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ABSTRACT In the application of wireless sensor networks (WSNs) to smart grid, real-time and accurate
wireless link quality prediction (LQP) is important to determine which link is reliable enough to under-
take the communication task. However, the existing LQP methods are neither suitable to describe the
dynamic stochastic features of link quality nor to ensure the validity of prediction results. In this paper,
a random-vector-functional-link-based LQP (RVFL-LQP) algorithm is proposed. The algorithm selects the
signal-to-noise ratio (SNR) as the link quality metric and decomposes the raw SNR sequence into the time-
varying sequence and the stochastic sequence according to the analysis of wireless link characteristics. Then,
the RVFL network is used to establish the prediction model of the time-varying sequence and the variance
of the stochastic sequence. Lastly, the probability-guaranteed interval boundary of SNR is predicted, and
the validity and practicability of prediction results are evaluated by comparative experiments and real-world
application, respectively.

INDEX TERMS Wireless sensor networks, link quality prediction, RVFL network, probability-guaranteed
interval boundary.

I. INTRODUCTION
The increasing demand for the reliability of the electricity
supply promotes the modernization of the power grid sys-
tem, which is called the smart grid. The smart grid is an
integrated cyber-physical system composed by power grid
and communication network to support bi-directional flows
of electricity and information for more effectively coordinate
the global electrical energy among the generators and con-
sumptions [1]–[2]. Nevertheless, how to realize the ubiqui-
tous communication over a huge number of geographically
distributed power grid devices in the wide-ranging area is a
challenge.

Due to the high cost of install and maintenance, the poor
scalability features, the traditional wired network technolo-
gies are not suitable for the communication of widely dis-
tributed and large-scale power grid devices [2]. On the other
hand, wireless sensor networks (WSNs) had attracted exten-
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sive attention because of their features of low cost, ease of
deployment, and versatility [3]–[5]. In 2011, the ‘‘Develop-
ment Framework and Roadmap of Smart Grid’’ by NIST
listed the ZigBee protocol (a specification of WSNs) as one
of the recommended communication standards for smart grid.
In the meanwhile, IEEE 802.15.4g, the lower layers protocols
of ZigBee, is released, which is exclusively used in utility
smart-grid network and capable of supporting large and geo-
graphically diverse networks [6]. The standards specialized
for smart grid further facilitates its applications, including
power fraud detection, transmission line monitoring, fault
diagnostics, load control, and distribution automation appli-
cation [7]–[11].

Although the WSNs have many advantages for the appli-
cations in smart grid, there still exist some issues. One of
them is to satisfy the reliability requirements of smart grid.
Commonly, the wireless signal is stochastic changing caused
by multipath interference, background noise, and shadow
fading, etc., which leads to the time-varying fluctuation of
the wireless link quality. This dynamically stochastic feature
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affects the reliability of the wireless link. Although the pro-
tocol of WSNs improves reliability through the retransmis-
sion mechanism, the increased delay leads to a degradation
of overall network efficiency. Because there are a lot of
redundancy wireless links in the mesh-sharp topology of
WSNs, when the quality of one link degrades significantly,
the WSNs node could choose a high-quality link for trans-
mitting. Therefore, predicting the link quality of WSNs helps
WSNs to make a routing-path decision and avoid packet loss
in advance.

In literature, there are a lot of studies focused on the
link quality prediction (LQP). Shu et al. [12] propose an
LQPmechanismwhich based on dynamic Bayesian networks
to achieve better accuracy and robustness. Zhou et al. [13]
design a compressive-sensing-based LQP to aid the link
update in routing protocols. Qin et al. [14] propose an aug-
mented Kalman-filter-based LQP, the results of experiments
show that LQP performance is significantly improved in com-
parison with conventional Kalman-filter-based LQP. Cerar
et al. [15] systematically study the performance of machine
learning-based LQP. The LQPmethods proposed in [12]–[15]
provide an accurate numerical prediction. However, they all
use the deterministic numerical prediction results to describe
the stochastic features of link quality. Even the LQP results
meet the requirements of reliability, due to the stochas-
tic fluctuation, the actual link quality may lower than the
requirements.

Motivated bymore appropriately describing and predicting
the stochastic wireless link quality for smart grid appli-
cation, we carried out RVFL-Based link quality predic-
tion by probability-guaranteed prediction results. In this
paper, we first analyze the characteristics of the SNR that
is chosen as the wireless link quality metric. Based on
the analysis, we decompose the SNR sequence into the
time-varying sequence and the stochastic sequence. Then
we construct an RVFL model to innovatively predict the
time-varying sequence and the variance of the stochas-
tic sequence. From the perspective of statistical analysis,
probability-guaranteed prediction of the interval boundary of
link quality is carried out, which helps WSNs node to judge
which link meets the reliability requirements, and to select
a more reliable wireless link path among several available
links.

The main novelty and contributions of our study are listed
as follows.

1. According to the theoretical analysis based on the log-
normal path-loss model, the link quality metric (SNR) is
creatively decomposed into the time-varying part and the
stochastic part.

2. A novel RVFL model is proposed to predict two parts
of the link quality metric (SNR), which vary nonlinearly
according to the change of the surrounding environment,
more accurately.

3. The probability-guaranteed interval boundary, which
more suitable for reflecting the stochastic fluctuation of the
dynamic radio link, is predicted.

4. The RVFL-LQP algorithm is verified by real-world
experiments.

The rest of the paper is organized as follows. Section II
summarizes some related work. Then, section III analyzes the
network topology and the characteristics of the link quality
metric. The RVFL-LQP algorithm is elaborated in section IV.
Section V presents all the experiments in different conditions.
In section VI, the application example is illuminated. Finally,
we present the conclusions of this study in Section VII.

II. RELATED WORK
A. LINK QUALITY METRICS AND RELATED METHODS
To rapidly estimate or predict the state of the wireless link,
a lot of methods for LQP are proposed. According to the
metrics they adopted, the existing methods can be classified
into three categories, including physical metrics based, logi-
cal metrics based, and hybrid metrics based [16].

1) PHYSICAL METRICS BASED LQP
The hardware of WSNs node, for example, the TI CC2530,
a widely used low power radio chip, provides the Received
Signal Strength Indication (RSSI) and the Link-Quality
Indication (LQI) after successful transmission. Furthermore,
the environmental noise can be measured by CC2530 while
there is no transmission in progress, which helps to get the
Signal-to-Noise Ratio (SNR). Since the physical metrics are
easy to be obtained, there are many Physical Metrics based
LQP methods. Reijers et al. [17] propose a method that
uses RSSI to predict the link quality. Chen et al. [18] use
RSSI calibration to improve the quality of measurements, but
this method may introduce higher computational complexity,
which makes it unsuitable for low-cost WSNs. However,
when LQI is very high, it can be used to identify high-
quality links [19]. Otherwise, it is difficult to determine
whether the link quality is good or not by LQI. Although
it is more accurate to predict the link quality by mean of
LQI which can be calculated by a certain number of packets
within a window, this approach realized at the expense of
the reducing sensitivity to the change of link quality, and the
length of the calculating window size is difficult to determine.
Senel et al. [20] propose an LQP method based on a Kalman
filter. They filter the RSSI and remove the noise floor in order
to collect the smooth value of SNR. However, this approach
is very complex and does not provide a sufficiently detailed
description of link quality.

2) LOGICAL METRICS BASED LQP
The logical metrics are the statistical results of the packet
reception/retransmission rate from the higher layer of WSNs
protocol, i.e., the application layer, to assess the link quality.
The commonly used logical metrics include Packet Reception
Rate (PRR), RequiredNumber of Packets (RNP), or Expected
Transmission Count (ETX). They can directly reflect the
reliability performance of higher layer without relying on any
hardware. In comparison to physical metrics, LQPs based
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on logical metrics have to execute frequent packet trans-
mission to obtain up-to-date metric values. Woo et al. [21]
adopt PRR as the metric and use the WMEWMA estima-
tor to predict the link quality among nodes. Although PRR
can be obtained easily, a lot of historical data have to be
recorded to compute accurate PRR. Furthermore, the wireless
link has characters of unstable and asymmetrical. However,
the PRR cannot evaluate those characters of link quality
[22]. Moinzadeh et al. [23] present an RNP-based evaluation
method, in which, the potential distribution loss problems are
taken into account. This method is executed on the sender.
It counts the number of packets sent by the sender before
the packet is successfully received. Moreover, RNP cannot
accurately evaluate links due to link asymmetry. Wang et al.
[24] study a passive-monitoring-mode-based LQP method,
in which, the EXT has been selected as the metric to predict
link quality. However, the method fails in overloaded net-
works. In addition, Couto et al. [25] propose a routing pro-
tocol based on the ETX metric to choose the high-throughput
paths, but ETX cannot reflect fast-changing links timely.

3) HYBRID METRICS BASED LQP
The combination of different metric parameters could be
deemed as hybrid metrics. Some hybrid based LQP methods
have been proposed in order to obtain more comprehensive
link information. In literature, Boano et al. [26] adopt the geo-
metrical graph theory to propose the triangle metric, which
geometrically combines the information of PRR, LQI, and
SNR into a robust estimator, in order to obtain a rapid and
trustworthy assessment of the link quality. Baccour et al.
[27] introduce the Fuzzy Link Quality Estimation algorithm
(F-LQE), which uses fuzzy logic to combine four link prop-
erties (the link stability, link asymmetry, channel quality,
and packet delivery). However, in the modeling process, the
membership function not only needs to be artificially defined
but also needs to be changed as the scene changes. Jayasri
and Hemalatha [28] consider all the four link quality indexes
(PRR, ALQI, ASNR, and SA), and propose the enhanced link
quality estimation technique (ELQET). Based on ELQET,
the link quality can be classified into good or poor categories,
but the link quality has high generalization under different
environments. Liu et al. [29] present a link quality evaluation
approach based on 4-bits, which combines the information
of the network layer, data link layer, and physical layer.
This method could significantly improve the accuracy and
timeliness of link estimation.

All the above LQP methods could provide numerical pre-
dictions with different accuracy. However, the strong stochas-
tic feature of the wireless link is not considered. Even the
predictions are executed correctly, the prediction results may
fluctuate up and down around the actual link quality. The
foundational reason is that they use the deterministic number
to describe the link quality with the stochastic feature. This
motivates us introducing probability-guaranteed prediction of
the interval boundary to more correctly describe the stochas-
tic feature of wireless link quality. It’s worth noting that,

TABLE 1. The requirements of smart grid applications.

although the Kalman-filter-based prediction can provide the
boundary prediction, it based on an accurate linear model.
For the prediction of the nonlinear model, linearization is
required, and the linearization introduces errors.

B. SELECTION OF THE LQP METRIC FOR SMART GRID
In the application of wireless sensor networks to smart grid,
the main challenge lies in how to satisfy the reliability
requirements for diverse smart grid applications.

Table 1 summarizes that different smart grid applications
have each specific reliability requirements [30]. The require-
ments are presented in the form of communication success
rate, which could be deemed as the PRR for WSNs. In gen-
eral, PRR is the statistical results which statistically computed
over a period of time. WSNs nodes have to record a lot
of historical data to compute the accurate PRR. However,
the PRR only reflects the average link quality over this period
of time, it cannot reflect the dynamic change of link quality
in a piece of time.

On the other hand, based on the modulation mode (for
example, O-QPSK) that WSNs adopted, the mapping func-
tion between SNR and PRR of radio link quality [31] is
expressed by (1).

γPRR = ϕ(γd ) =

(
1− Q

(√
2× 10

γd
10
BN
R

))8l

(1)

where γd is the SNR value, γPRR is the PRR value (It’s worth
noting that this PRR is not the statistical results introduced
above, it is the computed PRR from the mapping function
ϕ(·)), BN is the noise bandwidth associated with the wireless
transceiver in kHz, l is the packet length, Q(·) is a right tail
function of the standard normal distribution, and R is the data
transmission rate in kbps.

Thanks to the mapping function between SNR and PRR,
the reliability of WSNs communication of smart grid also
could be characterized by SNR. Moreover, SNR can be
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FIGURE 1. Topology of WSNs in smart grid.

directly obtained from hardware and immediately reflect the
fast change of the received signal strength and overall noise.
Then, by using the mapping function to obtain PRR, the
drawbacks of insensitive to dynamical change of link quality
by statistical PRR is avoided. Therefore, SNR is chosen as
the link quality metric in this paper.

III. WSNs IN SMART GRID
In this section, we first give the topology of WSNs that con-
sidered in smart grid applications. Then, the characteristics of
the link quality metric are theoretically analyzed.

A. TOPOLOGY OF WSNs IN SMART GRID
The network topology composing wired and wireless
networks to form WSNs communication in smart grid is
presented in Fig.1. In this topology, the optical fiber commu-
nication is used to expand the distance of the WSNs. In the
meanwhile, the WSNs covering the branches and terminal
equipment is used to improve the range of point-to-point opti-
cal fiber. The coordinator node connects to the gateway via
optical fiber, and finally links to the smart grid management
system.

The WSNs in Fig.1 are a mesh-type complex network
[32], [33]. When a WSNs node could not directly commu-
nicate with the coordinator node, the multi-hop relay mech-
anism is adopted. Although there exist two or three-node
motif, thanks to the routing protocol of WSN, each node only
has to concerns the reliability of the link between itself and
its next hop neighbor on the routing path. In other words,
when a node has more than one routing path to upload data,
it can predict the quality of the links with its neighbors based
on the historical and real-time information, and then choose
a neighbor with more reliable link to forward data. In this
manner, link quality prediction is essential to estimate the
routing path. Therefore, in this paper, we only consider the
relationship between a node and its neighbor nodes in the net-
work, because all nodes could adopt the same scheme.

B. THE THEORETICAL CHARACTER OF SNR
There are several radio propagation models for analyzing
the radio link in WSNs, including ground bidirectional

reflectance model, free-space model, and log-normal path-
loss model. Since the log-normal path-loss model can reflect
almost all kinds of environment and disturbance factors under
different variables, and is suitable for both high-density build-
ing and low-density building areas, it is commonly adopted as
a general propagation model for WSNs in smart grid appli-
cations [34]–[37]. The log-normal path-loss model describes
the relationship between the signal strength of received elec-
tromagnetic wave and transmission paths. By taking the
background noise into account, the SNR (in dBm) of the
communication link [37], [38] is given by:

γd = Ptx − PL (d0)− 10ηlog10(
d
d0

)− Xσ − Pn (2)

where γd is the SNR of the received signal when the distance
between the receiver and transmitter is d , Ptx denotes the
output power of the transmitter in dBm, and PL (d0) is the
power decay after transmitting d0 meters, d0 is the reference
distance which is commonly chosen 1m. η is the path-loss
exponent, which depends on the surrounding environment.
Xσ is the influence of multipath effect on the received sig-
nal, and it is expressed as a zero mean Gaussian random
process with standard deviation σx ,which can be represented
as Xσ ∼ N (0, σ 2

x ).
Meanwhile, Pn represents the background noise power in

dBm, it can be approximated as the Gaussian noise, which
subjects to a Gaussian distribution with a time-varying mean
of Pn and variance of σ 2

n , i.e., Pn ∼ N (Pn, σ 2
n ).We define the

variable Xn as (3).

Xn = Pn − Pn (3)

It’s known that Xn ∼ N (0, σ 2
n ), then substitute (3) into (2),

we can get (4).

γd = Ptx−PL (d0)− 10ηlog10(
d
d0

)−Pn−(Xσ + Xn) (4)

From (4), the SNR consists of two parts: (1) the time-
varying part, Ptx − PL (d0) − 10ηlog10(d/d0) − Pn, and (2)
the stochastic part, Xσ + Xn.The mean of background noise,
the path-loss exponent, the transmission power, and the dis-
tance may change over time in communication, they reflect
the time-varying and nonlinear characteristics of the signal
in space. Meanwhile, the stochastic part is the combination
of two Gaussian random variables, whose mean is 0 and
variance σ 2 is expressed as (5).

σ 2
= σ 2

x + σ
2
n (5)

According to the theoretical analysis above, it is clear
that the link quality metric, SNR, is composed of two parts
with quite different features. Therefore, in the link prediction,
we focus on improving prediction methods for dealing with
these characteristics.

IV. RVFL-LQP ALGORITHM
The theoretical analysis results motivate us to decompose
the SNR signal into the time-varying part and the stochastic
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FIGURE 2. RVFL-LQP algorithm structure.

part. In this section, we propose the RVFL-LQP algorithm to
predict the SNR time sequence. Fig.2 shows the RVFL-LQP
algorithm, which consists of signal decomposition, RVFL
network prediction, and probability-guaranteed prediction.

Based on the analysis of wireless communication links,
the SNR is a kind of time sequence with time-varying
and stochastic characteristics. We first decompose the raw
SNR time sequence into the time-varying sequence and the
stochastic sequence. Then we calculate the variances of the
stochastic sequence to better describe the stochastic charac-
teristics. Consequently, the RVFL network is used to predict
the time-varying sequence and the variances of the stochas-
tic sequence, respectively. Lastly, we obtain the probability-
guaranteed interval boundary of PRR as the prediction results
to indicate the link reliability for smart grid application.

A. DECOMPOSITION ALGORITHM OF WIRELESS LINK
QUALITY
To decompose the time-varying part and stochastic part,
we introduce the moving-average filter to pre-process raw
SNR sequence for more convenient and effective.

Suppose the WSNs node recorded raw SNR sequence,
which is noted by R(L) = {r1, r2, · · · rL}. Through the
moving-average filter, the time-varying sequence part, noted
by RT (L) = {rt1, rt2, · · · rtL}, is expressed as:

rtk =


r1 + r2 + · · · + rk

k
, k = 1, 2, · · · ,W1 − 1

rk−W1+1 + rk−W1+2 + · · · + rk
W1

,

k = W1,W1 + 1, · · · ,L

(6)

where W1 (W1 < L) is the moving window size to calculate
the time-varying sequence.

And the other decomposed part, the stochastic sequence
part, noted by RS(L) = {rs1, rs2, · · · rsL} shows as:

rsk = rk − rtk , k = 1, 2, · · · ,L (7)

In addition, when we choose the suitable moving window
size, it may take a short time to send the packets within the

FIGURE 3. RVFL network model structure.

window. In the meanwhile, as shown in equation (4), Xσ +Xn
is the stochastic process, Xσ is the influence of multipath
effect on the received signal, Xn is affected by the back-
ground noise of the environment. In a short time, we assume
the surrounding environment does not change tremendously,
we can approximate the multipath effect and background
noise as the stationary process. So we approximate RS(L) as
a stationary stochastic process as well. Then we can obtain
straightforwardly the variances of the stochastic sequence,
noted by RV (L) = {rv1, rv2, · · · , rvL} shows as:

rvk =



1
k

∑k

i=1

(
rsi −

rs1 + rs2 + · · · + rsk
k

)2

,

k = 1, 2, · · ·W2 − 1
1
W2

∑W2

i=1(
rsk−W2+i −

rsk−W2+1 + rsk−W2+2+· · · + rsk
W2

)2

,

k = W2,W2 + 1, · · · ,L
(8)

where W2 (W2 < L) is the moving window size to calculate
the variances sequence.

B. RVFL NETWORK PREDICTION MODEL
Both the time-varying sequence and the variances of the
stochastic sequence vary nonlinearly according to the change
of the surrounding environment. To address the problems of
predicting SNR, in this section, we adopt the non-iterative
RVFL neural network to achieve the fast and accurate predic-
tion for two parts of the decomposed SNR sequence.

The RVFL network is a special case of single hidden layer
feed-forward neural networks, and it appears faster compared
with traditional neural networks which are iterative learning.
Furthermore, the network presents more effective relative to
non-iterative networks which without the direct input-output
links.

Fig. 3 depicts the architecture of the RVFL model
which we adopt. In this model, we consider the time-
varying sequence RT (m) = {rtj, rtj+1, rtj+2, · · · rtj+m−1},
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and the variances of the stochastic sequence RV (m) =
{rvj, rvj+1, rvj+2, · · · rvj+m−1} as the input data. The output
data are the predicted rtj+m and rvj+m(j + m ≤ L). For
convenience, all input data for N samples is represented by
xgn(g = 1, 2, · · · ,N ; n = 1, 2, · · · , 2m), all output data for
N samples is represented by ygh(g = 1, 2, · · · ,N ; h = 1, 2),
i.e., the number of input layer nodes isNI = 2 ·m, the number
of output layer nodes is NO = 2, respectively. Then after
many experiments, we choose the optimal number of hidden
layer nodes NH = 33.
Furthermore, the RVFL network uses direct links to con-

nect input layer nodes with output layer nodes. Then an RVFL
network with NH hidden layer nodes can be formulated as:

Hω = Y (9)

where H is a complicated matrix combining input data and
outputs from the hidden layer nodes, ω is an output weight
vector drawn by dashed arrows, and Y is an output matrix.
Then H and ω are shown as:

H = [H1H2]

H1 =

 x11 · · · x1,2m
...
. . .

...

xN1 · · · xN ,2m


H2 =

 G(a1 · x1 + b1) · · · G(aNH · x1 + bNH )
...

. . .
...

G(a1 · xN + b1) · · · G(aNH · xN + bNH )

 (10)

ω =

 ωT1
...

ωT(2m+NH )

 (11)

where xg =
[
xg1, xg2, · · · , xg,2m

]T (g = 1, 2, · · · ,N ), G(·)
is the activation function, aq =

[
aq1, aq2, · · · , aq,2m

]
(q =

1, 2, · · · ,NH ) is the input weight of the q-th hidden layer
node drawn by solid arrows, and bq(q = 1, 2, · · · ,NH ) is
the bias of the q-th hidden layer node. To reduce the itera-
tive adjustment time, the random values of all input weights
and biases are uniformly distributed in the interval [−1,1]
and [0,1].

We directly calculate the output weights ω by the Moore-
Penrose pseudo-inverse, which are shown in (12).

ω = H†Y = (HTH )−1HTY (12)

where the symbol † denotes the Moore-Penrose pseudo-
inverse.

In summary, the process of training the RVFL network is
as follows:
(1) Distribute random values to input weight aq and bias bq,

respectively.
(2) Obtain the complicated matrix H , where G(x) = 1

1+e−x ,
and the input data is the training data.

(3) Apply least square estimation to calculate the output
weights ω, where Y is the training target.

Then combining the obtained aq, bq, ω with the test data,
we could calculate the prediction results for the test data
by (13).

Ŷ = Ĥω (13)

where the input data contained in Ĥ is the test data, and Ŷ is
the prediction results for test data.

C. PROBABILITY-GUARANTEED INTERVAL PREDICTION
OF LINK RELIABILITY
In this paper, the output data, rtj+m and rvj+m are predictions
of the RT (m) and RV (m), respectively. Meanwhile, rtj+m
could be deemed as the mean of the predicted SNR value
rj+m, and rvj+m could be deemed as the variance of the
predicted SNR value rj+m. According to the analysis of (4),
the SNR can be regarded as a Gaussian distributionwithmean
rtj+m and variance rvj+m.

Due to the SNR are stochastic, we introduce the
probability-guaranteed interval to express the prediction
value of SNR. To satisfy the requirements of the reliability for
smart grid applications, the probability-guaranteed prediction
of interval boundary (lower boundary) on the SNR can be
expressed as: [

rtj+m − zα ·
√
rvj+m,+∞

)
(14)

where α represents the probability-guaranteed level and zα is
the α-th quantile of the Normal distribution.

The relationship between SNR and PRR expressed accord-
ing to equation (1), the probability-guaranteed prediction
of interval boundary (lower boundary) on the PRR can be
expressed as:[

ϕ
(
rtj+m − zα ·

√
rvj+m

)
,+∞

)
(15)

where the function ϕ(·) is expressed in equation (1).

V. EXPERIMENTAL ANALYSIS
In this section, we conduct several experiments to evaluate the
proposed RVFL-LQP algorithm on WSNs testbed in a power
substation. The experimental WSNs include eleven CC2530
transceiver nodes and random obstructions between WSNs
nodes.

As shown in Fig.1, the WSNs of smart grid may have a lot
of nodes. Those distant nodes have no impact on the current
wireless link. In our prediction algorithm, we only consider
the point-to-point radio link quality. So, ten neighbor nodes
around one are dense enough to represent a congested radio
channel as a part of WSNs. In the experiment, three WSNs
links are selected, their spacing distance are 10m, 50m, and
90m, respectively.

All nodes work on the 2.4GHz band with a maximum data
transmission rate of 250 kbps. The length of each packet
is 20 bytes. On those links, nodes send packets from one to
another every 300ms. Then we collect the received signal
strength and the measured background noise to calculate the
SNR as shown in the (4). Then, prediction algorithms are
carried out.
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FIGURE 4. In the case of 10m spacing distance: (a) raw SNR sequence,
(b) time-varying sequence, (c) stochastic sequence, and (d) variances of
stochastic sequence.

A. DECOMPOSITION OF SNR
Firstly, all SNR sequence are collected and decomposed. The
decomposed SNR sequence for three WSNs links (spacing
distance are 10m, 50m, and 90m, respectively) is recorded
to train the proposed RVFL algorithm. The decomposition
process is depicted in Fig.4, Fig.5, and Fig.6.

From the collected raw SNR sequence of three differ-
ent cases in Fig.4(a), Fig.5(a) and Fig.6(a), as the spacing
distance increases, the average value of SNRdecreases gradu-
ally. By the proposed decomposition method, the correspond-
ing time-varying parts are extracted (W1 = 10) (see Fig.4(b),
Fig.5(b) and Fig.6(b)). And the stochastic sequence varies
randomly have a mean of nearly zero (see Fig.4(c), Fig.5(c)
and Fig.6(c)). In addition, the variances of the stochastic
sequence are calculated as shown in Fig.4(d), Fig.5(d) and
Fig.6(d) (W2 = 30). These results verify the analysis of
Section III B and Section IV A. Then, the decomposed results
are used to train the output weight coefficients ω for the three
radio links.

B. PREDICTION RESULTS
As the original data sequence decomposed into two individual
sequences here, we use the non-iterative RVFL network to
predict each individual part. Based on the trained output

FIGURE 5. In the case of 50m spacing distance: (a) raw SNR sequence,
(b) time-varying sequence, (c) stochastic sequence, and (d) variances of
stochastic sequence.

TABLE 2. The number of tested SNR values that fall above the predicted
lower boundary for different moving window sizes.

weight coefficients ω, we predict the lower boundary of the
tested SNR when α = 0.95.
Besides, the shorter moving window size will affect the

accuracy of the mean and the variance of the SNR. However,
the longer movingwindow size will make the computedmean
and variance not sensitive to the dynamic change. Therefore
we have to balance the computation error and sensibility to
dynamical change. Table 2 summarizes the number of tested
SNR values that fall above the predicted lower boundary
for different moving window sizes, the larger the number,
the better. Based on the comprehensive analysis of various
prediction results at different spacing distances, we choose
W1 = 10 andW2 = 30 as the optimal moving window sizes.

Furthermore, the lower boundary of the tested SNR is
presented in Fig.7 when α = 0.95, W1 = 10 and W2 =

30. As shown in Fig.7, there is a total of 500 tested SNR
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FIGURE 6. In the case of 90m spacing distance: (a) raw SNR sequence,
(b) time-varying sequence, (c) stochastic sequence, and (d) variances of
stochastic sequence.

data for each WSNs link. Based on the statistic results of
the experiments, 488 tested SNR values fall above the pre-
dicted lower boundary in Fig.7(a), 491 above in Fig.7(b), and
492 above in Fig.7(c). The results show these data ratios are
almost consistent with the specified probability-guaranteed
level of 0.95. Therefore, the conclusion can be obviously
obtained that the proposedRVFL-LQP algorithm can produce
an accurate prediction of the probability-guaranteed interval
boundary of link quality.

C. COMPARISON RESULTS AND DISCUSSION
In this section, we carry out a comparative study on the
link quality prediction algorithms, including the Expert-
Prediction-based LQP algorithm (Expert-Prediction) [39],
the XCoPred algorithm [40], the State-Space-based LQP
algorithm (State-Space) [41], and our RVFL-LQP algorithm.
Different methods are employed as independent forecasting
tools to predict the link quality data that collected from the
power substation. Furthermore, we compare four different
link quality prediction algorithms for those three WSNs link
(spacing distance are 10m, 50m and 90m, respectively).

Based on these results shown in Fig.8, Fig.9 and Fig.10,
it can be clearly known that: (1) Even the Expert-Prediction,
XCoPred, and State-Space algorithms try to predict the exact

FIGURE 7. The probability-guaranteed interval boundary of the tested
SNR: (a) for the 10m spacing distance, (b) for the 50m spacing distance,
and (c) for the 90m spacing distance.

value of link quality, however, the stochastic feature makes
them deviate the actual value. (2) Our method could give an
accurate lower boundary of link quality. Almost all the tested
SNR values and prediction results of the Expert-Prediction,
XCoPred, State-Space algorithms are above the lower bound-
ary. Therefore our RVFL-LQP algorithm considers the link
quality under worst case and helps to determinate the link is
good or not.
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FIGURE 8. Tested SNR data and prediction results of the RVFL-LQP,
Expert-Prediction, XCoPred and State-Space algorithms for the 10m
spacing distance.

FIGURE 9. Tested SNR data and prediction results of the RVFL-LQP,
Expert-Prediction, XCoPred and State-Space algorithms for the 50m
spacing distance.

To further compare four algorithms, we categorize the state
of the link quality into the steady state (the SNR remains
stable), the rising state (the SNR increases stable), the falling
state (the SNR decreases stable), and the dispersed state
(the SNR fluctuates relatively large). Fig.11, Fig.12 and
Fig.13 show the partial zoom-in views of Fig.8, Fig.9 and
Fig.10 respectively.

In the case of a link with 10m spacing distance, combining
Fig.11, we can analyze it in detail. When the link quality
is in the steady state as depicted in Fig.11(a) (sequence
number is between 233 and 253 in Fig.8), the Expert-
Prediction, XCoPred and State-Space algorithms all perform
well, and the average prediction errors of these algorithms
are all less than 1dBm. When the link quality is in the
rising state as depicted in Fig.11(b) (sequence number is
between 58 and 78 in Fig.8), or in the falling state as depicted
in Fig.11(c) (sequence number is between 370 and 390 in
Fig.8), the XCoPred algorithm performs best, and the Expert-
Prediction algorithm performs worst. When the link quality

FIGURE 10. Tested SNR data and prediction results of the RVFL-LQP,
Expert-Prediction, XCoPred and State-Space algorithms for the 90m
spacing distance.

FIGURE 11. Zoomed-in views of the link quality in the case of 10m
spacing distance: (a) the steady state, (b) the rising state, (c) the falling
state, and (d) the dispersed state.

is in the dispersed state as depicted in Fig.11(d) (sequence
number is between 193 and 213 in Fig.8), the average predic-
tion errors of three algorithms above are worse, all within the
range of 2.5 to 2.9 dBm.

In the case of a link with 50m spacing distance, combining
Fig.12, we can analyze it in detail. When the link quality is in
the steady state as depicted in Fig.12(a) (sequence number
is between 353 and 373 in Fig.9), the Expert-Prediction,
XCoPred, and State-Space algorithms all performwell.When
the link quality is in the rising state as depicted in Fig.12(b)
(sequence number is between 30 and 50 in Fig.9), the average
prediction error of the XCoPred algorithm is lowest (merely
0.9412dBm), and the State-Space algorithm has lower aver-
age prediction error than the Expert-Prediction algorithm.
When the link quality is in the falling state as depicted
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FIGURE 12. Zoomed-in views of the link quality in the case of 50m
spacing distance: (a) the steady state, (b) the rising state, (c) the falling
state, and (d) the dispersed state.

FIGURE 13. Zoomed-in views of the link quality in the case of 90m
spacing distance: (a) the steady state, (b) the rising state, (c) the falling
state, and (d) the dispersed state.

in Fig.12(c) (sequence number is between 472 and 492 in
Fig.9), the State-Space algorithm has lower average pre-
diction error than the Expert-Prediction and XCoPred algo-
rithms. But when the link quality is in the dispersed state as
depicted in Fig.12(d) (sequence number is between 156 and
176 in Fig.9), the average prediction errors of the three algo-
rithms are all slightly larger, approximating to 3.4 dBm.

From Fig.13, the same analysis can be made for a link with
90m spacing distance as follows: when the link quality is in
the steady state as depicted in Fig.13(a) (sequence number is
between 133 and 153 in Fig.10), the State-Space algorithm

TABLE 3. The validity of link quality prediction results for the 10m
spacing distance.

TABLE 4. The validity of link quality prediction results for the 50m
spacing distance.

has lower average prediction error than the Expert-Prediction
and XCoPred algorithms. When the link quality is in the
rising state as depicted in Fig.13(b) (sequence number is
between 51 and 71 in Fig.10), the XCoPred algorithm has
lower average prediction error than the Expert-Prediction
and State-Space algorithms. When the link quality is in the
falling state as depicted in Fig.13(c) (sequence number is
between 286 and 306 in Fig.10), the State-Space algorithm
performs better than the XCoPred algorithm, and in the
meanwhile, the XCoPred algorithm performs better than the
Expert-Prediction algorithm.Moreover, when the link quality
is in the dispersed state as depicted in Fig.13(d) (sequence
number is between 193 and 213 in Fig.10), although the
XCoPred algorithm has the best performance, the Expert-
Prediction is the worst, the average prediction errors of three
algorithms are all still large. With the low accuracy, the max-
imum average prediction error value even exceeds 5.3dBm.
These results show that the prediction results of these three
algorithms are not stable.

According to the relationship between SNR and PRR in
equation (1), it can be deduced that as the SNR increases,
the PRR increases. That is to say, if the tested value is above
the prediction result, when the prediction result satisfies the
communication requirements, the tested value can also be
guaranteed to satisfy the communication requirements. If the
tested value is below the prediction result, even if the pre-
diction error is small, it is impossible to guarantee whether
the tested value satisfies the communication requirements.
We use the index validity of the prediction results to describe
the proportion of the tested values above the prediction
results.

Table 3-5 summarize the validity of prediction results
of Expert-Prediction, XCoPred, State-Space and our
RVFL-LQP algorithms in different situations. It can be seen
from the statistical results that the tested values are randomly
above or below the prediction results in the Expert-Prediction,
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TABLE 5. The validity of link quality prediction results for the 90m
spacing distance.

FIGURE 14. The experiment environment of indoor substation.

XCoPred and State-Space algorithms, and the validity of
prediction results are unstable. However, the validity of the
prediction results of our RVFL-LQP algorithm is always the
highest, even up to 100%. In our algorithm, according to
the prediction results, the tested value can be guaranteed to
satisfy the communication requirements with the maximum
probability.

In power systems and other industrial fields, when link
quality information is needed to solve routing decisions in
data communication, the overall validity of link quality pre-
diction results is more important than its accuracy.

Apparently, from the above analysis, the conclusion of our
observations are as follows:

(1) Due to the strong randomness of link quality, the
Expert-Prediction, XCoPred, and State-Space algorithms
present different prediction results in different situations, and
their prediction results are unstable. In general, the stronger
the fluctuation is, the more unstable the results are.

(2) The lower boundary predicted by our RVFL-LQP algo-
rithm can adaptively vary with the fluctuations of tested SNR
values, and it has high validity. Besides, almost all the tested
SNR values fall above the lower boundary, which verified
that the proposed RVFL-LQP algorithm can provide an accu-
rate and trustworthy prediction of the probability-guaranteed
interval boundary.

Therefore, we can conclude that our algorithm is more
valid and stable than other LQP algorithms above.

VI. APPLICATION EXAMPLE
To illuminate the proposed RVFL-LQP algorithm for real-
world application in an industrial environment, we predict

FIGURE 15. The results of application example.

the SNRs for a wireless link at an indoor substation. The
experiment environment is shown in Fig.14, one WSNs node
is playing as the transmitter and the other one is the receiver,
and the transmitter is connected to the PC for collecting
the link quality metric (SNR). Based on the collected data,
we carry out the RVFL network on the PC online to predict
the link quality.

We first performed the simple mathematical operation
through equation (6)-(8) to decompose SNR. Then we use
the RVFL network to establish the prediction model by equa-
tion (10)-(13). The RVFL randomly initializes all weights and
biases between the input layer and hidden layer nodes, and
the equation (12) is just to obtain the output weights. Then
we use equation (13) to calculate the outputs. For the RVFL
network, we chose the number of input layer nodes NI =
2 ·m = 16, the number of output layer nodes NO = 2, and the
optimal number of hidden layer nodes NH = 33. We do only
1154 simple mathematical operations. Finally, we obtain the
probability-guaranteed prediction of lower boundary through
equation (14)-(15). The whole process is done by basic math-
ematical operations.

The prediction results are expressed by the blue curve
in the Fig.15. In addition, we substitute the PRR require-
ment of 99% and 95% into (1). Then, we get the corre-
sponding requirement of SNR is 6.5 dBm and 5.5 dBm
respectively. In the experiment, the link is randomly
obstructed.

As shown in Fig.15, there are 150 predictions of the lower
boundary by our RVFL-LQP method. If the prediction value
of SNR is above the red line, which means the transmission
reliability is higher than 99%. If the prediction value of SNR
is between the red line and the green line, which means
the transmission reliability is higher than 95% but lower
than 99%. Otherwise, the transmission reliability is lower
than 95%.

Therefore, we can use the above results to decide whether
this link is reliable enough for transmitting the packets of
different smart grid applications according to the reliability
requirements as in Table 1.
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VII. CONCLUSION
In this paper, by analyzing the log-normal path-loss model
and using the decomposition method, the SNR time sequence
in the wireless link is decomposed into two different parts due
to the time-varying and stochastic characteristics. The RVFL
method is used to predict the two parts separately, and the
probability-guaranteed interval boundary of the communica-
tion link quality is derived based on the prediction results.
The experiment results show that the lower boundary of link
quality can accurately reflect the changing of link quality, and
it is more valid than the existing LQP algorithms. In addition,
we also illuminate how to apply the RVFL-LQP to provide a
reliability prediction in WSNs for smart grid applications by
real-world experiment.

Furthermore, we investigate the performance of complex
network [42]–[44], we also look forward to further study the
following topics:

(1) In consideration of link weight, the reliability predic-
tion of multi-hop wireless links in the network.

(2) Apply the prediction results to the optimal control of
smart grid communication to further ensure reliability.
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