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ABSTRACT In this paper, nonlinear dynamics of higher-order rogue waves are investigated for a fifth-
order nonlinear Schrödinger equation, which can be used to depict the Heisenberg ferromagnetic spin chain.
A generalized Darboux transformation is constructed based on the Lax pair. Higher-order rogue waves
solutions are given in terms of a recursive formula. Using numerical simulation, the first-order to the third-
order rogue waves are displayed on the basis of some free parameters, which play a crucial role in affecting
the distribution of rogue waves. The results obtained should be useful in understanding the generation
mechanism of rogue waves.

INDEX TERMS Darboux transformation, fifth-order nonlinear Schrödinger equation, rogue waves.

I. INTRODUCTION
A rogue wave, known as freak wave, monster wave, giant
wave, episodic wave etc., is a rare, short-lived and large-
amplitude local wave. It is unexpected and suddenly occurs
without any warning which can be extremely dangerous, even
to large ships. Rogue waves were firstly found in the deep
ocean [1], and then studied in the fields of optics [2]–[4],
plasmon [5], super fluids [6], capillary waves [7] and so on.
In oceanography, a rogue wave is more precisely defined
as a wave whose height is more than twice the significant
wave height. It occurs when physical factors such as high
winds and strong currents cause waves to merge to create a
single exceptionally large wave and can involve spontaneous
formation of massive waves far beyond the usual expecta-
tions of the ship designers [8]. The existence of a rogue
wave has been confirmed by video, photographs, stereo wave
imaging system [9], [10] and oceanographic research vessel
notably [11]. Because of its serious damage, uncertainty and
unpredictability when it happens, a rogue wave has been a
hot-spot issue in the aspect of the wave theory and applied
research since 2005. However, the biggest difficulty of study-
ing extremely dangerous rogue waves in the ocean is scarcity
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of actual field measurements. Therefore, the study of rogue
waves is mainly focused on the theoretical aspects.

In the ocean and nonlinear optics etc., a lot of mathe-
matical models can be described by nonlinear partial dif-
ferential equations, which are used to analyze and study rogue
waves. One of the important known models is the nonlinear
Schrödinger (NLS) equation, which can depict a large num-
ber of phenomena and dynamic processes in physics, chem-
istry, biology and computer science [12], [13]. Many research
results have been obtained for the NLS equation [14]–[17].
Peng et al. [18] made use of the Riemann-Hilbert formulation
getting the multi-soliton solutions of an integrable three-
component coupled nonlinear Schrödinger (CNLS) equation.
Yan et al. [19] investigated higher order rogue wave solutions
of The higher order CNLS equation by the Darboux-dressing
transformation. Guo et al. [20] acquired the multi-soliton
solutions and Hirota bilinear form of the Heisenberg fer-
romagnetic spin chain equation by using a potential trans-
formation. Tian [21], [22] researched the initial boundary
value problems of the mixed and general CNLS equation
by the Fokas method. Peng et al. [23], [24] obtained posi-
ton wave, high-order rogue wave and breather solutions of
the CNLS equation via DT. Tian and Zhang [25] investi-
gated the long-time asymptotics about the solution for the
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Gerdjikov-Ivanov (GI) type of NLS equation. Other than this,
the Hirota equation [26], the Fokas-Leneels equation [27],
the Sasa-Satsuma equation [28], the discrete Ablowita-Ladik
and Hirota equation [29], the Hirota Maxwell-Bloch (MB)
equation [30] and the NLS-MB equation [31] are a few of
nonlinear evolution equations that admits rogue waves.

Motivated by the aforementioned works, in this paper,
a fifth-order NLS equation from the Heisenberg ferromag-
netism will be considered [32]

iqt − iεqxxxxx − 10iε|q|2qxxx − 20iεqxq∗qxx − iqx
− 30iε|q|4qx − 10iε(|q|2q)x + qxx + 2q|q|2 = 0, (1)

where q(x, t) is a complex function, x and t denote the spatial
coordinate and the scaled time, respectively, ε is a pertur-
bation parameter and the asterisk represents the complex
conjugation. Equation (1) is generated via the deformation
of Heisenberg ferromagnetic system with the prolongation
structure in Minkowski space and can be used to describe
the dynamics of a site-dependent Heisenberg ferromagnetic
spin chain [33], which plays a crucial role in nonlinear waves
propagation [34], [35] and information technology [36].

Much research has been done on lower-order NLS
equations, including studies on solitons, rogue waves
and modulation instability [37]. In [38], the Grammian
N-soliton, breather and rogue wave solutions of the cylin-
drical Kadomtsev-Petviashvili equation were obtained via
the novel gauge transformation and long wave limit method.
In [39], the bright-dark soliton, rational breather wave, trav-
eling wave and rogue wave solutions for the generalized
Kadomtsev-Petviashvili equation were acquired by introduc-
ing the extended homoclinic test method and the Riccati
equation method. In [40], on the basis of Hirota’s direct
method, the N-soliton wave, breather wave and rational
solutions of the Boiti-Leon-Manna-Pempinelli equation were
derived. As for higher-order NLS equations. Yang et al.
studied breathers and rogue wave of the fifth-order NLS
equation in the Heisenberg ferromagnetic spin chain [41].
Sun et al. [42] discussed the complex nonlinearities of
rogue waves for the fourth-order NLS equation. Song et al.
[43] derived the one- and two-soliton for the fifth-order
NLS equation. Wang et al. [44] took advantage of bilin-
ear method and obtained the multiple lump solutions of
the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama
equation. Zhao and He [45] studied the breather wave and
rogue wave solutions by the modified DT and obtained
the three-dimensional diagrams for the higher-order NLS
equation. Wang et al. [46]–[48] derived the quasi-periodic
wave, breather and rogue wave solutions for the three-
component CNLS equation, nonlinear Fokas equation and the
(2 + 1)-dimensional NLS equation. However, to the best of
our knowledge, there are less work about the plot of higher-
order rogue waves of higher-order NLS equation.

The aim of this paper is to construct the N th-order rogue
wave solutions for the fifth-order nonlinear Schrödinger
equation by using the generalized Darboux transformation

(DT) [49]. Based on the DT matrix, a generalized DT is
constructed, and the formula for generating the N th-order
rogue wave solutions are given. Nonlinear dynamics of the
first-order to the third-order rogue waves are investigated
with the influence of some parameters and a few interesting
structures are shown.

II. GENERALIZED DARBOUX TRANSFORMATION
DT is an important tool to construct the N th-order rogue
waves solutions. The Lax pair ensuring the integrability of
the fifth-order NLS equation (1) is given as follows [23]

8x = U8 =
(
−iλ q
−q∗ iλ

)
8, (2a)

8t = V8 =
(

A B
−B∗ −A

)
8, (2b)

with

A = −16iλ5ε + 8iλ3ε|q|2 + 4λ2ε(qq∗x − qxq
∗)− 2iλ2

− 2iλε(qq∗xx + q
∗qxx − |qx |2 + 3|q|4)− iλ+ ε(q∗qxxx

− qq∗xxx + qxq
∗
xx−qxxq

∗
x+6|q|

2q∗qx−6|q|2q∗xq)+i|q|
2,

B = 16λ4εq+ 8iλ3εqx − 4λ2ε(qxx + 2|q|2q)

− 2iλε(qxxx + 6|q|2qx)+ 2λq+ ε(qxxxx + 8|q|2qxx
+ 2q2q∗xx + 4|qx |2q+ 6q2xq

∗
+ 6|q|4q)+ iqx + q,

where 8 = (ϕ1, ϕ2)T is vector eigenfunction of the Lax
pair (2a) and (2b), q is a potential function, λ is a spectral
parameter and the asterisk denotes the complex conjugate.

Introducing a special gauge transformation

8[1] = T8. (3)

Construct the Darboux matrix T with the Theorm in Ref-
erence [37]

T = λI − H3H−1, (4)

where

I =
(
1 0
0 1

)
, H =

(
ϕ1 −ϕ∗2
ϕ2 ϕ∗1

)
, 3 =

(
λ1 0
0 λ∗1

)
.

We assume that 8 = (ϕ1, ϕ2)T is an eigenfunction of the
Lax pair (2a) and (2b) with a seeding solution q = q[0]
and λ = λ1. It is obvious that (−ϕ∗2 , ϕ

∗

1 )
T also satisfies

equation (2) corresponding to q = q[0] and λ = λ∗1. Choosing
different eigenfunctions8k = (ϕ1k , ϕ2k )T at λk , respectively,
the aforementioned DT procedure can be easily iterated.

Using equation (4), the N th-order DT and rogue wave
solution for equation (1) are obtained as

8N [N − 1]

= T [N − 1]T [N − 2] · · · T [1]T [0]8N , (5a)

q[N ]= q[0]− 2i
N∑
k=1

(λ1−λ∗1)
ϕ1k [k−1]ϕ∗2k [k−1]

|ϕ1k [k−1]|2+|ϕ2k [k−1]|2
,

(5b)
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where

T [k] = λk+1I − H [k − 1]3[k]H [k − 1]−1,

H [k − 1] =
(
ϕ1k [k − 1] −ϕ∗2k [k − 1]
ϕ2k [k − 1] ϕ∗1k [k − 1]

)
,

3[k] =
(
λk 0
0 λ∗k

)
.

On the basis of the elementary DT, a generalized DT can
be constructed for equation (1). Supposing that

9 = 81(λ1, η)

is a special solution of the Lax pair (2a) and (2b), where η is a
small parameter. Expanding 9 in the Taylor series at η = 0,
then

9 = 8
[0]
1 +8

[1]
1 η +8

[2]
1 η

2
+ · · · +8

[m]
1 ηm + o(ηm), (6)

where

8
[j]
1 =

1
j!
∂ j

∂λj
81(λ)|λ=λ1 , (j = 1, 2, · · ·m).

It is easily proved that 8[0]
1 = 81[0] is a particular solution

of the Lax pair (2a) and (2b) with q = q[0] and λ = λ1. Then,
the N th-step generalized DT is derived as follows

81[N − 1]=8[0]
1 +

[
N−1∑
l=1

T1[l]

]
8

[1]
1

+

[
N−1∑
l=1

N−1∑
k>l

T1[k]T1[l]

]
8

[2]
1 + · · ·

+ [T1[N−1]T1[N−2]· · ·T1[1]]8
[N−1]
1 , (7)

q[N ]= q[N − 1]

− 2i(λ1−λ∗1)
ϕ1[N−1]ϕ∗2 [N−1]

|ϕ1[N−1]|2+|ϕ2[N−1]|2
, (8)

T1[k]= λ1I − H1[k − 1]3[1]H1[k − 1]−1, 9(a)

H1[k − 1]=
(
ϕ1k [k − 1] −ϕ∗2k [k − 1]
ϕ2k [k − 1] ϕ∗1k [k − 1]

)
, 9(b)

81[k − 1] =
(
ϕ1k [k − 1]
ϕ2k [k − 1]

)
, (k = 1, 2, · · · ,N ). 9(c)

Equations (7)-(9) are the recursive formulae of the
N th-order generalized DT for equation (1), which can be
applied to obtain rogue wave solutions. In the next section,
higher-order rogue wave solutions will be deduced and cor-
responding dynamics will be depicted and analyzed.

III. ROGUE WAVES SOLUTIONS
We start with a periodic plane seed solution q[0] = e2it . The
corresponding eigenfunction 81(λ) for equation (2) at λ =
−i+ η2 is

81(λ) =
(

(C1eA + C2e−A)eit

(C2eA + C1e−A)e−it

)
, (10)

where

C1 =

√
iλ−

√
−λ2 − 1, C2 =

√
iλ+

√
−λ2 − 1,

A =
√
−λ2 − 1(x + δt +�(η)),

δ = 16λ4ε − 8ελ2 + 2λ+ 6ε + 1,

�(η) =
n∑
j=1

(aj + ibj)η2j, (aj, bj ∈ R).

η is a small parameter, �(η) is separating function, which
contains 2n free parameters aj, bj(j = 1, 2, · · · , n) and aj,
bj are real constants.
Then, expanding 81(λ) at η = 0 as follows

81(η) = 8
[0]
1 +8

[1]
1 η

2
+8

[2]
1 η

4
+8

[3]
1 η

6

+ · · · +8
[m]
1 η2m + · · · , (11)

with

8
[0]
1 =

(
2eit

2e−it

)
, 8

[1]
1 =

(
ϕ
[1]
1
ϕ
[1]
2

)
, 8

[2]
1 =

(
ϕ
[2]
1
ϕ
[2]
2

)
, · · · ,

and (ϕ[i]1 , ϕ
[i]
2 )T , (i = 1, 2) are given in the Appendix A.

Substituting 8[0]
1 , q[0] = e2it and λ = −i into equations

(8) and (9a), we get a trivial solution q[1] = −e2it of equation
(1) and

T1[1] =
(
−i ie2it

ie−2it −i

)
. (12)

Consider the following limit

lim
η→0

[T1[1]|λ=λ1+η]9
η

= lim
η→0

[η + T1[1]|λ=λ1 ]9
η

= 8
[0]
1 + T1[1](λ1)8

[1]
1 = 81[1], (13)

where

81[1] =
(
ϕ1[1]
ϕ2[1]

)
=

(
(4it − 60tε − 2t − 2x + 1)eit

(−4it + 60tε + 2t + 2x + 1)e−it

)
.

Then, we obtain the first-order rogue wave solution of
equation (1)

q[2] = q[1]− 2i
(−2i)ϕ1[1]ϕ∗2 [1]

|ϕ1[1]|2 + |ϕ2[1]|2
= −(1+ 2

F
G
)e2it ,(14)

F = 1− 20t2 − 240tεx − 3600t2ε2

− 240t2ε − 8tx − 4x2 + 8it,

G = 20t2+8tx+240εt2+4x2+240tεx+3600t2ε2+1.

Next, consider the following limit

lim
η→0

[η + T1[2]|λ=λ1 ][η + T1[1]|λ=λ1 ]9
η2

= 8
[0]
1 + (T1[1](λ1)+ T1[2](λ1))8

[1]
1

+T1[2](λ1)T1[1](λ1)8
[2]
1 = 81[2], (15)

where

81[2] =
(
ϕ1[2]
ϕ2[2]

)
9612 VOLUME 8, 2020
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FIGURE 1. Dynamical evolution of the first-order rogue wave (a)-(b) with
ε = 0 and (c)-(d) with ε = 0.05.

is given in the Appendix B and T1[2] is omitted, which can
be calculated by Maple. Substituting 81[2], q[2] and λ =
−i into equation (8), we get the second-order rogue wave

FIGURE 2. Dynamical evolution of the second-order rogue wave with
ε = 0, a1 = b1 = 0.

solution of equation (1)

q[3] = q[2]− 2i
(−2i)ϕ1[2]ϕ∗2 [2]

|ϕ1[2]|2 + |ϕ2[2]|2
, (16)

which is too cumbersome to work out concretely.
Furthermore, compute the following limitation

lim
η→0

[η + T1[3]|λ=λ1 ][η + T1[2]|λ=λ1 ][η + T1[1]|λ=λ1 ]9
η3

= 8
[0]
1 + (T1[1](λ1)+ T1[2](λ1)+ T1[3](λ1))8

[1]
1

+ (T1[2](λ1)T1[1](λ1)+ T1[3](λ1)T1[1](λ1)

+T1[3](λ1)T1[2](λ1))8
[2]
1

+T1[3](λ1)T1[2](λ1)T1[1](λ1)8
[3]
1 = 81[3], (17)

where

81[3] =
(
ϕ1[3]
ϕ2[3]

)
.

T1[3] can be derived by Maple, which is rather tedious to
write down. Substituting 81[3], q[3] and λ = −i into equa-
tion (8), we achieve the third-order rogue wave solution

q[4] = q[3]− 2i
(−2i)ϕ1[3]ϕ∗2 [3]

|ϕ1[3]|2 + |ϕ2[3]|2
, (18)

which is omitted here for it is very prolix.
Carrying on the limitation procedure, we can acquire

higher-order rogue wave solutions of equation (1) theoreti-
cally. Nevertheless, it is very difficult to gain the expression
of 81[4] by Maple because of complicated calculation.

VOLUME 8, 2020 9613
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FIGURE 3. Dynamical evolution of the second-order rogue wave (a)-(b) with b1 = 5, (c)-(d) with
b1 = 50 and (e)-(f) with a1 = 50.

IV. NUMERICAL SIMULATIONS
On the basis of the rogue wave solutions, nonlinear dynamic
properties of higher-order rogue waves to equation (1)
are discussed in this section with the help of numerical
simulations.

There is only one perturbation parameter ε in equa-
tion (14). The 3-dimensional plots and density plots of
the first-order rogue wave changing with ε are shown in
Figure 1, where the maximum amplitude is 3. The centers
of one peak and two valleys lie in the straight line, and
the two valleys are symmetric with respect to the peak,
as shown in Figure 1(b). It is observed that the com-
pression in t direction is a little high with ε increases
and there is no much effect on the pattern of the rogue
wave.

There are one perturbation parameter ε and two free param-
eters a1 and b1 in the second-order rogue wave solution. For
the specific case ε = 0 and a1 = b1 = 0, the corresponding

3-dimensional plot and density plot are displayed in Figure 2.
It is the fundamental pattern that a highest peak appears at
the center and four small peaks surround it in two sides. The
maximum amplitude is 5.

Then, we study the influence of two free real parameters
a1 and b1 on the second-order rogue wave with ε = 0.
Upon setting a1 = 0, b1 = 5, the 3-dimensional plots
and density plots are depicted in Figures 3(a) and 3(b).
It can be seen from the pictures that the fundamental second-
order rogue wave is splitted into three first-order ones which
form a triangle and the two first-order rogue waves are not
separated completely. Increasing the value of b1, the cor-
responding plots are given in Figures 3(c) and 3(d) with
b1 = 50. It is found easily that three first-order rogue
waves are separated completely. In Figures 3(e) and 3(f),
a1 = 50, b1 = 0 have been taken. Three first-order rogue
waves array an isosceles triangle. Furthermore, it can be veri-
fied using numerical simulation that the parameter b1 plays an
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FIGURE 4. Dynamical evolution of the third-order rogue wave with ε = 0,
a1 = b1 = 0 and a2 = b2 = 0.

important role on the separation and the parameter a1 can
be used to change the position of the three first-order rogue
waves.

There are five parameters ε, a1, b1, a2 and b2 in the
third-order rogue wave solution q[4]. Upon setting ε = 0,
a1 = b1 = 0 and a2 = b2 = 0, the correspond-
ing 3-dimensional plot and density plot are demonstrated
in Figure 4. Like the second-order rogue wave, it is the
fundamental pattern that a highest peak appears at the center
and six small peaks surround it. The maximum amplitude
is 7.

Keep the other parameters unchanged and suppose b1 =
20, the corresponding 3-dimensional plot and density plot
are derived in Figure 5(a) and 5(b). It is clear that the third-
order rogue waves are composed of six first-order rogue
waves, which form a hexagon pattern. Three of them are big
peaks and the others are small ones. Change the parameter
b2 = 500, the corresponding plots are given in Figures 5(c)
and 5(d). However, it is obviously seen that the six first-
order rogue waves array a pentagon. One wave is located
in the center and other waves are put on the vertices of the
pentagon. Likewise, it can be found with the help of the
numerical simulation that there is no much effect on the
pattern of the third-order rogue wave if the value of a1 or a2 is
changed.

With the increase of the order for the rogue wave solution
q[N ], there are more free parameters, which will array more
interesting and novel patterns. It is guessed that these new
patterns could be a polygon which could be extended to
general the N th-order systems.

FIGURE 5. Dynamical evolution of the third-order rogue wave
(a)-(b) with b1 = 20, (c)-(d) with b2 = 500.

V. CONCLUSION
In this paper, nonlinear dynamics of higher-order rogue
waves for the fifth-order nonlinear Schrödinger equation
were investigated. On the basis of the Lax pair, the
N th-order rogue waves solutions were derived by using DT,
the Taylor expansion and a limit procedure, which contain
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2N − 1 free parameters. Using the numerical simulation, the
3-dimensional plots and density plots of the first-, second-
and third-order rogue waves were displayed to illustrate the
nonlinearity effect. It can be found that the parameters have
a great influence on the array of the rogue waves and there is
N (N+1)

2 peaks in terms of a complete decomposition pattern.
With the increase of the order N , the calculation is more
complicated and there will be more interesting plots. We are
looking forward to seeing experiments which can verify the
theoretical results.

APPENDIXES
APPENDIX A

ϕ
[1]
1

= eit (−6it2 + 240εt2 + 1800iε2t2 + 8t2 + 8tx + 120iεt2

+ 120iεtx + 4itx + 2ix2 − 4t − 60iεt − 2it − 2ix +
i
2
).

ϕ
[1]
2

= e−it (−6it2 + 240εt2 + 1800iε2t2 + 8t2 + 8tx + 120iεt2

+ 120iεtx + 4itx + 2ix2 + 4t + 60iεt + 2it + 2ix +
i
2
).

ϕ
[2]
1

= eit (
t
2
+
x
2
+ 2b1 + 175tε +

1
16
+

7
3
t4 −

1
3
x4

+
2
3
x3 −

22
3
t3 +

41
2
t2 −

3
2
x2 − 8it4 + 14it2 +

4
3
it3

− 5it − 4tb1 − 4xb1 + 8ta1 − 2ia1 + 18000t3ε3

+ 1800t3ε2 − 180t3ε − 6t2x + 2tx2 + 5400ε2t4

+ 440εt4 +
44
3
t3ε + 6t2x2 −

4
3
tx3 − 270000ε4t4

− 36000ε3t4 − 410εt2 − 3tx − 10950ε2t2 − 4itx2

+ 120iεta1 + 7200iε2t3x + 480iεt3x + 240iεt2x2

− 240iεt2x + 14itx − 120εtb1 + 8itb1 + 72000iε3t4

+ 7200iε2t4 + 8it2x2+
8
3
itx3+4ita1 + 4ixa1 − 240iεt3

− 3600iε2t3 − 8it2x − 80iεt4 −
8
3
it3x + 1060iεt2

− 36000ε3t3x − 1800ε2t2x2 + 360εt3x − 120εt2x2

− 40εtx3 + 1800ε2t2x + 120εt2x + 60εtx3 − 410εtx).

ϕ
[2]
2

= e−it (−
t
2
−
x
2
− 2b1 − 175tε +

1
16
+

7
3
t4 −

1
3
x4

−
2
3
x3 +

22
3
t3 +

41
2
t2 −

3
2
x2 − 8it4 + 14it2 −

4
3
it3

+ 5it − 4tb1 − 4xb1 + 8ta1 + 2ia1 − 18000t3ε3

− 1800t3ε2 + 180t3ε + 6t2x − 2tx2 + 5400ε2t4

+ 440εt4 +
44
3
t3ε + 6t2x2 −

4
3
tx3 − 270000ε4t4

− 36000ε3t4 − 410εt2 − 3tx − 10950ε2t2 + 4itx2

+ 120iεta1 + 7200iε2t3x + 480iεt3x + 240iεt2x2

+ 240iεt2x + 14itx − 120εtb1 + 8itb1 + 72000iε3t4

+ 7200iε2t4 + 8it2x2 +
8
3
itx3 + 4ita1 + 4ixa1 + 240iεt3

+ 3600iε2t3 + 8it2x − 80iεt4 −
8
3
it3x + 1060iεt2

− 36000ε3t3x − 1800ε2t2x2 + 360εt3x − 120εt2x2

− 40εtx3 − 1800ε2t2x − 120εt2x − 60εtx3 − 410εtx).

APPENDIX B

ϕ1[2]

= −
1
3
1
1
eit (−3+ 18t + 18x + 96it2x + 480t4

− 32x4 + 296t3 + 8x3 + 252t2 + 12x2 + 21600ε2t3

+ 9360εt3 + 312t2x + 24tx2 + 48tb1 + 48xb1 + 96ta1
− 25920000ε4t4 − 3456000ε3t4 − 172800ε2t4

− 3840εt4 − 128t3x − 192t2x2 + 216000ε3t3

+ 126000ε2t2 − 128tx3 + 4560εt2 + 24tx

− 3456000ε3t3x − 345600ε2t3x − 172800ε2t2x2

− 11520ε3x + 21600ε2t2x − 11520εt2x2 − 3840εtx3

+ 1440εt2x + 720εtx2 + 1440εtb1 + 4560εtx

+ 640it4 − 96it2 + 2880iεt2x + 345600iε2t3x

+ 23040iεt3x + 11520iεt2x2 − 1440iεta1 + 2460εt

− 272it3 − 84it + 3456000iε3t4 + 345600iε2t4

+ 26880iεt4 + 896it3x + 384it2x2 + 128itx3

+ 4800iεt2 − 96itx − 48ita1 + 96itb1 − 48ixa1
+ 24b1 − 24ia1 + 43200iε2t3 + 2880iεt3 + 48itx2).

ϕ2[2]

= −
1
3
1
1
e−it (−3− 18t − 18x − 96it2x + 480t4

− 32x4 − 296t3 − 8x3 + 252t2 + 12x2 − 21600ε2t3

− 9360εt3 − 312t2x − 24tx2 + 48tb1 + 48xb1 + 96ta1
− 25920000ε4t4 − 3456000ε3t4 − 172800ε2t4

− 3840εt4 − 128t3x − 192t2x2 − 216000ε3t3

+ 126000ε2t2 − 128tx3 + 4560εt2 + 24tx

− 3456000ε3t3x − 345600ε2t3x − 172800ε2t2x2

− 11520ε3x − 21600ε2t2x − 11520εt2x2 − 3840εtx3

− 1440εt2x − 720εtx2 + 1440εtb1 + 4560εtx

+ 640it4 − 96it2 − 2880iεt2x + 345600iε2t3x

+ 23040iεt3x + 11520iεt2x2 − 1440iεta1 − 2460εt

+ 272it3 + 84it + 3456000iε3t4 + 345600iε2t4

+ 26880iεt4 + 896it3x + 384it2x2 + 128itx3

+ 4800iεt2 − 96itx − 48ita1 + 96itb1 − 48ixa1
− 24b1 + 24ia1 − 43200iε2t3 − 2880iεt3 − 48itx2).

1 = 3600ε2t2 + 240εt2 + 240εtx + 20t2 + 8tx + 4x2 + 1.
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