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ABSTRACT A lattice-based group signature scheme (LGSS) is an active cryptographic primitive, where
each group member can sign messages anonymously in the name of the entire group and each valid signature
should be traced to some group member on the lattice. In each LGSS, the size of the group signature usually
depends on the number of group members and the security parameter. Thus, designing a constant-size LGSS
is an interesting problem. At PKC 2018, Ling, Nguyen, Wang and Xu presented the first constant-size
group signature scheme under lattice assumptions. Its design is based on a zero-knowledge argument of
the knowledge of a valid message-signature pair for the Ducas-Micciancio signature scheme, which follows
the sign-then-encrypt-then-prove protocol. In contrast to this work, we construct a new constant-size LGSS.
The scheme adopts the sign-hybrid-encrypt approach and makes use of the Lyubashevsky signature scheme.
Our work is efficient in the signing algorithm, more precise on the open algorithm and shorter in public key,
secret key and signature size than previous studies. Furthermore, we prove that the scheme has full anonymity
and full traceability under the Ring Learning With Errors and Ring Short Integer Solution assumptions in
the random oracle model.

INDEX TERMS Group signatures, lattices, Lyubashevsky signature scheme, ring learning with errors, ring
short integer solution.

I. INTRODUCTION
The group signature introduced by Chaum and Van Heyst
in [1], is an important cryptographic concept. In each group
signature scheme, users can sign messages on behalf of the
group anonymously, because the resulting signature does
not reveal the signer’s identity. Moreover, the resulting mes-
sage/signature pair is traceable when necessary, in the sense
that users are kept accountable for the message/signature pair
that they issue. These two appealing features make the group
signature useful in many real-life applications, for instance,
in trusted computing platforms, auction protocols or privacy-
protecting mechanisms, and digital rights management.

In the group signature realm, the signature size has been the
focus of research for decades. Generally, the group signature
size depends on the size N of the group, in addition to the
security parameter. In early studies [1]–[3], the signature
size grew linearly with N. The first approach in which the
signature size was independent of N, and hence could be
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considered as a constant, was proposed in [4], and was later
extended in [5]–[7].

To be precise, these group signature schemes [5]–[7] were
built on the discrete logarithm assumption. With the develop-
ment of post-quantum cryptography, the lattice-based group
signature has become a research topic of great interest.
In 2010, Gordon et al. [8] proposed the first group signature
scheme based on lattice assumptions in the random oracle
model, and its signature size is linear in N. Other lattice-
based models were proposed later [20], [22], [26], and their
signature sizes always depends on N. At PKC 2018, Ling
et al. [9] constructed the first constant-size group signature
scheme from lattices.

In the work of Ling et al., the core of the design is based
on a zero-knowledge argument of the knowledge of a valid
message-signature pair for the Ducas-Micciancio signature
scheme (DMS) [10]. A similar protocol for the Boyen sig-
nature scheme [38] was proposed by Ling et al. [22]. There
exists a natural problem of whether other efficient signature
schemes can replace the DMS and Boyen signature scheme.
Based on this, the Lyubashevsky signature scheme (LSS) [13]
has drawn our attention, and is the first lattice-based
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signature scheme without a trapdoor. In the LSS,
Lyubashevsky removed the hash-and-sign model and pro-
posed rejection sampling. Because of the small signature size
and simple signing algorithm, the LSS is popular in latticed
signature research. There has been much recent progress on
the Lyubashevsky model in terms of its security, efficiency,
and performance, such as [14]–[18]. These studies inspired
us to investigate the problem of designing a constant-size
latticed-based group signature scheme (LGSS) using the LSS.

A. RELATED WORKS
The first LGSS was introduced by Gordon, Katz and
Vaikuntanathan, and its solution produced signature
size linear in N. Camenisch et al. [19] extended [8]
to achieve anonymity in the strongest case. Then,
Laguillaumie et al. [20] proposed the first scheme with the
signature size logarithmic in N, at the cost of relatively
large parameters. Later, simpler and more efficient solu-
tions to the signature size were subsequently provided by
Nguyen et al. [21] and Ling et al. [22]. Libert et al. [23]
obtained substantial efficiency improvements via a construc-
tion based on merkle trees that eliminate the need for Gentry-
Peikert-Vaikuntanathan trapdoors [24]. In 2016, a scheme
supporting message-dependent opening [25] was proposed
in [26]. All the schemes mentioned above were designed for
static groups, and all have signature sizes that are dependent
on N. Three LGSS were proposed by Langlois et al. [27],
Libert et al [28], and Ling et al. [22], which have certain
dynamic features. Recently, Ling et al. [9] constructed the
first constant-size group signature from lattices, and the
scheme is based on the DMS. Katsumata et al. [29] made
group signatures without NIZK from lattices in the standard
model.

B. OUR CONTRIBUTIONS
In this paper, we propose a new constant-size group signature
scheme from lattices. First, we use a variant of the trap-
door generation algorithm to enroll new users. This approach
reduces the number of public matrices to two, which reduces
the size of both the public key and private key. Second,
the scheme follows the sign hybrid encrypt protocol; at the
core of its design is the LSS.Wemake a double Lyubashevsky
signature. The LSS can promote the efficiency of the scheme
and reduce the signature size. By contrast, the LSS ensures
that when the input of the open algorithm is a valid signature
signed by a real signer, it is impossible to output another
signer’s identity. Additionally, the result of the encryption
scheme is used as some of the input for generating the random
vector in the LSS, and some results of the LSS are used as
the plaintext of the encryption scheme (sign-hybrid-encrypt).
Moreover, our scheme is anonymous, in addition to traceable
in the random oracle model. Furthermore, the security of the
scheme is based on the Ring Learning With Errors (RLWE)
and Ring Short Integer Solution (RSIS) assumptions that
provide optimal performance for the scheme.

The remainder of the paper is organized as follows: In
Section 2, we provide the basic notation and some pre-
liminary information. In Section 3, we recall the definition
and security model of the group signature. In Section 4,
we present our scheme. In Section 5, we analyze the scheme.
Finally, we conclude the paper in Section 6.

II. PRELIMINARIES
A. BASIC NOTATION
Let k ∈ N be a positive integer and n = 2k , q be a positive
prime such that q ≡ 1( mod 2n). Consider rings of the
form R = Z[x]/(xn + 1), Rq = R/qR, where Z[x] is
the polynomial ring with coefficients in Z and xn + 1 is the
cyclotomic polynomial of degree n. Represent this set using
coefficients in the range [−(q− 1)/2, (q− 1)/2].

For any probability distribution f over Zq, if v ∈ Rq,
then v ← f n indicates that each coefficient of v is chosen
from f . If g : Z → R is a probability distribution, then
z ← g denotes element z that is chosen from Z according
to probability distribution g.
We write vector V as V = (v1, · · · , vn)T . The first

norm is ‖V‖1 =
∑n

i=1 |vi|, the Euclidean norm is

‖V‖ = ‖V‖2 =
√∑n

i=1 v
2
i , and the infinity norm is

‖V‖∞ = max1≤i≤n |vi|. Additionally, we write Bm,κ ,{
x ∈ {0, 1,−1}m

∣∣ ‖x‖1 = κ}. If n is an integer, then [n] =
{1, · · · , n}.

B. GAUSSIAN DISTRIBUTION
We next recall the discrete Gaussian distribution, which is
a common distribution on lattices. Before presenting the
discrete Gaussian distribution, we introduce the continuous
Gaussian distribution. The continuous Gaussian distribution
over Rn centered on v∈ Rn with standard deviation σ is
determined by its probability density function

ρnv,σ (x) ,
(

1
√
2πσ 2

)n
· exp

(
−‖x− v‖22

2σ 2

)
.

Subscript v is usually omitted when v = 0 ∈ Rn. Likewise,
discrete Gaussian distribution Dn over Zn centered at some
v ∈ Zn with a standard deviation is determined by its proba-
bility mass function

Dn
v,σ (x) ,

ρnσ (x)
ρnσ (Zn)

.

Additionally, subscript v is also usually omitted when v =
0 ∈ Zn.
Then, we recall two bounds for the discrete Gaussian dis-

tribution that is used in our scheme.
Lemma 1 (Discrete-Gaussian-Bound): ([13]) For any vec-

tor v ∈ Rn and σ, r > 0, we have

Pr
z←Dn

σ

[|〈z, v〉| > r] ≤ 2 · exp
(
−

r2

2‖v‖2σ 2

)
.

VOLUME 8, 2020 10199



Q. Luo, C.-Y. Jiang: New Constant-Size Group Signature Scheme From Lattices

In particular, for fixed κ > 0, when ζ >
⌈√

2+2κ
log2 e

⌉
, we have

Pr
z←Dn

σ

[
|〈z, v〉| > ζ‖v‖σ

]
≤ 2−κ .

Lemma 2 (Bound-for-M): ([13]) For any v ∈ Zn, if σ =
ω(‖v‖ ·

√
n), then

Pr
z←Dn

σ

[
Dn
σ (z)

Dn
v,σ (z)

= O(1)

]
= 1− 2−ω(log n).

In particular, for any v ∈ Zn, if ζ >
⌈√

2+2κ
log2 e

⌉
and σ = t ·‖v‖

for some t > 0, then

Pr
z←Dn

σ

[
Dn
σ (z)

Dn
v,σ (z)

< exp
(
ζ

t
+

1
2t2

)]
> 1− 2−κ .

In the remainder of the paper, Dσ is defined over Rq, which
is similar to the above definition.

C. RLWE PROBLEM AND RSIS PROBLEM
We now recall the RLWE and RSIS problems whose hardness
ensures the security of our work. The RLWE problem was
introduced by Lyubashevsky et al. [33] together with a worst-
case to average-case reduction to certain ‘‘hard’’ problems
over ideal lattices.
Definition 1 (RLWE Distribution): RLWE distribution

Ds,χ , indexed by s ∈ Rq and some pre-defined distribution
χ on Rq, is defined as the distribution that samples a ←
Rq, e← χ and then outputs (a, as+ e) ∈ Rq ×Rq.
Definition 2 (RLWE Problem): The decision RLWEn,q,χ

problem is to distinguish, with non negligible advantage,
between any desired number of independent samples drawn
from Ds,χ for a single s ← Rq, and the same number of
uniformly random and independent samples over Rq ×Rq.
The RSIS problem was proposed by Alwen and Peikert.

The average-case RSIS problem is at least as hard as the SVP
using a polynomial time quantum reduction. More details are
available in [30].
Definition 3 (RSIS Problem): When the parameters n,m,q,

β are given, for a uniformly random A ← (Rq)1×m, the
problem is to determine a non-zero v ∈ (Rq)m such that
Av = 0 ∈ Rq and ‖v‖∞ ≤ β.

D. TRAPDOOR GENERATION ALGORITHM
We recall the trapdoor generation algorithm, which is used to
enroll new users in our construction after some transforma-
tion.
Lemma 3 [12],[31],[32]: Let n,m, q > 0 be integers,

where q is prime. A polynomial time algorithm exists:
• TrapGen(n,m, q) → (A,TA): a randomized algorithm
that when m = 2(n × log q), outputs full rank matrix
A ∈ Zn×mq and basis TA of 3⊥q (A) (which implies,
in particular A · TA = 0 mod q) such that A is negl(n)-
close to uniform and ‖TA‖GS = O(

√
n log q), with all

but negligible probability in n,
where 3⊥q (A) = {y ∈ Zm;Ay = 0 mod q}, ‖T‖GS = ‖T ′

‖

(T ′ is the Gram-Schmidt orthogonalization of T ).

Note that for any A ∈ Zn×mq , we can view A as an m-
vector of Rq according to the following method: Divide A
into m blocks, that is, A = (a1, · · · , am). Then ai has n
elements, that is, ai = (ai,0, · · · , ai,n−1)T for any i ∈ [m],
which can be the same as coefficients of an element in Rq.
The method is also equal to (1, · · · , xn−1)A, that is, an m-
vector ofRq. Additionally, for any m-vector ofRq, there is a
corresponding element that is constructed by the coefficients
of the m-vector. Clearly, the corresponding element is in
Zn×mq . Hence, Lemma 3 can be used on Rq. For simplicity,
we write (A,TA)← TrapGenRq

(n,m, q), where A ∈ R1×m
q

and TA ∈ Zm×mq .
Lemma 4: [32] Let A ∈ Zn×mq and TA ∈ Zm×mq be a basis

of 3⊥q (A). Let U ∈ Zn×kq . There is a polynomial time algo-
rithm that outputs X ∈ Zm×kq that satisfies AX = U mod q
with the following property: SampleD(A,TA,U, σ )→ (X):
a randomized algorithm that when σ = ‖TA‖GS ·ω(

√
logm),

outputs random sample X from a distribution that is statisti-
cally close to Dσ (3⊥q (A)).
In particular, if k = n, then

(1, · · · , xn−1)AX(1, · · · , xn−1)T

= (1, · · · , xn−1)U(1, · · · , xn−1)T.

Suppose that U = u1 + u2x + · · · + unxn−1 is an element
of Rq, then ui ∈ Zq for all i ∈ [n]. (u1, · · · , un)T can
be viewed as the first row of an n × n matrix U ∈ Zn×nq
where the remaining rows are zero. Then we obtain a similar
result over Rq by Lemma 4. For simplicity, we write X ←
SampleDRq

(A,TA,U, σ ), where A ∈ R1×m
q , TA ∈ Zm×mq ,

U ∈ Rq and X ∈ Rm×1
q .

E. REJECTION SAMPLING
We next recall rejection sampling, which is a useful technique
to transform an arbitrary distribution to the desired distribu-
tion. In many signature schemes, we always store the infor-
mation about the private key from the output distributions
using rejection sampling.
Lemma 5 [13]: Let f : Zn → R be a probability dis-

tribution. Given subset V ⊆ Zn, let h : V → R be a
probability distribution defined on V . Let gv : Zn → R be a
family of probability distributions indexed by v ∈ V such that
for almost all v’s from h, there exists universal upper bound
M ∈ R such that

Pr
z←f

[M · gv(z) < f (z)] = ε.

Then the output distribution of the following two algorithms
has a negligible statistical difference:
1: v← h;
2: z← gv;
3: Output (z, v) with probability min

(
1, f (z)

M ·gv(z)

)
;

1: v← h;
2: z← f ;
3: Output (z, v) with probability 1

M .

10200 VOLUME 8, 2020



Q. Luo, C.-Y. Jiang: New Constant-Size Group Signature Scheme From Lattices

The statistical distance between the output of the above two
algorithms is ε

M .

F. LYUBASHEVSKY SIGNATURE SCHEME
We consider the LSS, in which the first signature is based on
SIS without a trapdoor. The scheme does not use the hash-
and-sign model and uses rejection sampling to obtain the
desired distribution. Simultaneously, the public key, private
key, and signature size are smaller than those in previous
studies. Then, we briefly present the scheme over Zq.
Key generation:

• signing key S← {−d, · · · , d}m×k

• verification key A← Zn×mq ,T = AS

Signing: (ν,A,S)

• y← Dm
σ

• c = H (Ay, µ)
• z = y+ Sc with a probability of min Dm

z (z)
MDm

y,Sc(z)

Verification:(µ, z, c,A,T )

• Accept iff ‖z‖∞ ≤ η
√
m ∧ c = H (Az − Tc, µ), where

η is determined by d and σ .

Later, Lyubashevsky proposed a variant of the scheme based
on the RSIS assumption. The details are available in [34].

III. GROUP SIGNATURE, ANONYMITY, AND
TRACEABILITY
In this section, we recall the definition of group signature by
Bellare et al. [35].
Definition 4 (Group Signature): Agroup signature scheme∏
consists of four polynomial-time algorithms (GKg,GSig,

GVer,Open):

• GKg(1λ,1N ): a randomized group key generation algo-
rithm that inputs 1λ and 1N , where λ is the security
parameter and N is the group size, and returns group
public key gpk , group manager’s secret key gmsk and
player’s secret signing key gsk .

• GSig(gpk, gsk[i], µ): a randomized group signing algo-
rithm that inputs group public key gpk , user’s key gsk[i]
and message µ, and returns signature 6 of µ under
gsk[i].

• GVer(gpk, µ,6): a deterministic group signature verifi-
cation algorithm that inputs group public key gpk , mes-
sage µ and signature 6, and returns Accept or Reject .

• Open(gpk, gmsk, µ,6): a deterministic opening algo-
rithm that inputs group public key gpk , group manager’s
secret key gmsk , messageµ and signature6, and returns
index i ∈ [N ] or ⊥.

Correctness: Scheme
∏

is correct if it satisfies the following
requirements: For all λ,N ∈ N, all (gpk, gmsk, gsk)←GKg
(1λ, 1N ), all i ∈ [N ], and all µ ∈ {0, 1}∗,

• verification correctness:
GVer(gpk, µ,GSig(gpk, gsk[i], µ)) = Accept

• opening correctness:
Open(gpk, gmsk, µ,GSig(gpk, gsk[i], µ)) = i

The security requirements for the group signature have two
aspects: anonymity and traceability. Before defining them,
we introduce oracles that may be used by adversaries in
security games.

• Signing oracle SO(gpk, gsk[·], ·): inputs user’s index
j ∈ [N ] and message µ, and returns valid signature 6
of j for µ.

• Opening oracle OO(gpk, gmsk, ·, ·): inputs message µ
and signature6. If6 is generated by user j ∈ [N ] for µ,
then returns the identity of user j; otherwise, returns ⊥.

• Corrupt oracle CO(·): inputs user’s index j ∈ [N ] and
outputs corresponding secret key gsk[j].

Definition 5 (Full Anonymity): Group signature scheme∏
is anonymous if for any PPT adversary A and any poly-

nomial n(·), the probability that A succeeds in the following
game is negligible:

• Challenger C runs the group key generation algorithm
with security parameter λ and group size N , and gener-
ates keys gpk , gmsk and gsk . Then C sends gpk and gsk
to adversary A.

• Adversary A is given access to opening oracle
OO(gpk, gmsk, ·, ·).

• A provides message µ and two valid identities 1 ≤
i0, i1 ≤ N . C randomly selects b ∈ {0, 1} and produces
signature 6∗ = GSig(gpk, gsk[ib], µ). Then 6∗ is sent
to A.

• A outputs guess b′ ∈ {0, 1}, and requires the following
conditions:

– b′ = b.
– A did not query opening oracleOO(gpk, gmsk, ·, ·)

with µ and 6∗.

Definition 6 (Full Traceability): Group signature scheme∏
is traceable if for any PPT adversaryA and any polynomial

n(·), the probability thatA succeeds in the following game is
negligible:

• Challenger C runs the group key generation algorithm
with security parameter λ and group size N , and gen-
erates keys gpk , gmsk and gsk . Then C sends gpk and
gmsk to the adversary A.

• Adversary A is given access to signing oracle
SO(gpk, gsk[·], ·) and corrupt oracle CO(·).

• Adversary A outputs forgery (µ∗, 6∗), and requires the
following conditions:

– Ver(gpk, µ∗, 6∗) = Accept .

– One of the following two conditions is satisfied:

∗ Open(gpk, gmsk, µ∗, 6∗) = ⊥.
∗ ∃j∗ ∈ [N ] such that Open(gpk, gmsk, µ∗, 6∗)
= j∗ ∧ ((j∗, µ∗) and j∗ not queried by A).

IV. GROUP SIGNATURE SCHEME
In this section, we describe the constant-size group signature
scheme based on the lattice via the following four algorithms,
where H1 and H2 are two different hash functions to Bm,κ .

VOLUME 8, 2020 10201



Q. Luo, C.-Y. Jiang: New Constant-Size Group Signature Scheme From Lattices

Algorithm 1 Verification Algorithm
1: Input: (gpk, µ,6 = (z1, z2, t1, t2, t3, c2))
2: Output: Accept or Reject
3: c = H2(c2, t3)
4: w2 = Bz1 + Az2 − uc mod q
5: c′2 = H1(µ,w2, t1, t2)
6: if (c2 = c′2) ∧ (‖z1‖∞ ≤ B) ∧ (‖z2‖∞ ≤ B) then
7: return ‘‘Accept’’
8: else
9: return ‘‘Reject’’
10: end if

A. GROUP KEY GENERATION ALGORITHM
In Algorithm 2, where λ is the security parameter and N is
the number of group members, assume that ‖TA‖GS = L and
l = blog (q− 1)/2c + 1. Then, the group manager creates
a group public key that consists of two parts: (i) verification
key (A,B,u) to the LSS, where B is also used for users to
generate their short secret vectors with public syndromes as
user key pairs; and (ii) two public keys from an extended
version of the LPR encryption scheme [33]. The open key
is the corresponding secret key of the two public keys.

Algorithm 2 Key Generation Algorithm

1: Input: (1λ, 1N )
2: Output: (gpk, gmsk, gsk)
3: (A,TA)←TrapGenRq (n,m, q)
4: a← R1×l

q
5: s, e← Dl

σ1
6: b = as+ e mod q
7: u← Rq
8: B← R1×m

q
9: for all i such that 1 ≤ i ≤ N do
10: xi1← Dm

σ2
11: if

∑κ
k=1 maxk (xi1) > U , then go to step 10 and restart

12: gi = Bxi1 mod q
13: xi2←SamlpeDRq (A,TA,u− gi, σ2)
14: if

∑κ
k=1 maxk (xi2) > U , then go to step 13 and restart

15: gsk[i] = (xi1, xi2)
16: end for
17: outputs gpk = (A,B,u, {gi}

N
i=1), gmsk = s and gsk =

{gsk[i]}Ni=1

To enroll new users, for all i ∈ [N ], the group manager
runs SampleDRq

(A,TA,u−gi, σ2) (as in Section 2) to obtain
xi2 ∈ Dm×n

σ2
such that Axi2 + gi = u, where gi is the user’s

public key.
In the generation of the user’s identity and the process

of user joining the group,
∑κ

k=1 maxk (·) is an operator for
generating the κ largest entries of the input. We require that
the κ largest entries of xi1 and xi2 are both smaller than U
to obtain the desired distribution of z1 and z2 in the signing
algorithm.

Hence, considering the public key of users, the group pub-
lic key is gpk = (A,B,u, a, b, {gi}

N
i=1), the group manager’s

secret key is gmsk = s and the user’s secret key is gsk =
{gsk[i]}Ni=1, where gsk[i] = (xi1, xi2).
Remark 1: In the group key generation algorithm, it is

impossible for e to be public. In the intervening time, e is
not used in the group signing algorithm. Hence, it is also
unnecessary to store e as the private key.

Algorithm 3 Signing Algorithm
1: Input: (gpk, gskπ , µ)
2: Output: 6 = (z1, z2, t1, t2, t3, c2)
3: s1, e1, e2← Dl

σ1
4: t1 = as1 + e1 mod q
5: t2 = bs1 + e2 + b

q
2cg

′
π

6: y1, y2← [−B,B]m

7: v1 = By1 mod q
8: v2 = By1 + Ay2 mod q
9: c1 = H1 (µ, v1, t2, t1)
10: c2 = H1 (µ, v2, t1, t2)
11: t3 = bs1 − e2 + b

q
2cc

′
1

12: c = H2(c2, t3)
13: z1 = y1 + xπ1c

14: Repeat with probability 1−min
(
1, Dm

z (z)
M ·Dm

y,SC (z)

)
15: z2 = y2 + xπ2c

16: Repeat with probability 1−min
(
1, Dm

z (z)
M ·Dm

y,SC (z)

)
17: output 6 = (z1, z2, t1, t2, t3, c2)

B. GROUP SIGNING ALGORITHM
In Algorithm 3, to obtain a signature for message µ, user π
first encrypts binary representation g′π of user’s public key
gπ using the two public keys. Then, user π randomly selects
two vectors from [−B,B]m, that is, a uniform distribution
overRq, and generates two hash values by combining values
from two vectors and two public matrices with the above
ciphertexts and message µ. Later, user π encrypts the binary
representation c′1 of the hash value c1 that can be verified by
the user’s public key directly. Finally, user π makes a hash
function on the other hash value c2 and the ciphertext, and
generates the final result of the LSS using rejection sampling.
The signature contains all ciphertexts, hash value c2, and two
results of the LSS except the hash value.

The concept of the design essentially borrows the
Lyubashevshky signature model. Additionally, we introduce
an IND-CCA encryption scheme to hide the signer’s iden-
tity. In fact, we encrypt each coefficient of gπ and c1
using the IND-CCA encryption scheme. Simultaneously, for
anonymity and traceability, we construct another cipher-
text t3 that contains an intermediate product of the LSS.
In this way, the signing algorithm is very effective, and
the signature size is much shorter than that in previous
studies.
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C. GROUP VERIFICATION ALGORITHM
InAlgorithm 1, the group verification algorithm is similar to
the LSS [13].

Algorithm 4 Opening Algorithm
1: Input: (gpk, gmsk, µ,6 = (z1, z2, t1, t2, t3, c2))
2: Output: i ∈ [N ] or ⊥
3: c = H2(c2, t3)
4: g′′ = (gi) = t2 − t1s where i = 1, · · · , nl
5: for all i such that 1 ≤ i ≤ nl do
6: if gi ≈ b

q
2c then

7: g′i = 1
8: else
9: g′i = 0
10: end if
11: end for
12: for all j such that 1 ≤ j ≤ n do
13: g′′j =

∑l
i=1 2

i−1g′i+j
14: end for
15: gk = (g′′j)
16: c′′1 = (ci) = t3 − t1s where i = 1, · · · , nl
17: for all i such that 1 ≤ i ≤ nl do
18: if ci ≈ b

q
2c then

19: c′i = 1
20: else
21: c′i = 0
22: end if
23: end for
24: for all j such that 1 ≤ j ≤ n do
25: c′j =

∑l
i=1 2

i−1c′i+j
26: c1 = (c′j)
27: end for
28: if c1 = H1(µ,Bz1 − gkc mod q, t2, t1)∧gk ∈ gpk then
29: return k
30: else
31: return ⊥
32: end if

D. GROUP OPENING ALGORITHM
In Algorithm 4, after inputting group public key gpk , group
manager’s secret key gmsk , message µ and signature 6 =
(z1, z2, t1, t2, t3, c2)), the group manager computes t2 − t1s,
t3 − t1s, and c = H2(c2, t3). If the bound of the entry of
t2− t1s is smaller than d(� q) (the bound of e2+ es1− e1s),
then the corresponding entry g′ of g′π is zero. If the bound of
the entry of t2 − t1s is close to b

q
2c, then the corresponding

entry g′ of g′π is one. Then, the group manager can recover
gπ = (gπ j) = (

∑l
i=0 2

ig′i+j) for j = 1, · · · , n. The same
approach can recover c1 by t3− t1s. c1 can be restored in the
same manner. If c1 = H1(µ,Bz1−gπc, t2, t1) and gπ ∈ gpk ,
then the algorithm returns π , otherwise, it returns ⊥.
We create t3 is because the signature created by user π

cannot be forged by any users who do not hold secret key
gπ . In this manner, the open algorithm not only reveals the
signer’s identity, but also ensures that the signature is only

signed by the signer. It means that the open algorithm is more
specific. It is not necessary to add another algorithm for the
assessment of the result of the open algorithm and signature.

Group signature scheme
∏

can be described as above.
Many efficient variants on the scheme exist, such as those
based on LWE and SIS with the NTT technique, and those
based on RLWE and RSIS with a rounding operation.

V. ANALYSIS OF THE GROUP SIGNATURE SCHEME
In this section, we first consider the parameters in the scheme.
Then under the requirements of the parameters, the scheme
is correct naturally. Finally, we reduce the security to the
RLWE and RSIS problems. Thus, the scheme is anonymous
and traceable in the random oracle model.

A. PARAMETERS
The parameters of the program are λ,N ,q,m,n,L,σ1,σ2,
κ ,B,U ,M ,d . It is not necessary to fix N in the setup stage.
According to the trapdoor algorithm, q,m,n,L,σ2 satisfy m =
2(n× log q), L = O(

√
n log q) and σ2 = L · ω(

√
logm).

Note that y is sampled from a uniform distribution on
[−B,B]m, which means that there are (2B+1)2m choices of y
and 2B < q. Additionally, A′y has at most (2B+1)m choices,
where A′

∈ R1×2m
q . Hash output H (µ,A′y, c?) is uniformly

distributed, which requires that sufficient choices of A′y are
hashed. Thus, (2B + 1)2m ≥ 2κCκm, which means that the
probability of a collision for the hash function is smaller
than 1

2κ . Hence, the probability that the following simulator
algorithm is aborted is at most 1

2κ .
Then, rejection sampling ensures that the distributions of z1

and z2 are similar to the uniform distribution on [−B+U ,B−
U ]m, which requires that U � B and U = O(

√
κσ2) (e.g.,

U = 14
√
κσ2). To reduce the repeat time, we demand that

M ≈ (1− 2U
2(B−U )+1 )

m with B� U . More choices regarding
B and U are available in [13].

Additionally, successful decryption requires that
d < O(σ 2

1 )�
q
2 and d is as small as possible. For more

choices of d , refer to [29].
Remark 2: We consider the κ largest entries of xi1 and

xi2 for the pass rate of the signing algorithm. Because U =
O(
√
κσ2), it is obvious that almost all values of xi1c and xi2c

are included in U . The negligible values that are outside U
can be disregarded. Thus, the repetition of key generation
cannot be taken into consideration.

B. CORRECTNESS
The correctness of the scheme can be proved as follows:
Suppose signature 6 = (z1, z2, t1, t2, t3, c2) is valid for
message µ under group public key gpk = (A,B,u, {gi}

N
i=1)

by player gπ .

1) VERIFICATION CORRECTNESS
first generates c = H2 (c2, t2) and w2 = Bz1 + Az2 − uc,
then w2 = By1 + Ay2 = v2 mod q because of z1 =
y1 + xπ1c, z2 = y2 + xπ2c and Axπ2 + Bxπ1 = u mod q.
Thus, c′2 = H1 (µ,w2, t1, t2) = H1 (µ, v2, t1, t2) = c2.
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Additionally, the distributions of z1 and z2 are close to a
uniform distribution on [−B,B]m using rejection sampling.
Then (‖z1‖∞ ≤ B)∧(‖z2‖∞ ≤ B). Hence, signature6 passes
the verification.

2) OPENING CORRECTNESS
Because t1 = as1 + e1 mod q, t2 = bs1 + e2 + b

q
2cg

′
π and

t3 = bs1−e2+b
q
2cc

′
1, where g′π is the binary representation

of gπ . Note that t2 − t1s = es1 + e2 − e1s+ b
q
2cg

′
π , where

‖e‖∞ ≤ U ′, ‖e2‖∞ ≤ U ′, ‖e1‖∞ ≤ U ′, ‖s‖∞ ≤ U ′ and
‖s1‖∞ ≤ U ′, and U ′ = O(σ1); that is, d < 2U ′2 + U ′ � q

2 .
The rounding procedure in the open algorithm recovers gπ
with probability one. The same procedure is easily adapted
to recover c1. We observe that v1 = By1 = Bz1 − gπc. Then
we have c1 = H1(µ,Bz1 − gπc, t2, t1). Thus, signature 6 is
created by user π .

C. FULL ANONYMITY
Roughly speaking, to prove full anonymity, we first show how
we can simulate the signing algorithm by programming the
random oracle. Then, we show that an adversary who breaks
full anonymity using the simulator algorithm can be used to
solve the RLWE problem.

Algorithm 5 The Simulator Algorithm
1: Input: gpk, π, µ
2: Output: 6 = (z1, z2, t1, t2, t3, c2)
3: s1, e1, e2← Dl

σ1
4: t1 = as1 + e1 mod q
5: t2 = bs1 + e2 + b

q
2cg

′
π

6: c1← Bm,κ
7: c2← Bm,κ
8: t3 = bs1 − e2 + b

q
2cc

′
1

9: c = H2(c2, t3)
10: z1← [−B+ U ,B− U ]m

11: Repeat with probability 1−min
(
1, 1

M

)
12: z2← [−B+ U ,B− U ]m

13: Repeat with probability 1−min
(
1, 1

M

)
14: w2 = Bz1 + Az2 − uc mod q
15: w1 = Bz1 − gπc mod q
16: if H1 has already been defined on w1 or w2 then
17: Abort
18: else
19: Program c2 = H1 (µ,w2, t1, t2) and c1 =

H1 (µ,w1, t2, t1)
20: end if
21: output 6 = (z1, z2, t1, t2, t3, c2)

First, we define the simulator algorithm as Algorithm 5.
Then we have the following lemma.
Lemma 6: Suppose the parameters are defined as above,

and the statistical distance between the output of the sign-
ing algorithm and the simulator algorithm, which does not

take the user’s secret key gsk[i] as input, is at most 1
2κ−1
+

2m+1Um

(2B+1)m2M , that is, negligible.
Proof:The difference between the signing algorithm and

the simulator algorithm is the generation of z1, z2, c1, and c2.
The value of

c2 = H1
(
µ,By1 + Ay2, t1, t2

)
= H1 (µ,Bz1 + Az2 − uc, t1, t2)

obtains a set uniformly at random in the simulator algo-
rithm, whereas in the signing algorithm, H1 checks whether
H1 was already evaluated on (µ,By1 + Ay2, t1, t2). The
simulator algorithm differs from the signing algorithm in
the case that the value of By1 + Ay2 is equal to one of
the previous values that was queried. The probability of a
collision is at most 1

2κ . Similar to c2, we obtain the same
result for c1. The distribution of z1 and z2 in the signing
algorithm is indistinguishable from a uniform distribution
on [−B + U ,B − U ]m using rejection sampling, and the
statistical distance between them is at most 2( (2U )m

(2B+1)mM ).
Thus, the statistical distance between the output of the signing
algorithm and the simulator algorithm is at most 1

2κ−1
+

2m+1Um

(2B+1)mM , which is negligible under the parameters set as
above.
Theorem 1: Let the parameters be as presented above and

κ be sufficiently large. Then the signature scheme is anony-
mous under the RLWE assumption in the random oracle
model.

Proof: We construct a series of games where we make
changes to prove the full anonymity of the scheme.
Game 0: Suppose that challenger C runs the group key gen-

eration algorithm with security parameter λ and group size
N , and generates keys gpk , gmsk and gsk . Then C sends gpk
and gsk to adversaryA. WhenA queriesOO(gpk, gmsk, ·, ·)
with (µ′, 6′), index k ∈ [N ] or ⊥ is returned. Thus,
in Game 0, the adversary A first selects two signers’ indexes
i0, i1 ∈ {1, · · · ,N } with i0 6= i1 and message µ, and sends
them to challenger C. Then challenger C chooses b ∈ {0, 1},
and calls the real signing algorithm with (gpk, gsk[ib], µ).
Signature 6 =GSig(gpk, gsk[ib], µ) is sent to A, and A
outputs guess b′ for signer’s index ib. Thus, in Game 0,
A succeeds in breaking ambiguity Game 0 (b = b′) if
Pr[Game 0] ≤ 1/2 + non − negligible; otherwise, A is only
randomly guessing.
Game 1: Similar to Game 0, except the real signing algo-

rithm is replaced with the simulator algorithm. From the
above lemma, we obtain that |Pr[Game 0]− Pr[Game 1]| ≤
1

2κ+1
+

(2U )m
(2B+1)m2M .

In Game 1, challenge signature 6 = (z1, z2, t1, t2, t3, c2)
is returned by the simulator algorithm. We observe that the
user’s identity is only used for generating t2 and t3 in the
simulator algorithm, which does not have the user’s private
key. t2 and t3 are the only two places where an adversary
may obtain some efficient information about the identity of
the real signer, and also are the ciphertexts of the following
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encryption scheme E .

Gen(1λ) :


a← R1×l

q
s, e← Dl×n

σ1
b = as+ e mod q
pk = (a, b), sk = s


Enc(pk, g′π , c

′
1) :


s1, e1, e2← Dl×n

σ1
t1 = as1 + e1 mod q
t2 = bs1 + e2 + b

q
2cg

′
π

t3 = bs1 − e2 + b
q
2cc

′
1


Dec(sk, t1, t2, t3) :

{
g′π ≈ t2 − t1s
c′1 ≈ t3 − t1s

}
It is easy to check that the probability of Game 1 succeeding
is equal to the probability that adversary A breaks E .
Consider E , whose security game Game 2 can be sim-

plified as follows: Challenger C first calls key generation
algorithm to obtain public keys (a, b = as + e mod q) and
secret key s, and then sends the public keys to adversary
A. Moreover, adversary A can access the encryption oracle
and decryption oracle. Thus, A selects two messages x0 and
x1 for challenger C, C calls the encryption algorithm with
xb which is randomly chosen from the two messages, and
the plaintext is provided to A. Finally, A outputs guess b′

for encrypted message xb. Note that E is the extension of
LPR encryption scheme [33], which is IND-CCA secure via
the Naor-Yung transform [36] under the RLWE assumption.
Thus, Pr[Game 2] = 1/2+ negligible.

Combining the probabilities of the above games, we know
that |Pr[Game 0] − Pr[Game 2]| ≤ negligible + 1

2κ+1
+

(2U )m
(2B+1)m2M , and then Pr[Game 0] ≤ 1/2+ negligible. Hence,
the signature scheme is anonymous.

D. FULL TRACEABILITY
In this subsection, we prove that the scheme is traceable
under the RSIS assumption. Before presenting the theorem,
we provide an important lemma, which can be viewed as a
corollary of Lemma 2 in [9].
Lemma 7: Let B′

∈ R1×2m
q , wherem > 1

2dlog qe+
1
2 . If x

is randomly chosen fromD2m√
2σ2

such that ‖x‖∞ ≤ 7σ2 (σ2 >

1), then with a probability of at least 1 − 4−n, there exists
another x′← D2m√

2σ2
such that ‖x′‖∞ ≤ 7σ2 and B′x = B′x′

mod q.
Proof. The proof of the lemma can be found in Lemma

2 in [9].

Theorem 2: Let the parameters be as presented above and
κ , and n are sufficiently large. The signature scheme is trace-
able under the RSIS assumption in the random oracle.
Proof. Suppose that adversary A can defeat the traceability
of the scheme with non-negligible success probability ε in
the game in Definition 6. We build a PPT algorithm B that
attacks the RSIS problem with non-negligible probability.

When providing verification key (A,B, gj,u), simulator
B runs the experiment in Definition 6 faithfully.. When A
queries its signing oracle SO on i ∈ [N ], message µ and

gpk: If i 6= j, then B runs the honest signing algorithm
and returns GSig(gpk, gsk[i], µ); If i = j, then B runs the
simulator algorithm and returns the output of the simulator
algorithm with gpk , j and µ. When A queries its corrupt
oracle CO on i ∈ [N ]: If i 6= j, then B returns gsk[i]; If
i = j, then B returns ⊥. In particular, regardless of whether
index i ∈ [N ] has been queried to corrupt oracle CO by A,
we can replace the real signing algorithm with the simulator
algorithm when A queries the signing oracle with i. Suppose
A makes h hash queries and s signing queries. Finally A
outputs signature6 = (z1, z2, t1, t2, t3, c2) on messageµ for
the player j ∈ [N ]. With non-negligible probability, A wins
the game. Then one of the following two conditons can be
satisfied.

The first condition is that6 is a valid signature with respect
to t1, t2 and t3 for j.
In the random oracle model, with overwhelming proba-

bility, H1 (µ, v2, t1, t2) and H1 (µ, v1, t2, t1) must have been
defined. In the following analysis, we simply ignore the
collision event with random oracle H1, which occurs with
negligible probability. There exist two possible cases.

The first case is that c1 and c2 were returned by the singing
oracle when dealing with message µ′ made by forger adver-
sary A. Then c1 and c2 have been queried. Specifically, A
always obtained a signature of the form (z′1, z

′

2, t
′

1, t
′

2, t
′

3, c2)
on the message µ′, where c′ = H2(c2, t ′3). We define

v′2 = Bz′1 + Az
′

2 − uc
′, v′1 = Bz′1 − gjc

′.

Then we have

c2 = H1 (µ, v2, t1, t2) = H1
(
µ′, v′2, t

′

1, t
′

2
)
,

c1 = H1 (µ, v1, t2, t1) = H1
(
µ′, v′1, t

′

2, t
′

1
)
.

In the random oracle model, with overwhelming probability
it holds that:

µ = µ′, v2 = v′2, v1 = v′1, t1 = t ′1, t2 = t ′2.

Additionally, note that t3 and t ′3 are the ciphertexts of c1. Then

t3 − t1s = t ′3 − t
′

1s H⇒ t3 = t ′3 H⇒ c = c′ .

So (µ, z1, z2, t1, t2, t3, c2, c) 6= (µ′, z′1, z
′

2, t
′

1, t
′

2, t
′

3, c2, c
′)

= (µ, z′1, z
′

2, t1, t2, t3, c2, c). Then under operator mod q,

B(z′1 − z1) = 0, B(z′1 − z1)+ A(z
′

2 − z2) = 0.

Because ‖z′1 − z1‖∞ ≤ 2B and ‖z′2 − z2‖∞ ≤ 2B, (z′1−z1, 0)
can be a solution to the RSISn,q,m+1,2B problem. By contrast,
the valid signature is on message µ for player j queried to the
signing oracle, which means that the case does not exist for
(j, µ) that was queried by A according to the full traceability
game.
The second case is that

c2 = H1 (µ, v2, t1, t2) , c1 = H1 (µ, v1, t2, t1)

were not returned by the signing oracle, but obtained from
some query to random oracle H1 on query (µ, v1, v2, t1, t2).
In this case, we rewind the program to the point
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(µ, v1, c1, c2) and (µ, v2, t2, t1) of defining H1 (µ, v2, t1, t2)
and H1 (µ, v1, t2, t1), and redefine the random oracle output
such that c′2 = H1 (µ, v2, t1, t2) and c′1 = H1 (µ, v1, t2, t1).
With overwhelming probability, c1 6= c′1 and c2 6= c′2.
By the forking lemma, we obtain another valid signature
(z′1, z

′

2, t1, t2, t
′

3, c
′

2) on the same message µ with probability
ε( ε

h+s −
1
2κ ), such that

Bz′1 − gjc
′
= Bz1 − gjc mod q,

Bz′1 + Az
′

2 − uc
′
= Bz1 + Az2 − uc mod q,

where c = H2(c2, t3) 6= c′ = H2(c′2, t
′

3). Hence

B(z′1 − z1)− gj(c
′
− c) = 0 mod q,

B(z′1 − z1)+ A(z
′

2 − z2)− u(c
′
− c) = 0 mod q.

We claim that

(z′1 − z1)− xj1(c
′
− c) 6= 0, (z′2 − z2)− xj2(c

′
− c) 6= 0,

where gj = Bxj1 and Axj2 + Bxj1 = u. {By Lemma 7,
we know that there is at least a 1 − 4−n chance that there
exists another key gsk[j]′ = (x′j1, x

′

j2) such that Bxj1 = Bx′j1
mod q and Axj2 = Ax′j2 mod q. This shows that for gsk[j]
with (z′1−z1)−xj1(c

′
−c) = 0 and (z′2−z2)−xj2(c

′
−c) = 0,

there exists gsk[j]′ such that (z′1 − z1) − x′j1(c
′
− c) 6= 0 and

(z′2− z2)− x
′

j2(c
′
− c) 6= 0.A does not know any information

about the secret key; hence, we obtain a non-zero answer with
a probability of at least 1/2.}
Because ‖z′1 − z1‖∞ ≤ 2B, ‖z′2 − z2‖∞ ≤ 2B and
‖c′ − c‖∞ ≤ 2κ , (z′1 − z1, c′ − c) can be a solution to the
RSISn,q,m+1,2B problem.
The second condition is that the output of the open algo-

rithm is ⊥. There exist two possible cases. The first case
is that gj /∈ gpk , then signature 6 is a valid forgery of
the LSS with public keys (A,B,u). The second case is
that c1 6= H1(µ,Bz1 − gjc mod q, t2, t1) ∧ gj ∈ gpk , then
signature 6 is a valid forgery of the LSS with public key
(A,B,u). Then B(z′1 − z1) + A(z′2 − z2) = 0 mod q or
B(z′1− z1)+A(z

′

2− z2)−u(c
′
− c) = 0 mod q. These cases

breaks the unforgeability of the LSS that is based on the RSIS
assumption, and more details about the proof is similar to the
proof of the first condition.

To summarize, the scheme is traceable under the RSIS
assumption in the random oracle model.
Remark 3: From the proof of the above theorem,

we observe that if either c1 or c2 was queried to the signing
oracle, then falsification fails for (j, µ) queried by A. This is
the reason that we do not take into account other cases.

E. COMPARISON
In this subsection, we provide a clear size comparison with
the work of Ling el.at in TABLE 1. Before presenting the
table, we provide some notation.
• k is a positive integer, q = Õ(n4)
• l = blog(q/2)c + 1, m ≥ 2dlog qe + 2, m̄ = m+ k
• c > 1 is a real constant, d ≥ logc(ω(log n)), cd ≥
bcd/(c− 1)c

TABLE 1. The size comparison with Ling [1].

TABLE 2. The size comparison with Ling [1] under the security parameter.

• β = Õ(n), B = Õ(n5/4), δβ = blog2 βc + 1,δB =
blog2 Bc + 1

Furthermore, we describe the size difference between
the two schemes with the security parameter λ as
follows.

VI. CONCLUSION
We presented a new constant-size group signature scheme
based on the RLWE andRSIS assumptions. In the key genera-
tion algorithm, we used trapdoor algorithms overRq to enroll
new users and create the common public equation, which is
the first difference from [9] and reduces the number of public
matrices to two. In the signing algorithm and verification
algorithm, the LSS with an IND-CCA encryption scheme
constitute the procedure, which is the second difference from
[9] and reduce the signature size. In the open algorithm,
we not only decrypted the ciphertext from the IND-CCA
encryption scheme, but also made a verification from the
LSS, which is the third difference from [9] and ensured
that the signature was only produced by the signer from
the open algorithm. Compared with [9], our construction is
efficient in the signing algorithm, more precise on the open
algorithm and shorter in the public key, private key, and
signature size. However, rejection sampling may cause some
loss in efficiency. Moreover, the scheme has full traceabil-
ity and full anonymity under the RLWE and RSIS assump-
tions, which allow us to select the high argument. Although,
because of the trapdoor in the setup stage, the scheme
may restricted in practical applications. To determine effi-
cient group signatures without the trapdoor is an interest-
ing future work. We will consider whether there is another
approach to construct the lattice-based constant-size group
signature.
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