposed a new control chart using discrete
Weibull distribution due to its wide application. The reason
of using this distribution is the collection of discrete data
more easier than the continuous data. The performance of the
control chart is evaluated through ARL and CV. In reliability
analysis when failure data measured as discrete variable, con-
trol chart based on discrete Weibull distribution can be used
for monitoring of data depending on the property IHR, DHR,
and constant hazard rate. In future, the effect of estimated
parameter [30], [36]–[38] on the ARL can be investigated
using different methods of estimation. Also, memory-type
control charts [39] for discrete data can be developed and
compared. Furthermore, this study assumed that the data fol-
low discrete Weibull distribution. This assumption may vio-
late in real life situations. Thus, for future research, the CCC
charts can be extended to nonparametric CCC charts.

APPENDIXES
APPENDIX A
PARAMETER ESTIMATION
To estimate the unknown parameters of the discrete Weibull
discrete distribution, we use the maximum likelihood estima-
tion (MLE) method. First, the likelihood function for z =
(z1, z2, · · · , zn) can be written as

L(q, β; z) =
n∏
i=1

P(zi; q, β) =
n∏
i=1

(
qzi

β

− q(zi+1)
β )

(14)
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The logarithm of the likelihood function can be written as

logL(q, β; z) =
n∑
i=1

log
(
qzi

β

− q(zi+1)
β )

(15)

To find the estimators of the unknown parameters q and β,
one is required to take the derivatives of Eq. 15 with respect
to the unknown parameters and equate the resulting normal
equations to zero and simplify.

∂logL(q, β; z)
∂q

=

n∑
i=1

zβi q
ziβ−1−(zi + 1)βq(zi+1)

β
−1(

qziβ−q(zi+1)β
) (16)

∂ logL(.)
∂β

=

n∑
i=1

qzi
β
ln(zi) ln(q)−q(zi+1)

β
ln(zi+1) ln(q)(

qziβ−q(zi+1)β
)

(17)

Since Eqs.16-17 cannot be solved further, an iterative proce-
dure like Newton Raphson is required to obtain the MLEs.
In the next section, R code using the fitdistrplus package
is given to obtain the parameters of the discrete Weibull
distribution numerically.

APPENDIX B
R CODE
The R code to estimate the parameters of the discrete Weibull
distribution is given below.

###Dengue Fever Data
xx<-c( 1, 1, 0, 6, 2, 0, 1, 2, 1, 0, 2, 2,
2, 1, 2, 2, 2, 2, 0, 1, 2, 0, 1, 1,
2, 1, 0, 1, 0, 2, 0, 0, 0, 2, 5, 3,
0, 0,4, 4, 0, 0, 0, 0, 1, 4, 3, 0)
####install the package
install.packages(’fitdistrplus’)
library(fitdistrplus)
##PMF of the discrete Weibull distribution
ddweibull<-function(x,a,beta,zero=TRUE) {
a^((x)^beta)-a^((x+1)^beta)}
##CDF of the discrete Weibull distribution
pdweibull<-function(q,a,beta,zero=TRUE) {
1-a^((q+1)^beta)}
##Quantile function of the discrete
##Weibull distribution
qdweibull<-function(p,a,beta,zero=TRUE) {
(log(1-p)/log(a))^(1/beta)-1}
##Obtain the parameter estimates and
##other summaries
summary(fitdist(xx,"dweibull",
start=list(a=0.5,beta=1)))
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