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ABSTRACT Essential proteins play significant roles in cell survive. In current years, some Protein-Protein
Interaction (PPI) data have been discovered in saccharomyces cerevisiae. Due to the high costs of biological
experiments, a growing number of computational models are adopted to predict essential proteins. However,
the identification accuracy of these computational models still has broad space for improvement. In this
paper, a novel prediction model called NPRI is proposed to infer potential essential proteins based on
the PageRank algorithm. In NPRI, a new heterogeneous Protein-Domain network will be constructed by
integrating three kinds of networks such as the weighted PPI network, the Domain-Domain network and
the initial Protein-Domain network first. Here, these three kinds of networks are established in accordance
with gene expression data, original PPI network and known Protein-Domain network respectively. Next,
based on the newly constructed heterogeneous Protein-Domain network, we will extract functional features
and topological characteristics for each protein to further construct a novel distribution rate network. And
then, an improved iteration method based on the PageRank algorithm will be implemented on the novel
distribution rate network to infer essential proteins. Finally, in order to evaluate the performance of NPRI,
we will compare NPRI with other state-of-the-art prediction models, and simulation results show that NPRI
can achieve reliable identification accuracies of 90%, 84.5% and 79% in top 100, 200 and 300 predicted
candidate essential proteins separately, which outperform these competitive models remarkably, and means
that NPRI is a promising framework for identifying essential proteins as well.

INDEX TERMS Essential proteins, protein-protein interaction network, domain-domain network, hetero-
geneous protein-domain network, pagerank algorithm.

I. INTRODUCTION
Increasing evidences indicate that proteins are involved in
almost all life activities, while the functions and importance
of different proteins in life activity are different. As an impor-
tant group of proteins, essential proteins play a vitally impor-
tant role in the development and survival of organisms, which
can provide fundamental requirements for sustaining life and
have practical value in synthetic biology. Lack of these pro-
teins will result in the losing of biological function of the
protein complex and even death of the organism. Thus, pre-
dicting essential proteins has gradually become a hot issue,
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which is advantageous to the disease treatment and medicine
development. In biology, essential proteins are identified
mainly through biological experiments, such as single gene
knockout RNA interference, conditional knockout, etc. How-
ever, biological experiments are very time-consuming and
expensive. Hence, in recent years, a large number of com-
putational methods have been proposed successively. Among
them, the accuracy for detecting key proteins is still a critical
and challenging task [1]–[4].

Up to now, existing models for predicting essential pro-
teins can be roughly classified into two major categories.
Models of the first category focus on adopting topologi-
cal characteristics of the PPI network to predict key pro-
teins only. For instance, based on the centrality-lethality
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rule presented by Jeong H et al. [5], a variety of methods
including DC (Degree Centrality) [6], IC (Information Cen-
trality) [7], CC (Closeness Centrality) [8], BC (Between-
ness Centrality) [9], SC (Subgraph Centrality) [10], NC
(Neighbor Centrality) [11] and EC (Eigenvector Central-
ity) [12] have been proposed to infer potential essential
proteins successively. Since all these PPI network topology
based methods do not need additional biological informa-
tion, they can break through the limitation of traditional
biological experiments and achieve great progress on iden-
tification of essential proteins. However, due to the lack of
integrated PPI networks, false positive and negative data
involved in PPI networks may bring negative influences to the
prediction results. Therefore, these methods based on topo-
logical features of PPI network cannot achieve satisfactory
prediction results while being applied to identify essential
proteins.

The second category of prediction methods aim to improve
the prediction accuracy of the first category of predic-
tion methods by combining PPI networks with some bio-
logical information, including the sub-cellular localization,
the evolutionary conservation and gene expression, to infer
key proteins. For example, M Li et al. [13] proposed a
prediction model named PEC through combining the PPI
network with the gene expression to identify basic pro-
teins. Zhang et al. [14] developed a calculative model called
CoEWC based on both PPI network and the gene expression
profile to detect potential key proteins. W Zhang et al. [15]
put forward an algorithm to discover essential proteins by
integrating the PPI Network with gene expression data and
gene otology information. Lei et al. [16] raised a com-
putational model RSG to recognize key proteins through
combining the information of RNA-Seq, Subcellular Local-
ization and GO annotation datasets to build a novel weighted
PPI network. J Zhong et al. [17] proposed a calculative
model by combining various biological data to predict key
proteins. Y Fan et al. [18] took advantage of the sub-
cellular localization and Person correlation coefficient to
construct a new weighted PPI network to identify essential
proteins. Shabnam and Izudheen [19] proposed a novel pre-
diction model by integrating both gene expression profile and
domain information to infer potential key proteins based on
the hypothesis that key proteins are inclined to form dense
cluster. W Zhang et al. [15] incorporated three kinds of data
such as the gene expression data, the Go annotation data, and
the topological feature data to calculate the essentiality of
proteins. Lei et al. [20] introduced amodel called GSP to pre-
dict essential proteins based on multiply biological data and
centralities of proteins. M Li et al. [21] presented a compu-
tational model for identifying key proteins based on a refine
protein interaction network (PIN) and various biological data.
Luo and Ling [22] proposed a prediction model called CSC
for essential protein prediction by adopting topological char-
acteristics of the PPI network and the complex information
of proteins. Zhao et al. [23] constructed a reliable weighted
network based on gene expression data and topological

properties of the weighted network first, and then designed
a calculation method called POEM to predict key proteins
based on overlapping basic modules. Jun et al. [24] adopted
the protein complex information and subgraph centrality
to develop a new algorithm named ECC to infer essential
proteins. Q H Xiao and Wang [4] put forward a framework
for predicting key proteins based on active PPI network
and dynamic gene expression information. Mistry et al. [25]
introduced a graph centrality approach to infer potential basic
proteins by integrating the PPI network and gene expres-
sion data. Qin et al. [26] developed a calculation model to
discover essential proteins in accordance with topological
attributes refined from PPI network and biological informa-
tion including subcellular localization data and orthologous
data.

From above descriptions, we can come to a conclusion that
integrating biological data, such as gene expression profile
data, subcellular information, and orthologous data etc., with
PPI networks can remarkably enhance prediction accuracy
for inferring necessary proteins. Different from these pre-
diction methods mentioned above, considering that a sole
PPI network cannot completely reflect the diversity of bio-
logical characteristics and functional features of proteins,
in this manuscript, a new prediction model called NPRI
will be proposed to infer key proteins based on a hetero-
geneous Protein-Domain network. Here, the heterogeneous
Protein-Domain network is constructed by combining a novel
weighted Protein-Protein network with the initial Protein-
Domain association network and Domain-Domain associa-
tion network.Moreover, for each protein in the heterogeneous
Protein-Domain network, different from other model based
on the heterogeneous network, for instance, RWHN [1],
we will integrate the subcellular localization information,
orthologous information and some critical topological prop-
erties extracted from the original PPI network to obtain its
initial score first. And then, based on the heterogeneous
Protein-Domain network, an iteration algorithm based on
PageRank will be further constructed to detect potential key
proteins. Finally, in order to estimate the prediction per-
formance of NPRI, we will compare it with 13 competi-
tive prediction models including DC [6], IC [7], CC [8],
BC [9], SC [10], NC [11], EC [12], PEC [13], CoEWC [14],
POEM [23], ION [27], LAC [28] and RWHN [1]. Simulation
results illustrate that NPRI can achieve reliable prediction
accuracies of 90%, 84%, 79%, 75% and 70.6% in top 100,
top 200, top 300 and top 400 candidate inferred essential
proteins respectively, which outperform all these state-of-the-
art prediction models remarkably.

II. METHOD
As illustrated in the following Fig.1, NPRI consists of four
major steps:

Step1: First, two original PPI networks will be constructed
based on the datasets of known PPIs downloaded from two
public databases separately. And then, for each pair of pro-
teins in any given original PPI network NI , the Gaussian
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FIGURE 1. Flowchart of NPRI.

interaction profile kernel similarity [29] will be implemented
on gene expression data downloaded from public databases
to calculate weight between them. Thereafter, based on the
original PPI network NI , a novel weighted PPI network NPP
can be obtained.

Step2: Next, based on the domain information and
known Protein-Domain associations downloaded from public
databases, a weighted Domain-Domain association network
NDD and an initial Protein-Domain network NPD will be
further constructed respectively. And then, through integrat-
ing these three kinds of newly constructed networks such as
NPP, NDD and NPD, a novel heterogeneous Protein-Domain
network NHPD can be obtained.

Step3: Moreover, based on the original PPI network NI ,
we can extract some critical topological features for each
protein first, and then, through combining the information
of subcellular localization and orthologous downloaded from
public databases, an initial score can be calculated for each
protein and domain in NHPD.
Step4: Finally, based on the heterogeneous Protein-

Domain network NHPD, a novel PageRank based iteration
algorithm will be designed to predict potential essential
proteins.

A. CONSTRUCTION OF THE WEIGHTED PPI NETWORK
In this section, we first download two datasets of known
PPIs from two public databases such as the Gavin [30]

database and the DIP [31] database separately. After screen-
ing, we finally obtain 1167 essential proteins and 24743 inter-
actions between 5093 proteins from the DIP database,
and 617 essential proteins and 24743 interactions between
1855 proteins from the Gavin database. Based on the datasets
of known PPIs downloaded from above two databases,
we further construct two different original PPI networks
respectively. For convenience, we define NI = {PI , LI} as
the original PPI network based on known PPIs downloaded
from the database I , where PI ={p1, p2,. . . , pK} denotes
the set of proteins downloaded from the database I , and LI
represents the set of edges between proteins in PI . Obviously,
for any given proteins pi and pj in PI , there is an edge
between pi and pj in LI , if and only if there is a known
interaction between them in the database I . Thereafter, based
on the newly obtained original PPI network NI , a K × K
dimensional adjacency matrix NI = (aij)K×K can be con-
structed easily, where there is aij = 1, if and only if there
is an edge between the proteins pi and pj, otherwise, there
is aij = 0.
Next, we will download the dataset of gene expressions

provided by TuBP et al. [32] For each protein p PI , letEx(p, i)
represent its gene expression level at the i-th time, then the
gene expression data of the protein p can be represented
asEx(p) ={Ex(p,1),Ex(p,2),. . . ,Ex(p,m)}. Hence, inspired by
the concept of Gaussian interaction profile kernel similarity,
for any two given proteins pi and pj in PI , the weight between
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them can be assigned as follows:

NPP
(
pi, pj

)

=



α ∗ exp
(
−γp

∥∥Ex (pi)− Ex (pj)∥∥2)+ (1− α) :
if aij = 1 ∧ ∃Ex (pi)∧∃Ex

(
pj
)

1− α : if aij = 1 ∧
(
Ex (pi) ∨ Ex

(
pj
))

0 : if aij = 0 ∧
(
Ex (pi) ∨ Ex

(
pj
))

α ∗ exp
(
−γp

∥∥Ex (pi)− Ex (pj)∥∥2) :
if aij = 0 ∧

(
∃Ex (pi) ∧ ∃Ex

(
pj
))
.

(1)

Here,

γp = γ
′
p/(

1
NEp

∑NEp

t=1
‖Ex (pt)‖2) (2)

where γp denotes the normalized kernel bandwidth on the
basis of new bandwidth parameter γ ′p, NEp represents
the number of proteins having known gene expression, and
the α ∈ [0, 1] is the parameter of distribution proportion.
Obviously, based on above equation (2), we can obtain a

K × K dimensional adjacency matrix NPP, based on which,
we can further construct a novel weighted PPI network NPP
as well.

B. CONSTRUCTION OF THE INITIAL PROTEIN-DOMAIN
ASSOCIATION NETWORK
In this section, we first download the dataset of known
domain information from the Pfam Database [33]. After
screening, we obtain 4936 protein-domain associations
including 3630 proteins and 1107 domains. For convenience,
let D ={d1, d2,. . . , dN} denote all these newly obtained
domains and LPD represent the set of edges between domains
and proteins, then we can construct an initial protein-domain
association network NPD = {PI , LPD} as follows: for any
given protein pi ∈ PI and domain dj ∈ D, there is an
edge between pi and dj in LPD, if and only if there is a
known association between them in these newly downloaded
4936 protein-domain associations.

Obviously, based on the initial protein-domain association
network NPD, we can further construct a K ×N dimensional
adjacency matrix NPD = (bij)K×N , where there is bij = 1,
if and only if there is an edge between the protein pi ∈ PI and
domain dj ∈ D, otherwise, there is bij = 0.

C. CONSTRUCTION OF THE DOMAIN-DOMAIN
ASSOCIATION NETWORK
For any two given domains di and dj in D, let Di and Dj
represent the sets of proteins in di and dj respectively, and
Di ∩ Dj denote the proteins in both di and dj, then we can
calculate theweight between the domains di and dj as follows:

NDD
(
di, dj

)
=


maxpx ,py∈(Di∩Dj)

(
NPP

(
px , py

))
:

if Di
⋂
Dj 6= ∅∧(d i 6= dj)

0 : Otherwise

(3)

Obviously, based on above equation (3), we can further
construct a novel Domain-Domain association network NDD
and obtain a corresponding N × N dimensional adjacency
matrix NDD simultaneously.

D. CONSTRUCTION OF THE HETEROGENEOUS
PROTEIN-DOMAIN NETWORK
Based on these newly constructed K × K dimensional adja-
cencymatrixNPP,K×N dimensional adjacencymatrixNPD
andN×N dimensional adjacency matrixNDD, we can easily
obtain a (K+N )×(K+N ) dimensional heterogeneous matrix
NHPD as follows:

NHPD =

 NPP NPD

NPDT NDD

 (4)

Obviously, based on above equation (4), we can obtain a
heterogeneous Protein-Domain network NHPD.

E. CALCULATING INITIAL SCORES FOR
PROTEINS AND DOMAINS
In order to assign initial scores for protein and domain
nodes in NHPD, in this section, we first download sub-
cellular localization information and orthology information
from the COMPART-MENTS database [34] and the InPara-
noid database (Version 7) [37] separately. And then, let
S ={s1, s2,. . . , sn} denote the set of downloaded subcellular
localizations, pro(si) represent the set of proteins related to
the subcellular localization si, and |pro(si)| denote the number
of proteins in pro(si), it is easy to know that we can obtain the
average number of proteins associated with each subcellular
localization as follows:

Avg_sub =

[
n∑
i=1

pro(si)

]
/n (5)

Next, based on above equation (5), for each subcellular
localization si ∈ S, we define its rank as follows:

Rsub(si) =
rsub(si)

max1≤j≤n(rsub(sj))
(6)

where,

rsub(si) =
|pro (si) |
avg_sub

(7)

So far, based on above equation (6), for any given protein
pi ∈ PI , we can define its feature of the subcellular localiza-
tion as follows:

pro_sub(pi) =
∑

sj∈S(pi)
Rsub(sj) (8)

where S(pi) is the set of subcellular localizations related to pi.
Similar to above description, for each protein pi ∈ PI ,

let ort(pi) denote its conservative score downloaded from the
InParanoid database, then we can as well define its feature of
orthology information as follows:

pro_ort(pi) =
ort(pi)

maxpj∈PI (ort(pj))
(9)
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Furthermore, for any given protein pi in NI = {PI , LI},
we define the set of its neighboring nodes as follows:

NS (pi) = {pj|∃l
(
pi, pj

)
∈ LI , pj ∈ PI (10)

Based on above equation (10), considering that triangle has
the characteristics of both simplicity and stability, for each
protein pi in NI = {PI , LI}, then we can obtain the number
of triangles related to pi in NI as follows:

num_tri(pi) =
∑

pjεNS(pi)
|NS(pi)∩NS(pj)| (11)

where
∣∣NS(pi) ∩ NS(pj)∣∣ is the number of nodes in

NS(pi)∩NS(pj).
So far, based on above equation (11), for each protein pi

in NI = {PI , LI}, we can define its topological feature of
average triangles as follows:

pro_tri(pi) =
avg_tri(pi)

maxpj∈PI (avg_tri(pj))
(12)

Here,

avg_tri(pi) =
num_tri(pi)
|NS(pi)|

(13)

where |NS(pi)| is the number of nodes in NS(pi).
Finally, based on above equations (8), (9) and (12), for each

protein pi in NI = {PI , LI}, we define its initial score as
follows:

NPR0pi=β∗pro_sub(pi)+ γ ∗ pro_ort(pi)+δ∗pro_tri(pi)

(14)

where β ∈ [0, 1], γ ∈ [0, 1] and δ ∈ [0, 1] are parameters
satisfying β + γ + δ = 1.
Based on above equations (14), for any given domain di in

NHPD, we define its initial score as follows:

NPR0di =

∑
p∈Di

NPR0p

max
1≤j≤N

∑
q∈Dj

NPR0q
(15)

F. CONSTRUCTION OF (K+N)×(K+N) DIMENSIONAL
DISTRIBUTION RATE MATRIX DRM
In this section, based on the weighted PPI network NPP, for
any given protein pi in PI , we first define a new set of proteins
related to pi as follows:

N_NP(pi) = {pj|NPP(pi, pj) 6= 0, pj ∈ PI } (16)

Next, let MNPP = max
pe,pf ∈PI

NPP(pe, pf ) and BN
(
pi, pj

)
=

NPP(pi, pj)/(1+MNPP)2, then for any two given proteins
pi and pj in PI , we can further define the distribution rate
between them in NPP as follows:

DRNPP(pi, pj)

=

BN
(
pi, pj

)
∗

NPR0pj∑
pt∈N_NP(pi)

NPR0pt
: If NPP(pi, pj) 6= 0

0 : Otherwise
(17)

Similarly, based on the Protein-Domain association net-
work NPD, for any given protein pi ∈ PI and domain dj ∈ D,
we can define the weight between them as follows:

WNPD
(
pi, dj

)
=


NPR0pi/∑

pt∈Dj
NPR0pt

: If bij = 1

0 : Otherwise
(18)

Based on above equation (18), let MNPD = max
pi∈PI ,dj∈D

WNPD
(
pi, dj

)
, then for any given protein pi ∈ PI and domain

dj ∈ D, we can define the distribution rate between them in
NPD as follows:

DRNPD(pi, dj)

=

{
WNPD

(
pi, dj

)
/(1+MNPD)2 : If WNPD

(
pi, dj

)
6=0

0 : Otherwise

(19)

Moreover, based on domain-domain association net-
workNDD, for any given domains di and dj inD, letMNDD =
max
di,dj∈D

NDD(di, dj), then we can define the weight between

them as follows:

DBN
(
di, dj

)
=

{
NDD

(
di, dj

)
/(1+MNDD)2 : If NDD

(
di, dj

)
6= 0

0 : Otherwise

(20)

Next, for any given domain di in D, we define a new set of
domains related to di as follows:

N_D(di) = {dj|NDD(di, dj) 6= 0, dj ∈ D} (21)

Thereafter, for any given domains di and dj in D, we can
define the distribution rate between them in NDD as follows:

DRNDD(di, dj)

=


DBN

(
di, dj

)
∗

NPR0dj∑
dt∈N_D(di)

NPR0dt
: IfDBN

(
di, dj

)
6= 0

0 : Otherwise

(22)

So far, based on above equations (17), (19) and (22), we can
obtain a new distribution rate matrix DRM as follows:

DRM =

DRNPP DRNPD

DRTNPD DRNDD

 (23)

Based on the PageRank algorithm, let a denote any
given protein node or domain node in the heterogeneous
Protein-Domain networkNHPD, then we can calculate its rank
iteratively according to the following equation (24):

NPRa(t + 1)=ϕ∗DRM ∗NPRa(t)+(1−ϕ)∗NPRa(t) (24)

where NPRa(t) is the score vector of node a at the t-th time,
and ϕ ∈ [0, 1] is the proportional adjustment parameter.

Based on above equations, our prediction model NPRI can
be described in detail as follows:
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Algorithm 1 NPRI
Input: Downloaded dataset of known PPIs, downloaded
orthologous dataset, downloaded subcellular localization
dataset, downloaded domain dataset, downloaded gene
expression dataset, the iteration termination condition ε,
and the proportional adjustment parameter α, β, γ, δ, ϕ.
Output: Top K percent of proteins sorted by the vector
NPRa in descending order
Step1: Establish the heterogeneous Protein-Domain net-
work NHPD according to equations (1)-(4);
Step2: For each protein in NHPD, calculate its initial score
according to equations (5)∼(14);
Step3: For each domain in NHPD, calculate its initial score
according to equation (15);
Step4: Construct the distribution rate matrix according to
equations (16)-(23);
Step5: Let t=t+1, calculate NPRa(t + 1) according to
equation (25) iteratively;
Step6: Repeat step 5 until ‖NPRa(t + 1)− NPRa(t)‖2 <
ε;
Step7: Sort proteins by the value of NPRa in descending
order;
Step8: Output top K percent of sorted proteins.

III. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATA
In order to estimate the performance of NPRI, in this
section, we first compare it with 13 competitive pre-
diction methods such as RWHN [1], DC [6], IC [7],
CC [8], BC [9], SC [10], NC [11], EC [12], PEC [13],
CoEWC [14], POEM [23], ION [27] and LAC [28] respec-
tively. Based on these 1855 proteins downloaded from the
Gavin database [30], 5093 proteins downloaded from the DIP
database [31], and 1107 domains downloaded from the Pfam
database [33], two kinds of heterogeneous matrixes can be
constructed, one is a (5093+1107)×(5093+1107) dimen-
sional matrix based on the DIP database and the other is
a (1855+1107)×(1855+1107) dimensional matrix based on
the Gavin database.

Next, we further download the gene expression data from
the dataset provided by Tu BP [32] and the subcellular
localization data from COMPART-MENTS database [34].
In the newly downloaded gene expression data, proteins with
gene expression data account for 95% of total number of
proteins in both Gavin and DIP databases. However, as for
the newly downloaded subcellular localization data, we only
take advantage of 11 different subcellular localizations that
are closely related to essential proteins, including Endoplas-
mic, Cytoskeleton, Golgi, Cytosol, Vacuole, Mitochondrion,
Endossome, Plasma, Nucleus, Peroxisome and Extracellular,
to define initial scores for proteins. Additionally, we also
download the information of orthologous proteins including
a collection of pairwise comparisons between 100 whole
genomes from the InParanoid database [35], which will

TABLE 1. Influence of α to the prediction accuracy of NPRI based on the
DIP database.

TABLE 2. Influence of α to the prediction accuracy of NPRI based on the
Gavin database.

be used for computing initial scores for proteins. Finally,
a dataset containing 1293 essential genes of Saccharomyces
cerevisiae will be downloaded from four databases such as
MIPS [36], SGD [37], DEG [38] and SGDP [39] as the
benchmark set. Moreover, we will present the simulation
results of NPRI based on DIP in detail, while present the
experimental results of NPRI based on GAVIN briefly.

B. EFFECTS OF THE PARAMETER α

In NPRI, we define a parameter α with value between 0 and
1 to adjust the allocated proportion during iteration. Through
assigning different values to α, the prediction results based
on the DIP database and the Gavin database are illustrated in
the following Table 1 and Table 2 respectively. And as shown
in Table 1 and Table 2, we pick out the top 1%, 5%, 10%, 15%,
20% and 25% real essential proteins detected by NPRI when
α is set to 0.1, 0.2, 0.3, 0.4 and 0.5 respectively. Obviously,
the identification rate of NPRI will vary with different values
ofα. Andwith the increasing of the value ofα, the recognition
rate of NPRI will decrease gradually. Hence, it is easy to see
that NPRI can reach the best prediction performance while
α = 0.1.

C. COMPARISON WITH STATE-OF-THE-ART
PREDICTION METHODS
In this section, we make use of the dataset obtained from
the DIP database to compare NPRI with 13 state-of-the-art
prediction methods including CC, IC, SC, EC, BC, NC, DC,
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FIGURE 2. (a) Top 1% ranked proteins (b) Top 5% ranked proteins (c) Top 10% ranked proteins (d) Top 15% ranked proteins (e) Top 20%
ranked proteins (f) Top 25% ranked proteins. This figure shows the comparison of the number of essential proteins identified by NPRI and
13 competitive prediction models. During simulation, proteins are ranked in descending order based on their ranking scores calculated by
NPRI, CC, IC, SC, EC, BC, NC, DC, LAC, PEC, CoEWC, POEM, ION and RWHN respectively.And then, the top 1%, top 5%, top 10%, top 15%, top
20% and top 25% ranked proteins will be chosen as candidate essential proteins. Thereafter, through comparing with known essential
proteins, the number of true essential proteins detected by each method will be used as the judgment criteria of prediction ability. This
figure shows the number of true key proteins identified by each method.

LAC, PEC, CoEWC, POEM, ION and RWHN respectively.
And simulation results are shown in the following Fig.2.

The receiver operating characteristic(ROC) curve was
introduced to evaluate the performance of NPRI method.
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FIGURE 3. The ROC curves of IC NPRI,SC,Pec,ION (b) The ROC curves of NPRI,DC,EC,CC.

FIGURE 4. Results of comparisons between NPRI and 13 state-of-the-art competitive prediction models based on the top 700 ranked key
proteins by implementing the Jackknife methodology on the DIP database. The X-axis of this figure denotes the number of ranked
proteins, while the Y-axis represents the number of true key proteins identified by prediction models. (a) comparison between NPRI and
DC, IC and EC. (b) comparison between NPRI and SC, BC, CC and NC. ( c) comparison between NPRI and Pec, CoEWC and POEM. ( d)
comparison between NPRI and ION and RWHN.

The larger the area under the ROC curve(AUC),the better
effect of method. If the AUC = 0.5, that indicates random

performance. From the FIGURE 3we can see that the AUC of
NPRI is 0.7686, which is the best effect with the comparison.
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TABLE 3. Commonalities and differences between NPRI and 13 competitive methods based on the top 500 ranked proteins and the DIP database.

TABLE 4. Number of essential proteins predicted by NPRI and 13 methods based on the GAVIN database.

D. VALIDATION BY JACKKNIFE METHOLOGY
Jackknife Methodology [40] is an effective method adopted
to assess the advantage and disadvantage of models for iden-
tifying essential proteins. In order to evaluate NPRI more
comprehensively and concretely, in this section, we will

implement the Jackknife Methodology on top 700 candidate
essential proteins predicted by NPRI and 13 state-of-the-art
competitive prediction models to test their superiority and
disadvantages, and the comparison results are shown in the
following Fig.4.
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If the AUC = 0.5, that indicates random performance.
From the FIGURE 3 we can see that the AUC of NPRI is
0.7686, which is the best effect with the comparison.

From observing Fig.4(a), Fig.4(b) and Fig.4(c), it is
obvious that the prediction performance of NPRI is
significantly better than all these competitive methods.
From observing Fig.4(d), it is easy to see that the prediction
performance of NPRI is better than LAC and ION, mean-
while, the curves of NPRI and RWHN are intersected with
each other. However, through careful observation, we will
find that when the number of candidate key proteins increases
to 400, the curve of RWHN will turn lower than that of
NPRI. That is to say, with the increasing of predicted scale
of proteins, the predictive performance of NPRI will gradu-
ally exceed that of RWHN. Hence, we can declare that the
prediction performance of NPRI is better than that of these
13 representative methods on the whole.

E. DIFFERENCE BETWEEN NPRI AND 13
COMPETITIVE PREDICTION METHODS
In order to analyze the difference between NPRI and these 13
state-of-the-art prediction methods such as CC, IC, SC, EC,
BC, NC, DC, LAC, PEC, CoEWC, POEM, ION and RWHN,
in this section we further compare NPRI and these 13 state-
of-the-art prediction methods based on the top 500 ranked
proteins. Comparison results are illustrated in the following
table.3 and Fig.5.

In Table.3 and Fig.5, the centrality measures (Mi) denotes
one of these 13 competitive methods. |NPRI∩Mi| means the
number of common essential proteins detected by both NPRI
and Mi. |NPRI-Mi| represents the number of proteins identi-
fied by NPRI but not by Mi. |Mi-NPRI| indicates the number
of proteins identified by Mi but not by NPRI. {NPRI-Mi}
denotes the set of true essential proteins detected by NPRI
but not by Mi. {Mi-NPRI} represents the set of true essential
proteins detected by Mi but not by NPRI.

As can be seen from the {NPRI-Mi} or {Mi-NPRI}, based
on top 700 proteins, the key proteins identified by NPRI
method and other prediction method are of discrepancy.
We can perceive that the essential proteins identified by Pec
method only accounted for 37.78% of the{Mi-NPRI},but in
NPRI method, the percentage of key proteins in {NPRI-Mi}
is 60.08%.It can be observed from {NPRI - Mi} and
{Mi - NPRI} that the essential proteins in {RWHN - NPRI}
account for the highest proportion(45%) but the proportion
of real key proteins in {NPRI- RWHN} was 53.91%,which
was higher than {RWHN - NPRI}. Thus, from what has been
analyze above, NPRI method is a special method that can
identify more different true essential proteins and effectively
eliminate noise data.

F. RECOGNITION PERFORMANCE OF NPRI
BASED ON THE GAVIN DATABASE
In order to verify the universal applicability of NPRI,
in this section, we adopt the Gavin database to compare
the prediction effects between NPRI with 13 representative

FIGURE 5. Comparison results of essential proteins detected by NPRI
method and 13 state-of-the-art competitive methods.

prediction methods. The comparison results are shown in the
following Table.4 and Fig.6. From observing the Table.4,
it is easy to see that although the prediction performance
of NPRI in top 1% is slightly less than POEN, ION and
RWHN, but from top 5% to top 25%, the prediction perfor-
mances of NPRI are all better than all these 13 competitive
methods.

Moreover, from observing the Fig.6(a) and Fig.6(b),
it is obvious that the prediction performances of NPRI
is better than 8 competitive methods including SC, EC,
BC, DC, IC, CC, NC and Pec simultaneously. From
observing the Fig.6(c), we can find that although the
curve of RWHN at range (100,150) is a little higher
than NPRI, but as a whole, the prediction performance
of NPRI is much better than RWHN. Therefore, accord-
ing to the comparison results based on both the DIP
database and the Gavin database, we can declare that
NPRI is a satisfactory method for predicting potential
essential proteins with high-accuracy, high-efficiency and
high-practicability.

IV. DISCUSSION
Essential proteins perform a vitally important role in human
life. Currently, an increasing number researches aim to
predict key proteins by computational models, since it leads
to high cost of both money and time to predict essential
proteins by using biological experiments. However, it is still
an important and challenging work to design stable and
accurate prediction algorithms. In recent years, more and
more biological data related to proteins have been introduced
to identify key proteins based on PPI networks. Inspired
by them, in this manuscript, a new prediction model called
NPRI is proposed through combining the topological features
and relevant biological features of proteins to infer potential
essential proteins. Simulation results show that NPRI not only
has stability but also can improve the prediction precision
quite effectively.
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FIGURE 6. Comparison results between NPRI and 13 representative competitive methods.

V. CONCLUSION
In this paper, a novel prediction model called NPRI is pro-
posed to infer potential key proteins by integrating func-
tional features and topological features of proteins. In NPRI,
a new heterogeneous Protein-Domain network is established
first through combining a weighted PPI network, an initial
Protein-Domain network and a weighted Domain-Domain
network. And then, based on the newly constructed hetero-
geneous Protein-Domain network, functional features and
topological features will be extracted for each protein, based
on which, initial scores can be obtained for each protein and
domain. Finally, an improved PageRank algorithm will be
implemented on the heterogeneous Protein-Domain network
to detect potential essential proteins. Experimental results
demonstrate that the identification performance of NPRI is
superior to state-of-the-art competitive prediction methods.
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