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ABSTRACT Real-time apple detection in orchards is one of the most effective ways of estimating apple
yields, which helps in managing apple supplies more effectively. Traditional detection methods used highly
computational machine learning algorithms with intensive hardware set up, which are not suitable for infield
real-time apple detection due to their weight and power constraints. In this study, a real-time embedded
solution inspired from ‘‘Edge AI’’ is proposed for apple detection with the implementation of YOLOv3-tiny
algorithm on various embedded platforms such as Raspberry Pi 3 B+ in combination with Intel Movidius
Neural Computing Stick (NCS), Nvidia’s Jetson Nano and Jetson AGX Xavier. Data set for training were
compiled using acquired images during field survey of apple orchard situated in the north region of Italy, and
images used for testing were taken from widely used google data set by filtering out the images containing
apples in different scenes to ensure the robustness of the algorithm. The proposed study adapts YOLOv3-tiny
architecture to detect small objects. It shows the feasibility of deployment of the customized model on cheap
and power-efficient embedded hardware without compromising mean average detection accuracy (83.64%)
and achieved frame rate up to 30 fps even for the difficult scenarios such as overlapping apples, complex
background, less exposure of apple due to leaves and branches. Furthermore, the proposed embedded
solution can be deployed on the unmanned ground vehicles to detect, count, and measure the size of the
apples in real-time to help the farmers and agronomists in their decision making and management skills.

INDEX TERMS Edge AI, machine learning, real-time embedded systems, object detection.

I. INTRODUCTION
Monitoring agricultural farms and orchards mainly rely on
skilled farmers and workers who are responsible for assessing
several growth stages before perform-farming related actions
in order to maximize the quality and yield. Manual work
of these farmers consumes time and increases production
costs, and workers with less knowledge and experience make
unnecessary mistakes. With the advancements in precision
agriculture and information technology, crop imaging has
become an important source of information that can be used
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to assess vegetation status of the crops, fruits growth, yield,
and quality.

Two important features that enable the farmers to estimate
crop-load and yield mapping in tree fruit crops are fruit
counting and size estimation. Several studies have proposed
fruit detection in orchards using machine vision systems for
automatic growth assessment, robotic harvesting, and yield
estimation [1], [2]. Apple crop-load management has gained
much importance due to its impact on yield production. It has
been the primary problem to develop algorithms that enable
the apple harvesting robot to directly, quickly, and accurately
recognize fruits in real-time [3]. In the natural environment,
for the visual systems, apple fruit detection is typically more
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difficult because of the influence of lights and shadows,
branches, and leaf coverings. Apple’s visual appearances in
the natural environment may be categorized as non-occluded
fruits and occluded fruits.

Occlusion of fruits due to leaves, branches, and other fruits
and variable lighting conditions are some of the main reasons
that make it more challenging to achieve good accuracy and
robustness in fruit detection [1]. Experiments in few studies
have been performed in nighttime environments with the
formation of tunnel structures around tree canopies to deal
with variable lighting conditions. Images from both front and
back ends are taken of tree canopies using multiple sensors to
avoid fruit occlusion, [4], [5], [7], which leads to having high
fruit detection accuracy. Nevertheless, fruit size estimation
is needed for automatic robotic harvesting of mature and
good-sized fruits, due to the difficulty level of the real-time
robotic harvesting, few studies [7], [8], have exploited fruit
size estimation using amachine vision system.Wang et al. [7]
performed experiments using an RGB-D camera a thin lens
theory to estimate the size of mango fruits in trees. Ultrasonic
sensors have also been tested with the color images for size
estimation of citrus fruit along with the range information
Regunathan et al. [9].
With the upsurge of machine learning, deep learning

algorithms have been extensively used in agriculture-related
applications [10]. Deep learning can be used for crop map-
ping [11], [12], crop image segmentation [13], crop target
detection [14], [15]. Convolutional Neural Networks (CNNs)
are used in [16] to extract target regions in the image, object
segmentation, and counting number of fruits on a tree using
a successive CNN counting algorithm. Dias et al. [13] used
CNN in combination with support vector machine (SVM) to
extract the features of apple blossoms automatically way to
counter complex background, which leads to achieving com-
paratively accurate apple blossom area segmentation results
than the previous studies. Faster R-CNN [17] was employed
with the region proposal network (RPN) method to detect
the region of interest (ROI) in the image with a complex
background scene followed by a classifier, which classifies
bounding boxes. Faster R-CNN with VGG16 net [18] is the
state-of-art method in fruit detection [10]. However, Faster
R-CNN consists of region proposal networks (RPN) and clas-
sification networks that produced excellent results in terms
of accuracy, while the detection speed is slow, which can not
achieve good results in real-time with high image resolution.
The You Only Look Once (YOLO) method [19], [20] deals
with the classification and the localization as a regression
problem. A YOLO network directly performs regression to
detect targets in the image without RPN, hence it is fast
and can be implemented in real-time applications. The state-
of-art version (YOLOv3) [20] not only has high detection
accuracy and speed but also performs well with detecting
small targets. However, the YOLOv3 model is not suitable
for real-time applications such as in harvesting robots due to
its complex architecture that requires more processing power.
Optimization of the parameters of the model reduces the

computational complexities and thus is needed to deploy on
edge devices such as Jetson, and Raspberry Pi.

Large data sets training and validation require high-
performance computing machines such as clusters or servers,
which are widely being used in deployment of power exten-
sive deep learning algorithms [21], [22], however, in the low
power end devices, researchers have raised their concern
about efficiency of CNNs, in real-time embedded plat-
forms [23], [24]. Network optimization (i.e., network prun-
ing or quantization) is a technique to reduce the model size
by compressing the dense model into sparse or low-bit archi-
tecture with minimal or even no accuracy drops.

A. AI ON THE EDGE AND RELATED WORK
Real time smart solutions inspired from deep learning, must
possess the following key capabilities such as energy effi-
cient, affordable and small form factor with the fine bal-
ance between accuracy and power consumption. Indeed, deep
learning based architecture are conventionally deployed with
in the centralized cloud computing environment. However,
there are constraints such as considerable latency of the net-
work, energy and financial overheads that effects the overall
performance of the system. To deal with these limitations,
edge computing often called ‘‘edge AI’’ has been intro-
duced where computations are performed locally on the data
acquired from various devices or sensors.

The challenge in meeting the implementation requirements
for edge AI is to ensure high output accuracy of algorithms
while consuming low power. Nevertheless, the innovation in
hardware options, involving central processing units (CPUs),
graphics processing units (GPUs), application-specific inte-
grated circuits (ASICs), and system-on-a-chip (SoC) accel-
erators, has made edge AI possible. NVIDIA, Intel, and
Qualcommare the leadingmarket brandswhich are contribut-
ing enormously to the development of AI at the edge. Among
these, Intel’s Movidius Neural Computing Stick (NCS) is
the cheapest device to implement computationally extensive
algorithms with multiple layers of CNN. In [25], CNNmodel
was deployed in NCS to perform classification of 3D voxel
based point clouds.

NVIDIA’s Jetson is another uprising embedded hardware
and broadly used accelerators for machine learning algo-
rithms. Promising feature of Jetson is the CPU-GPU het-
erogeneous architecture [26], [27], where CPU boots up
the firmware and the CUDA-capable GPU come with the
potential to accelerate complex machine-learning tasks. Key
features includes form factor, light weight and low power
consumption. However, to gain full potential of Jetson and
attaining real-time performance involves optimization phase
to both Jetson hardware and NN algorithms. Jetson variants
termed as TK1, TX1, and TX2 are widely used in past
few years. For example, in [28], low cost TK1 was used in
drowsiness detection usingmodel compression of deep neural
networks. Nvidia TX1was used in tennis ball collection robot
based on deep learning [29]. In [30], qualitative comparison
was made among various hardware platforms, TX2 ranked
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the highest in terms of throughput. They used Tiny-YOLO
for object detection and claimed better product of accuracy
and frame rate than YOLO and SSD. [31] deployed Tiny-
YOLO on TX2 to perform detection and localization of the
robot using Kinect-V2 visual sensor. Casecaded CNN model
was deployed in TX2 for semantic weed classification using
multi spectral images for smart farming [32].

In our work, we deployed a modified version of the
YOLOv3-tiny algorithm on embedded platforms such as
Raspberry Pi 3 B+ in combination with Intel Movidius Neu-
ral Computing Stick (NCS), Nvidia’s Jetson Nano and Jetson
AGX Xavier for real-time apple detection.

The rest of the paper is organized as follows. Section 2 will
cover the data set description and hardware details. In section
3, the architecture framework is described with further expla-
nation of the performed customization for small object detec-
tion. Section 4 will describe the experimental results and
discussion followed by the conclusion.

II. MATERIALS AND DATA
An orchard has been considered in order to acquire a custom
data set for the training process. Subsequently, a technique
dubbed transfer learning [47] has been applied, re-training,
and fine-tuning a custom version of the network YOlOv3-tiny
specifically optimized for accurate detection of small objects
on embedded devices. After training, the resulting network
has been benchmarked on all images of OIDv4 [46] data
set (training, validation, and testing) with the Apple class,
producing a reproducible metric that can be easily compared
with future works. Finally, the trained model has been tested
on several edge AI devices assessing their performance in
terms of speed and power consumption.

A. DATA SET DESCRIPTION
Two popular types of apple (Braeburn and Fuji) were consid-
ered in this study, which are the most common types found in
the north part of Italy. Image acquisition campaign was con-
ducted in randomly selected healthy apple trees in orchards
using a reflex digital camera with 18 megapixels during
different times and days of September. Image acquisition was
performed for separate/non-overlapped fruits, overlapping
fruits/occluded fruits under variable lighting conditions such
as fully exposed to sun from front, full sun influencing from
the back of the fruits, and fruits covered by the shades of
leaves/branches or other apples.

B. HARDWARE DESCRIPTION
The concept of Edge AI consists of performing computa-
tions locally on an embedded system in real-time. Since the
training process requires a lot more computational power as
compared to the inference process, it is not performed on
the embedded system, but a dedicated workstation. Then,
the model with the obtained weights is deployed on the target
hardware in order to be executed.

The workstation used for training was equipped with an
NVIDIA RTX 2080Ti GPU with CUDA 10 and 64GB of

FIGURE 1. The 1x1 convolution predicts, for each location of the first two
dimensions of the input tensor, an array with [3 ∗ (5 + C)] where C is the
number of classes. So, with COCO data set the output tensor is encoded
with a dimension 255.

FIGURE 2. The analyzed embedded platforms. Top left: Raspberry Pi 3 B+
with Intel NCS2. Top right: NVIDIA Jetson AGX Xavier. Bottom left: NVIDIA
Jetson Nano. Bottom right: Raspberry Pi 3 B+ with Movidius NCS.

DDR4 SDRAM. This GPUmodel features 544 Tensor Cores,
an NVIDIA technology specifically designed to boost matrix
multiplication performance, thus able to speed up the training
process of deep learning models. The computational power
of this GPU allows reaching peak performances of about
26.9 TFLOPs (FP16) [33].

For the embedded implementation of the model, different
hardware platforms have been considered, as shown in Fig. 2.:
a Raspberry Pi 3 B+ with both generation of Intel Movid-
ius Neural Compute Stick accelerators, an NVIDIA Jetson
Nano, and an NVIDIA Jetson AGX Xavier. Table. 1. shows
a comparison between the main specifications of the selected
embedded hardware.

Neural Compute Sticks (NCS) are USB hardware acceler-
ators specifically designed to perform AI computations. Two
generations of NCS have been tested: the first is powered
by a Myriad 2 VPU (Visual Processing Unit) processor [34],
while the second features a Myriad X VPU [35]. These two
chips are designed by IntelMovidius to accelerate deep neural
network inferences. Since the Neural Sticks provide a USB
3.0 interface, they are suitable to be used with embedded,
lightweight, and cheap computers such as a Raspberry.

NVIDIA, on the other hand, provides a family of boards
that feature an embedded computer with a dedicated GPU
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TABLE 1. Main specifications of the platforms investigated in this study. Each device is reported with its related commercial price at the time of
publication. It is important to point out that the two versions of Intel Movidius Neural Compute Stick (NCS) necessitate an external embedded system. For
our research, we exploited a Raspberry Pi 3 B+.

for hardware acceleration. The boards examined in this work,
the AGX Xavier and the Nano, are the last two Jetson plat-
forms presented by NVIDIA.

The AGX Xavier has been released in Autumn 2018 and
currently is the most powerful Jetson board available. It fea-
tures a Volta GPU micro-architecture with 64 Tensor Cores,
able to reach up to 11 TFLOPs (FP16), and two NVDLA
(NVIDIA Deep Learning Accelerator) engines. These chips
are specifically designed to perform neural network standard
operations such as convolutions efficiently. A single NVDLA
is able to compute up to 2.5 TFLOPS. Thus, the overall peak
performance of the AGX Xavier is about 16 TFLOPS. The
board can work in different power modes, and it gives the user
the possibility to select the number of working CPU cores.
The available power modes are 10W (2 cores), 15W (4 cores),
30W (2, 4, 6 or 8 cores) [36].

The Jetson Nano has been presented in June 2019 espe-
cially for target applications where reducing the board size,
power consumption, and price is important. For the hardware
acceleration, it features an NVIDIA Maxwell GPU with a
peak performance of 472 GFLOPs. The Nano board does not
include any deep learning specific accelerator and can work
in two power modes at 5W or 10W [36]. So, it does not take
advantage of Tensor cores and NVDLA engines for inference
acceleration.

III. METHODOLOGY AND ARCHITECTURE FRAMEWORK
YOLO is a network specifically designed for fast and accurate
real-time object detection. It has comparable performance
in terms of accuracy with other popular object detection
algorithms like RetinaNet [37], Faster-RCNN [38], but it is
much faster and compact that makes it an optimal choice for
real-time embedded applications. It is a single fully convolu-
tional neural (FCN) network that takes as input a raw image
and gives as output bounding boxes and related classes of
recognized objects inside the presented scene.

Since 2016 different versions have been released [19], [20],
[39] that gradually have increased the accuracy of the general
framework without giving away too much of its inference
speed. At the same time, all different versions have been
released with a lighter counterpart dubbed ‘‘tiny’’ that has a
simplified and optimized structure without loss of too much
accuracy. The intrinsic characteristics of the ‘‘tiny’’ version
make it suitable for AI applications at the edge with the use of
embedded systems, enhancedwith hardware accelerators. For
this reason, this research has taken the last available ‘‘tiny’’
version of YOLO, YOLOv3-tiny, as a starting point for the
realization of an embedded apple detector system.

In the rest of this section, fundamental working principles
of the network and the modifications applied to the original
‘‘tiny’’ architecture are presented in order to make it suitable
for the detection of smaller objects in the scene like an apple.

A. ARCHITETURE OF THE ORIGINAL FRAMEWORK
YOLOv3-tiny, as already introduced, makes use of only con-
volutional layers, making it a fully convolutional network
that can accept inputs of different sizes during and after
training. It can be divided into two main blocks: the first one
is the feature extractor or backbone dubbed darknet-19. Its
principal and the fundamental role are to extract features in a
hierarchical fashion a starting from raw pixels coming from
the input layer. Indeed, the extracted representations are later
used as starting point by the other modules of the network.
Darknet-19 is a light and efficient feature extractor, but can
be easily swapped with any other backbone like ResNet [40],
DenseNet [41], etc. It features a standard architecture greatly
inspired by VGGNet [18], making use of only 3x3 filters
throughout the entire structure, max-pooling layers in order
to reduce the dimensionality of the input volume and obtain
local invariance. Finally, darknet-19 exploits Batch Normal-
ization layers [43] to accelerate the network training, reduc-
ing the internal covariance shift. All backbone blocks use
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FIGURE 3. Overview of the modified version of the model YOLOv3-tiny. The original architecture features only the two first branches because it
makes detection at two different scales instead of three. The detection layers exploits feature maps of three different sizes, having strides 32, 16, 8.
Each YOLO layer predicts for each cell three bounding boxes using three different anchors.

LeackyReLU [42] as activation function. On the other hand,
the second block of the YOLOv3-tiny architecture analyzes
the produced backbone representations, and it predicts posi-
tion and class of belonging of the different objects present in
the input raw image. That is achieved with 1x1 convolutions
arranged in a Pyramid Network [44] structure. The structure
of the original architecture is unrolled in Table. 2. where each
layer is presented with its output tensor dimension.

B. INTERPRETING THE PREDICTIONS
Given an input image, the final output prediction of the
network is a list of bounding boxes along with the recognized
classes. First of all, the backbone reduces dimension of input
images by a factor called the stride of the network. Then,
the features extracted by the cascade of convolutional layers
feed a classifier/regressor, which makes the detection predic-
tions. That is performed by a 1x1 convolutional layer always
placed before the ‘‘YOLO’’ layer. So, the output prediction
of the network is a feature map tensor that has the same first
two dimensions of the previous layer.

For example, settings of the network shown in Table. 2.,
after layer 14, the following 1x1 convolution processes
the input tensor of dimension 13x13x512 and produces
for each 13x13 location a vector with 255 elements. In
Fig. 1. is depicted how these arrays are internally arranged.
Each of them can be divided into B sections, where each
section is responsible for predicting a specific bounding box.

TABLE 2. YOLOv3-tiny original architecture with input images of
dimension 416×416. In this example, the two 1×1 convolutional layers
15 and 22 that make the final predictions are set to work with the COCO
[45] data set (80 different classes).

A bounding box is characterized by the dimensions expressed
as center coordinates tx , ty, width tw and height th. More-
over, each bounding box is accompanied by a confidence
score to. This confidence score reflects how confident is the
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network that the box contains an object and also how accurate
it thinks the box has the right dimension. More formally,
as in the original paper of the first version of YOLO [19],
we can define confidence as Pr(Object) ∗ IOU truth

pred where
IOU truth

pred is the intersection over unit between the ground
truth box and the predicted one. Finally, each section has also
C conditional class probabilities, Pr(Classi|Object) that in
the YOLO layer are normalized with a sigmoid activation
function. In the second version, the softmax activation func-
tion has been replaced because it assumes mutually exclusion
between different classes. That is not true with larger data set
like ImageNet [48], where labels are arranged as a directed
graph [49] and not as flat structure.

Summarizing, the 1x1 convolution produces for each loca-
tion an array of [B∗ (5+ C)] elements where C is the number
of classes of the training data set and B is the number of
bounding boxes that for YOLOv3-tiny is equal to 3. So, for
the COCO data set, C is equal to one, and so the output tensor
of layer 15 in Tab. 2 is equal to 13 x 13 x 255.

It is essential to point out that, YOLO, starting from
the second version, does not predict coordinates directly, but
it refines hand-picked priors known as anchors. This approach
simplifies the problem and makes it easier for the network to
learn. Moreover, an ablation study made by the author [39]
demonstrated how predicting offsets increased the recall of
the network and stabilized gradients during training. So, for
each cell, there are three bounding boxes with dimensions
decided a priori. The network, during the learning phase,
learns how to adjust these bounding boxes when an object
is detected. Anchors dimension is critical, and in order not to
manually guess their prior dimension, authors of the YOLO
paper suggest to use k-mean clustering over the data set
ground truth bounding boxes in order to predict the width and
height of the box as offsets from cluster centroids. That allows
generating prior bounding boxes that initialize themodel with
better representation and make the task easier to learn.

As presented in Fig. 4. the center of the object falls in a
certain cell of the 13 x 13 grid. That cell is the designated one
that has to detect the presence of the object. During training,
we force the network to use the anchor box that has the prior
dimension with the higher IOU with the ground truth. So,
the network will generate tx , ty, tw and th in order to refine
one of its anchors present in that cell to perform the detection
of the object. Then the YOLO layer will apply the following
transformations in order to compute the dimension of the
refined anchor box:

bx = σ (tx + cx) (1)

by = σ (ty + cy) (2)

bw = pweth (3)

bh = pheth (4)

bx , by, bw and bh are the x, y center coordinates, width and
height of our prediction. On the other hand, cx and cy are
instead the top-left coordinates of the grid designated for the
prediction and pw, ph are anchors prior dimensions of the box.

FIGURE 4. Yolov3-Tiny, as the region proposal network (RPN) [38] in
Faster R-CNN, predicts the dimension of the bounding boxes as offsets to
pre-defined hand-picked prior boxes known as anchors. Predicting the
log-space transforms and not directly the dimension of the bounding
boxes prevents unstable gradients during training and simplifies the
problem making easier for the network to learn.

In conclusion, once trained, YOLOv3-tiny outputs a tensor
of N x N x [3 ∗ (5 + C)]. So, for each of N x N location
the network outputs three bounding boxes with their related
confidence σ (to) and C class probabilities pc. Then, confi-
dence score and Non-maximum Suppression (NMS) are used
to remove multiple detections and produce the final output
bounding box predictions.

C. A CUSTOM YOLOV3-TINY FOR SMALL OBJECTS
DETECTION
The two first versions of YOLO greatly struggle at detecting
small objects in the input image. That is mainly because
that YOLO imposes a strong spatial constraint on bounding
box predictions since each grid cell can only predict three
bounding boxes. Moreover, the input dimension reduction
performed in the backbone induces loss of low-level features,
which are instrumental for detecting small objects. For this
reason, the authors proposed with the third version of the
‘‘Tiny’’ network [20] an FPN structure producing detection
at two different scales. The network downsamples the input
raw image until the first detection layer, where a prediction
is made using feature maps of a layer with stride 32. Then,
layers are upsampled by a factor of two and concatenated
with representation maps of a previous layer having identical
feature map sizes.

We took this concept even further, and we build a
YOLOv3-tiny architecture with predictions across three dif-
ferent scales. So, our model makes detection at feature
maps of three different sizes, having strides 32, 16, and 8.
Moreover, the input dimension has been increased from
416 × 416 to 608 × 608, and so, detections are made on
scales 19 × 19, 38 × 38, and 76 × 76.
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FIGURE 5. Our custom version of YOLOv3-tiny predicts three different scales. The detection layers make detection at features maps of three different
sizes, having strides 32, 16, 8, respectively. So, having in our model an increased input size of 608 × 608, detections are made on scales 19 × 19, 38 ×
38 and 76 × 76.

Fig. 3. presents the overall architecture of the modified
network. It is clear from the representation, the pyramid struc-
ture: extracted features from the backbone are sampled at two
different points and are lately concatenated with upsampled
higher-level representations. In this way, high-level features
are enriched with low-level information that helps the net-
work learn fine-grained features that are fundamental for
detecting small objects. At each scale, YOLO layers predict
three bounding box per cell using three different anchors.
So, the total number of anchors used is nine and the total
number of bounding boxes predicted by themodified network
is equal to [(19 x 19) * 3 + (38 x 38) * 3 + (76 × 76) * 3]
= 22743. Confidence scores and later NMS will take care
to drastically reduce this number removing low confidence
boxes and redundant detections.

On Fig. 5. is depicted a graphical representation of the
tensors used for the predictions at the three different scales.
Each grid represents the tensor used for the prediction; over-
lapped with the original input, it shows where the model is
making the prediction. It is noticeable how a finer grid can
greatly improve the prediction capabilities of small objects.
Indeed, for our specific case, this simple modification largely
improves the accuracy of the model with a small overhead in
terms of speed and power consumption.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, firstly some technical details of the training
process of the modified architecture of YOLOv3-tiny are
presented, then experimental evaluations are discussed for
both the model and its deployment on the selected embed-
ded platforms. Finally, quantitative and qualitative results are
reported with a comparison between the different devices.

A. EXPERIMENTAL TRAINING SETTINGS
We first processed raw data (stored in PNG format), intro-
duced in section II-A, acquired from the test site in order
to create a set of n = 618 samples images X = Xi.
Subsequently, inspired by Active learning techniques [50],

in order to speed up label generation, we used an exten-
sive and accurate version of YOLOv3 known as YOLOv3-
spp, pre-trained on the COCO data set, to create a draft of
the ground truth labels Y = yi. In order to increase the
recall of the model, we set the network with a low value
of confidence. Then, we performed manual inspection of
the produced ground truth, using LabelMe [51], refining,
and adjusting the predictions of the YOLOv3-spp network.
Finally, we applied a straightforward pipeline to pre-process
our set X of training samples; each image has been first
resized from 5202×3465 at a 1920×1080 dimension and
then, mean subtraction [52] has been applied to normalize the
training data.

Using transfer learning, we started our training from a pre-
trained backbone of the original model. That greatly speeds
up the training, drastically reducing the number of training
samples required to achieve a high level of accuracy. Except
for the first two output dimensions, the backbone parameters
are the same as the original model described in Table. 2.
Indeed, having set the default input tensor to 608× 608× 3,
the first two dimensions of the table are different for our mod-
ified implementation. Then, following the already discussed
architecture in Fig. 3. the specifications for the number of
filters, dimensions, and strides are presented in Table. 3. It is
worth to notice the dimension of the prediction tensors at the
three different scales; having only one class, the number of
features is [B∗ (5+C)]= 18. This low number of dimensions
further decreases the inference time required by the network.

We trained the network for 100 epochs using AdamW
optimizer [53] and setting β1 = 0.89 and β2 = 0.99 and
ε = 10−9.

θt+1 = θt −
η√
v̂t + ε

mt − ηwdθt (5)

Moreover, AdamW updating rule (5) applies a slight mod-
ification to the original Adam updating rule; it subtracts a
little portion of the weights at each step ηwdθt regularizing
large weights inside the network and giving advantage to
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FIGURE 6. Comparison between the original YOLOv3-tiny and our modified version that performs predictions at
three different scales. Fig. (b). and (d). produced by our custom version demonstrate a considerable improvement
over the predictions of the original model. The additional detection at a scale with stride 8 largely improve the recall
of the model and make it much more robust to scale variations. All the predcition are done with default confidence
threshold c = 0.25. Precision and recall are computed for IOUtarget = 0.5.

TABLE 3. FPN section of our YOLOv3-tiny modified architecture.
Detections are made with feature maps at three different scales, obtained
fusing upsampled high level features with low level representations of
the same size.

rare features. In all our experimental evaluations it proved to
give better results than classical L2 regularization [54] that
modifies directly the cost function. We set wd = 0.0001.
All training has been carried out on a workstation with

an NVIDIA RTX 2080 Ti and 64GB of DDR4 SDRAM.

The training took on average one-hour using the TensorFlow
framework and CUDA 10.

B. QUANTITATIVE RESULTS: MODEL PERFORMANCE
To understand the model performance, mean average pre-
cision (mAP) is computed on the test dataset. Mean aver-
age precision is a popular object detection scoring method
that assesses the network performance in detecting the tar-
get objects for different values of target intersection over
unit IOUtarget. This methodology has been presented for
the PASCAL Visual Object Classification (VOC) challenge
2012 [55]. Each predicted bounding box i is compared with
the ground truth and marked as correct (true positive TP) if
the apple is present and IOUi > IOUtarget. If IOUi is lower
than the target or the apple is not present, the prediction
is marked as incorrect (false positive FP). Finally, all the
apples not detected are marked as missing predictions (false
negative FN). Since the predicted bounding boxes are given as
output only if they have a level of confidence above a certain
threshold c, it is possible to compute the precision (p) and the
recall (r) of the network over the test dataset as a function
of c:

p(c) =
TP(c)

TP(c)+ FP(c)
r(c) =

TP(c)
TP(c)+ FN(c)

(6)
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TABLE 4. Detection performance of the network on the test dataset from OIDv4. The same computation is made with the original YOLOv3-tiny
architecture retrained on the same training dataset. The results show how the proposed architecture can boost the recognition in agriculture context by
allowing small fruits detection.

TABLE 5. Comparison between different devices power consumption and performances achieved with our customized version of YOLOv3-tiny. Jetson
series boards can be run at different power modes reducing current absorption at the expense of lowering computational capabilities. The mode column
shows the theoretical maximum absorbed power in the different working modality, that is different from the actual dissipated power during the
execution of the algorithm. The best performance, in terms of frame per second, is highlighted with a red rectangle.

Computing all the possible values of p(c) and r(c), it is
possible to get the precision/recall curve. The graph is then
usually smoothed in order to get a monotonically decreasing
precision curve by setting p(r) = maxr ′≥r p(r ′). The average
precision of the network is computed as the area under the
obtained curve and is always a number between 0 and 1:

AP =
∫ 1

0
p(r)dr (7)

An average precision equal to 1means that the detector is able
to reach a perfect precision (100%) for all the values of recall.
Thus it is possible to find a value of c such that we are able
to detect all the objects with correct bounding boxes. On the
other hand, an average precision of 0 means that we cannot
detect any object correctly whatever value of c we choose,
thus both p(c) and r(c) are always equal to 0.

For a multi-class object detection algorithm, the mean
average precision is the mean of the AP over all the classes.
In our specific context, we are dealing with apples only, thus
AP=mAP. The mean average precision gives thus a piece of
information on the quality of the network detection indepen-
dent from the chosen c, that can be chosen considering what
is more important among precision and recall for the specific
application.

Different values of mAP can be computed depending on
the selected IOUtarget. Usual values are 0.5 and 0.75 in order
to evaluate the model performance with different require-
ments on the detection accuracy of the locations of the
objects. Table. 4. presents the recall and precision for the
default confidence threshold c = 0.25 and the mean average
precision for the two values of IOUtarget. The same compu-
tation has been performed with the original YOLOv3-tiny

architecture, retrained for the apple detection only with the
same methodology described in section IV-A. The results
presented in Table. 4. show how the change in the architecture
can boost the mAP on the test dataset of up to 6.6%.

C. QUANTITATIVE RESULTS: EMBEDDED
IMPLEMENTATION
After the training, the model has been deployed on the differ-
ent hardware platforms presented in section II-B. We tested
the performance in terms of absorbed power and frame rate.

Firstly we measured the power consumption of the differ-
ent boards (Jetson AGX Xavier, Jetson Nano, Raspberry Pi
3B+) at idle condition, and then we executed the algorithm
for nearly 5 minutes to be sure to be at steady state. We mea-
sured directly the current absorbed from the power source,
thus obtaining the power consumption of the entire system.
Since the Jetson boards allow the user to select different
working conditions, we tested all of them. The results are
presented in Table. 5.

The NVIDIA Jetson AGX Xavier is the most perform-
ing platform, being able to reach 30 fps in the 30W oper-
ational mode. Also, in the other modalities, it is able to
reach frame rates suitable for strong real team applications.
With the Jetson Nano, the frame rate drops to 8 fps in 10W
mode, which can still be an acceptable value for soft real-
time contexts. With the Raspberry Pi and the Intel’s NCS,
the performance is further lowered. With the same running
conditions, the more advanced NCS2 is able to outperform
its predecessor both in terms of frame rate and power con-
sumption. However, despite being more flexible, these USB
accelerators cannot go beyond the five fps in the best case.
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FIGURE 7. Qualitative results of some additional test images acquired from the same study site of the training data set. It is possible to
notice how our custom version of YOLOv3-tiny is robust to different factors of variation [56] in how apples appear. Simultaneously
handling variations in illumination, viewpoint, scale, occlusion, and background clutter is a challenging task that our system has to
tackle in real-time with limited computational capabilities.

An interesting comparison between the different platforms
is the price/fps ratio, shown in Table. 6. The Jetson Nano

appears to be the best choice if we are looking for a balance
between performance and cost. On the other hand, the AGX
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TABLE 6. Price/performance analysis of the different embedded
platforms. The best price/fps ratio is highlighted with a red rectangle.

Xavier has the higher ratio, since it is a board with the highest
quality, but certainly not suitable for low-cost solutions. The
Intel Neural Sticks results in the second and third place for
price/fps ratio, but it must be underlined that, since they are
USB accelerators only, an additional embedded computer
must be purchased, increasing the final cost.

D. QUALITATIVE RESULTS AND COMPARISON
Fig. 7 presents some test images excluded during the training
phase. It is possible to see how our network is able to rec-
ognize a great number of apples in several image conditions
such as different illumination and contrast. The network is
able to detect the fruits on different scales, and in particu-
lar it can recognize very small apples, even in bad lighting
conditions.

A comparison with the original architecture is presented
in Fig. 6. We processed two images excluded from the train-
ing dataset with default confidence threshold c = 0.25 and
we computed precision and recall with IOUtarget = 0.5. It’s
interesting to notice that precision and recall for image (a)
are both 0, since no bounding box have sufficient intersection
over unit to be considered as a true positive. Image (c) has
precision equal to 1, but very poor recall, since the network
is able to detect only the 8% of the apples. Our architecture,
on the other hand, is able to strongly increase the recall detect-
ing very small fruits, boosting the quality of the predictions.
In this scenario, the mAP gain is a lot higher with respect
to the test dataset taken from OIDv4. This is due to the
fact that the images of the apple class in the OIDv4 dataset
present, on average, bigger apples with respect to the training
dataset taken on a real orchard, so the difference between the
two architectures is less visible. On the other hand, on the
test images taken from the same dataset used for training,
the ability of detecting little apples becomes fundamental to
reach a high recall value. However, we presented our results
for the OIDv4 in order to make the experiments repeatable
and allow direct comparison with our work.

V. CONCLUSION
A real-time apple detection system has been developed and
tested on several edge AI devices. The classical YOLOv3-
tiny architecture has been modified and adapted in order to
increase its accuracy in the presence of small and largely
occluded objects. It has been trained with a custom data
set, acquired on a real orchard, and tested with all available
images of OIDv4. Accuracy results have demonstrated a

boost in terms of recall and precision in the presence of targets
with disparate sizes. Experimental evaluations have been car-
ried out in order to highlight performances achieved in terms
of inference speed and power consumption by the different
embedded solutions selected. Experimentation results have
shown promising prospects to exploit the tested system to
produce real-time positions and numbers of detections with
minimal power consumption. A complete framework could
integrate the presented research for diverse purposes, from
apple counting, harvesting health assessment to smart pack-
aging. Indeed, further works will only focus on yield estima-
tion using the proposed methodology to count the number
of apples reliably. Indeed, image registration has not been
directly addressed in this study, but it is a strong requirement
in order to reduce double count and improve the precision
of the system. Moreover, in view of an extension of the pre-
sented analysis, FPGA/ASIC implementation will be consid-
ered for future developments of this research study. Finally,
the adopted methodology is not limited to apple detection
task, but could also be implemented for other applications
where the detection of small and tiny objects in real-time at
the edge is needed.
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