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ABSTRACT The bi-directional linkage between the power grid and electric vehicles (EVs) enables flexible,
cheap and fast-responding use of vehicle batteries in the grid. However, the battery aging effects due to
the additional operation cycles caused by Vehicle-to-Grid (V2G) service and the concern of the battery
degradation are the main reason that keeps the customer from being the named prosumer of the grid. This
paper proposes a novel active battery anti-aging V2G scheduling approach. Firstly, to evaluate the battery
aging effect in V2G service, the battery degradation phenomenon is quantified by a novel use of rain-flow
cycle counting (RCC) algorithm. Then, the V2G scheduling is modeled as a multi-objective optimization
problem, in which the minimal battery degradation and grid load fluctuation are designed as the optimization
objectives. Finally, a multi-population collaborative mechanism, which is particularly designed for the
V2G scheduling problem, is also developed to improve the practicability and performance of the heuristic
optimization basedV2G schedulingmethod. The proposedmethodologies are verified by numerical analysis,
which highlights that the proposed V2G scheduling method can minimize battery charge/discharge cycles
by optimizing the time and scale of each V2G participant while providing the same services to the grid as
expected.

INDEX TERMS Electric vehicle, vehicle to grid, active battery anti-aging and heuristic algorithm.

I. INTRODUCTION
Energy is an essential part of modern life and energy man-
agement is an eternal topic in modern society. Electric vehi-
cles (EVs) and power grid are two important components of
the energy system. Instead of the one-way energy flow from
the grid to EVs, their bi-directional link enables the flexible,
cheap and fast-responding application of the vehicle batteries
in the power grid [1], [2]. Therefore, it leads to the concept
of Vehicle-to-Grid (V2G) that effectively integrates EVs into
the grid as distributed energy resources [3].

Currently, many studies have investigated the V2G tech-
nology for better use of EV penetrations [4]–[6]. Liu et al. [7]
established a V2G behavior scheduling model based on
Blockchain technology to improve grid operation stability.
The simulation results showed that the proposed scheme can
reduce the grid power fluctuation level and overall charging
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cost significantly. Clement-Nyns et al. [8] proposed an online
plug-in hybrid EV charging coordination approach based on
the dynamic programming algorithm, in which the optimal
charging profile was formulated by minimizing power loss.
A large number of reports can be found from the literature,
but many fundamental problems and critical challenges still
exist: (1) The battery degradation phenomenon is rarely con-
sidered in V2G scheme, which may result in economic loss
and dispelling the V2G participants’ enthusiasm; (2) The
essential of V2G scheduling is a large-scale, non-gradient and
multi-objective optimization problem and the global optimal
solution is hard to find.

A. ACTIVE BATTERY ANTI-AGING V2G MANAGEMENT
Battery degradation is the main reason that keeps the EV cus-
tomer from being the named prosumer of the grid [9]–[11].
To encourage the enthusiasm of V2G participants, it is neces-
sary to suppress the battery degradation phenomenon in the
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V2G scheduling issue [12], [13]. The battery aging mech-
anism and its lifetime prediction have already been well
studied in recent years [14]. Wang et al. [15] investigated
deep-learning algorithm-driven battery remaining useful life
prediction method, the long short-term memory neural net-
work was employed in their work to learn the long-term
dependencies in the lithium-ion battery degraded capacities.
The experiment results indicated that the battery capacity
estimation error can be limited within 2.5%. An electro-
chemical mechanism model was established in David A.
Howey’s work [16] to quantify grid-connected Lithium-ion
battery degradation annual cost, which can predict the battery
capacity fade with an error of 5%. Jafari et al. [17] proposed
a method to quantify the grid-connected Lithium-ion battery
degradation phenomenon during V2G services based on the
General Arrhenius Equation, and the model accuracy was
validated under different scenarios and climates. However,
the existing researches mainly emphasize the impact of bat-
tery aging on the V2G services, but few of them study the
methods to reduce battery degradation actively by scheduling
V2G behaviors optimally.

RCC algorithm has been widely used in many fields, such
as fatigue damage analysis [18], remaining useful life pre-
diction [19] and energy storage systems [20]. In this paper,
the minimal battery lifetime degradation is designed as one
of the optimization objectives and quantified by a novel use
of the RCC algorithm.

B. THE HEURISTIC ALGORITHM BASED V2G SCHEDULING
METHOD
The inherent features of V2G scheduling optimization, i.e.
high-dimensional and large scale, cannot be neglected [21],
[22]. Moreover, in active battery anti-aging V2G scheduling,
the objective to minimize grid load fluctuations conflicts
withminimizing battery degradation. The trade-off is actually
a Pareto-optimal point searching problem. In addition, the
objective function in V2G scheduling is usually not simply
linear or quadratic, so the conventional convex optimization
method is not applicable [23]. Further, introducing the battery
degradation index turns the optimization objective into a non-
continuous, non-derivable and non-gradient function, and
the conventional gradient descent algorithms are no longer
effective [24].

The heuristic algorithm is one of the most effective ways
to deal with the complex optimization problem, and the
Particle Swarm Optimization (PSO) algorithm is a typical
heuristic algorithm. At present, the PSO algorithm has been
widely used in the Hybrid Energy Storage System [25],
Path Planning [26] and systems identification [27], etc.. The
PSO algorithm was regarded as one of the most success-
ful approaches to solve the large-scale and multi-objective
optimization problem. In recent years many researchers have
developed many different methods to improve the perfor-
mance of PSO algorithm [28]–[30]. Li et al. [31] proposed
an information-sharing mechanism to improve the PSO algo-
rithm performance in the large-scale optimization problem.

The proposed methods were validated effectiveness under
various test environments. The fuzzy logic method was used
in literature [32] to improve the effectiveness of the PSO
algorithm in the multi-objective optimization problem. The
experiment results in a V2G scheduling system indicated that
the proposed method can improve the system performance
effectively. However, to the authors’ best knowledge, there is
no published literature considering both the large-scale and
multi-objective optimization problems in V2G scheduling
at present. Thus, to improve the performance of the PSO
algorithm basedV2Gbehaviorsmanagement system, amulti-
population collaborative mechanism (MCM) is developed in
this paper.

Keeping in the view of above perspective and issues,
to suppress the battery aging effect in V2G services and
improve the performance of the V2G scheduling system,
a novel active battery anti-aging V2G scheduling method
is proposed in this paper. The key contributions are as
follows: (1) The battery degradation phenomenon during
V2G services is quantified by a novel RCC algorithm;
(2) A mathematical optimization model is established for the
active battery anti-aging V2G scheduling problem, in which
the minimal battery degradation and grid load fluctuation
are designed as the optimization objectives; (3) A multi-
population collaborative mechanism is developed with the
ability to solve the large-scale, multi-objective, and non-
gradient optimization problem in active battery anti-aging
V2G scheduling.

This article is organized as follows: Section II briefly intro-
duces the architecture of the intelligent V2G scheduling sys-
tem, in which the system working principles and information
flows are defined. The background materials of the algo-
rithm used in our work are detailed in Section III. The pro-
posed battery degradation quantification method and active
battery anti-aging V2G scheduling method are described
in Section IV. Results and comparisons are provided in
Section V, followed by concluding remarks in Section VI.

II. THE ACTIVE BATTERY ANTI-AGING V2G SCHEDULING
SYSTEM
The framework of the proposed battery anti-aging V2G
scheduling system is shown in Fig. 1. The system is divided
into 4 parts: information prediction module, user information
collection module, V2G behaviors management module, and
EV smart charger. The optimal V2G behavior control strate-
gies are achieved through the cooperation of four modules.

A. USER INFORMATION COLLECTION MODULE
The User information collection module is used to collect
household electricity load and EV’s charging demand data
on the basis of Information and Communications Technology
(ICT) [33]. The real-time V2G charging demand informa-
tion is sent to the information prediction module for future
use, and at the same time, the charging requirements of the
EVs that have just been connected to the grid (within recent
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FIGURE 1. The architecture of the active battery anti-aging V2G
scheduling system.

15 minutes) are sent to the rolling V2G behaviors manage-
ment module.

B. ROLLING PREDICTION MODULE
A historical V2G information database, as well as a historical
baseload demand database corresponding the V2G partici-
pants in different districts, are established in this module.
Meanwhile, future arriving EVs’ charging demand, discharg-
ing capacity [34] and future load demand [35] are forecasted
based on the established database, provided as an important
data foundation for V2G scheduling.

C. ROLLING V2G BEHAVIOR MANAGEMENT MODULE
TheV2G behaviors management module formulates the V2G
charge/discharge control strategies for every grid-connected
EV on the basis of the collected user demand and grid
load state information. The optimization objectives are to
minimize grid load fluctuation and battery degradation. The
control strategies are sent to EV smart charger.

D. EV SMART CHARGER
According to the charge/discharge strategies, the EV Smart
charger controls the charge/discharge power of every grid-
connected EV in real-time by power electronic devices.

E. SYSTEM OPERATION TIME LOGIC
The above presented V2G scheduling system operates in
a rolling way with the controlling interval of 15 minutes.
In each time of V2G scheduling, the EV charging infor-
mation and baseload is predicted by the prediction module
through historical data and real-time information, and the
V2G behaviors of the EVs that have just been connected to
the grid (within recent 15 minutes) are scheduled. The above-
mentioned prediction-decision V2G scheduling process is
carried out repeatedly with the system operation.

The information collection & communication technology
[33], the grid load [35], [36] & V2G capacity estimation [37],
[38] approach and the smart charging pile technology [39] has

been well studied in the existing literature. Therefore, in the
rest part of this paper, we mainly focus on the V2G behavior
management method.

III. ALGORITHM BACKGROUND
A. PARTICLE SWARM OPTIMIZATION ALGORITHM
The PSO algorithm is used in this paper to find the optimal
V2G strategy. In the PSO algorithm, each candidate solution
is denoted as a ‘‘particle’’ without mass or volume in the
search-space. The solution set consisting of a large number
of particles is called a ‘‘Swarm’’. Each particle is labeled by
three properties: velocity, position, and fitness. The position
of the particle represents a candidate solution. The velocity
determines the flying direction and distance of a particle
in each iteration. The particles move in the search-space
by updating velocity and gradually approach the optimal
solution, and the fitness function is used to evaluate particle
quality [40]. In the conventional PSO optimization process,
an initial swarm is generated by randomly initializing par-
ticle position and velocity firstly. The position and velocity
of particle i can be denoted as Xi = [xi1, xi2, · · · xiD] and
Vi = [vi1, vi2, · · · viD] respectively. The particle velocity and
position are updated by the following equations [41]:

V k+1
i =V k

i +c1rand1(pbest
k
i −X

k
i )+c2rand2(gbest

k
i −X

k
i )

(1)

X k+1i = X ki + V
k+1
i (2)

where: k represents iteration times, V k
i and X k+1i represent

the velocity and position vector of particle i in k− th iteration
respectively. pbestki is the personal best position vector of
particle i in the k − th iteration, gbestk represents the global
best position vector in the whole swarm, c1 and c2 are learn-
ing factors, rand1 and rand2 are random numbers obeying
uniform distribution within [0, 1].

B. BATTERY DEGRADATION QUANTIZATION METHOD
The battery degradation mechanism has been well studied
in previous work. However, the conventional battery degra-
dation quantification method, including the electrochemical
model [42] and artificial intelligence algorithm [43], can only
quantify the battery degradation phenomenon on a large time
scale (several days or weeks) [44]. Nevertheless, the schedul-
ing horizon in V2G management is usually less than one day
[45], [46], so it is difficult to quantify battery degradation
in V2G applications. Comparing to the conventional battery
degradation quantification method, the RCC algorithm can
quantify the battery aging phenomenon in a short period
(several minutes or hours) [47], which is more suitable for the
battery degradation quantification issue in V2G scheduling.
Therefore, the RCC algorithm is used in this paper to extract
the charging and discharging cycles and quantify the battery
degradation phenomenon in V2G service. The application of
the RCC algorithm has been well studied in our previous
work: hybrid energy storage system in microgrid [48], renew-
able energy system [49] and energy management system of
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FIGURE 2. The battery cycle extraction process in the rain-flow cycle
counting algorithm. (a) The original profile. (b) The extracted adjacent
points. (c) The reconstructed amplitudes. (d) The extracted battery cycles.

hybrid electric vehicles [50]. Basically, as shown in Fig.2,
the cycle counting can be achieved by the following three
steps as following: Firstly, the data (for the battery the data
is the DOD that presents the battery charge/discharge cycles)
is pre-processed by searching for adjacent data points with
the reverse polarity so that the local maxima and minima
can be found and stored in a matrix. Secondly, compose full
cycles by analyzing the turning points and combine these sub-
cycles to get full-cycles together with the summing up of the
amplitudes. Thirdly, extract and count the number of cycles
in varying amplitude store them for later use.

The battery degradation phenomenon can be quantified by
analyzing the extracted battery number of cycles and DOD
data. The RCC algorithm is used to evaluate the battery aging
in V2G scheduling in this paper.

IV. PROPOSED METHODOLOGY
A. ACTIVE BATTERY ANTI-AGING V2G SCHEDULING
METHOD
An active battery anti-aging V2G scheduling method is pro-
posed in this section. Firstly, a mathematical optimization
model is established for the V2G scheduling issue, in which
the minimal battery degradation and grid load fluctuation
are designed as the optimization objectives. Then, combine
with the PSO algorithm and the RCC algorithm, the system
operation principles and information flows are detailed.

The optimization variable in V2G scheduling is the
charge/discharge power of every grid-connected EV. The par-
ticle dimension is (n + 1) × (Tu + Tw). Where n is the total
number of EVs already in the grid. 1 represents the future
available V2G capacity of EVs that will connect to the grid
in later control steps. Tw and Tu are the number of decision
points in the future and past control step respectively. The
position of particle I is as follows (3) as shown at the bottom
of this page, where: Pi,j represents the power state of EVi in
control step j, Pn+1,j reflects the utilization degree of future
V2G schedulable capacity. In this paper, the historical V2G
behaviors are also stored in the particle, it is not schedulable
but influence future V2G scheduling directly.

To estimate EV’s SoC accurately, the recurrence formula
is as follows [50]:

SoC i
t+1 = SoC i

t +
1t × Pit × η

i

C i × 100 (4)

where 1t is the control time-step, C i is the battery capacity
of EVi. ηi is the battery charge/discharge efficiency.

The first optimization objective is to provide load-shifting
service, which can be described as to minimize load fluctua-
tion variance [32]:

fitness1=min

 1
u+ w

u+w∑
t=1

[
Pload(t)+

n∑
i=1

PI(t)−P̄AV

]2

(5)

where: Pload(t) is the system load in the time slot t , P̄AV is the
average grid load level.

Apart from grid stability and economy, the battery degra-
dation phenomenon resulted by participating in V2G is also
considered in this paper:

fitness2 = min

{
n∑
i=1

N cycle
i + N h−cycle

i

}
(6)

N cycle
i and N h−cycle

i are the battery number of cycles and half-
cycles of EVi in V2G scheduling, which can be calculated by
the RCC algorithm described in Section III.B.

When formulating V2G strategy, the travel demands of
V2G participant should be satisfied, the battery charging
process should be completed before departure [32]:

SoCend
i ≥ SoCset

i (7)

PI =



P1,1 · · · P1,j · · · P1,u P1,u+1 · · · P1,u+w
P2,1 · · · P2,j · · · P2,u P2,t+1 · · · P2,u+w
...

. . .
...

. . .
...

...
. . .

...

Pi,1 · · · Pi,j · · · P3,n P3,u+1 · · · Pi,u+w
...

. . .
...

. . .
...

...
. . .

...

Pn,1 · · · Pn,j · · · Pn,u Pn,u+1 · · · Pn,u+w
Pn+1,1 · · · Pn+1,j · · · Pn+1,u Pn+1,u+1 · · · Pn+1,u+W


︸ ︷︷ ︸

Historical V2G power profile
︸ ︷︷ ︸

Pending scheduling

(3)
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FIGURE 3. The active battery anti-aging V2G scheduling method.

Battery life is mainly influenced by the number of cycles,
DOD and charge/discharge rate. The number of cycles has
been considered in the objective function, the DOD and
charge/discharge rate are restricted by the following con-
straints in this paper:

−Pmax
i,disch arg ≤ Pi,t ≤ Pmax

i,ch arg e (8)

SoCmin ≤ SoCi,t ≤ SoCmax (9)

The flowchart of the proposed active battery anti-aging
V2G scheduling method is shown in Fig. 3. The system
operation process can be divided into four steps:

The status of the grid-connected EVs are collected, includ-
ing the serial number i of each EV, accessing time t istart ,
preset departure time t iend , the SoC

start
i when EVi accesses

the grid, and the preset minimal SoCset
i at departure. Then

the population size Q is determined, and an initial swarm
satisfying the constraints(7 ∼ 9) is generated.

1) Two fitness functions are formulated and the fitness
value of the particles is calculated based on the defined
fitness functions. The fitness function 1 and 2 are
used to evaluate swarm’s grid load stabilizing per-
formance and battery degradation suppression perfor-
mance respectively. With the guidance of both fitness
functions, the generated V2G strategy could stabilize
grid load fluctuation and reduce V2G participants’ bat-
tery degradation costs at the same time.

2) The personal and global best solution pbestk and gbestk
are found through the fitness value, and particle posi-
tion Xi and velocity Vi are updated following equa-
tion (1) and (2).

FIGURE 4. The proposed multi-population collaborative mechanism.

3) Step 2 and 3 are performed repeatedly, and the particle
position is continuously updated before the evolution
times k reaches maximum iteration times kmax. The
global optimal solution gbestk max is outputted as the
optimal V2G control strategy.

B. THE MULTI-OBJECTIVE AND LARGE-SCALE
OPTIMIZATION METHOD FOR ACTIVE BATTERY
ANTI-AGING V2G SCHEDULING
Particle prematurity and homoplasy are the main obsta-
cles that limiting the performance of the conventional PSO
algorithm on multi-objective and large-scale optimization
problems.

Prematurity appears in large-scale optimization problems
[51]. PSO algorithm inclines to be stuck in local optimum
because of prematurity, and the evolution process may stop
before acquiring the actual global optimal solution. Two
methods are applicable for expanding the search range: one
is to expand the population size, but the computation com-
plexity is also increased tremendously; the other is to weaken
the attraction of the global best solution, which may cause
convergence difficulty [52]. The homoplasy appears when
dealing with the multi-objective optimization problem, lim-
iting much of the search-space and depriving the potential of
the algorithm to find a coordinating optimal solution [53].

In the active battery anti-aging V2G scheduling issue,
to obtain the optimal V2G control strategy, it is necessary
to explore an effective method to overcome the prematurity
and homoplasy obstacles. Therefore, in this section, a multi-
population collaborative mechanism is developed and pro-
vided as a possible solution for the dilemma raised above.
The flowchart of the proposed MCM method is shown in
Fig. 4, and system operation principles can be described by
the following 4 steps:

1) ALGORITHM CONFIGURATION INITIALIZATION
To satisfy the swarm diversity requirements, the initial pop-
ulation in the proposed MCM method is divided into sev-
eral groups, labeled as sub-population and main-population.
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These populations are independent and assigned with dif-
ferent fitness functions. The main-population represents
the coordination between several optimization objectives,
and the sub-population can enrich the diversity of the
main-population. Meanwhile, to improve the algorithm effi-
ciency in the large-scale optimization problem, reducing the
demand on population size and computing resources, the
sub-population and main-population are divided into several
sub-groups again. Each sub-group has the same objective
function and constraints, but the initial particles are different.
During the evolution, the particles in different sub-groups
evolve in different directions, several evolution centers are
generated in the optimization process and the homoplasy can
be avoided effectively. In this paper, two sub-populations and
one main-population are set, and every sub-population and
main-population is further divided into S sub-group with the
particle number popsize.

2) POPULATION INITIALIZATION
The particle position and velocity in the sub-population and
main-population are initialized in this step. The initial posi-
tion influences the optimization efficiency directly, to reduce
the required computing resources occupation, the particles
should be distributed in the search-space as evenly as pos-
sible, while the particle validity should also be guaranteed.
The particles in different populations are given different
initialization principles to improve algorithm performance
and efficiency. Firstly, to generate better load-shifting parti-
cles for sub-population 1, in principle 1, constraints on grid
peak power are tightened, while the constraints on charg-
ing/discharging rate and DOD are loosened. The correspond-
ing initialization principle is as follows:

P1 ST :



Pmax
Z < 2× P̄AV
SoCend

i ≥ SoCset
i

−1.5× Pmax
i,disch arg ≤ P

t
i ≤ 1.5× Pmax

i,ch arg e

0 ≤ SoCi,t ≤ SoCmax

Pti = 0 while Ati = 0

(10)

To generate better battery protection particles for sub-
population 2, in principle 2, maximum charge/discharge
cycles are limited, as well as the constraints on charge/
discharge rate and DOD are tightened:

P2 ST :



N cycle
i < 5

SoCend
i ≥ SoCset

i

−0.8× Pmax
i,disch arg ≤ P

t
i ≤ 0.8× Pmax

i,ch arg e

1.5× SoCmin ≤ SoCi,t ≤ SoCmax

Pti = 0 while Ati = 0

(11)

In principle 3, particles are generated for the main-
population, the balance between the various optimization
objectives is more valued, so all the constraints are treated

equally:

P3 ST :



Pmax
Z < 3× P̄AV
N cycle
i < 7

SoCend
i ≥ SoCset

i

−Pmax
i,disch arg ≤ P

t
i ≤ P

max
i,ch arg e

SoCmin ≤ SoCi,t ≤ SoCmax

Pti = 0 while Ati = 0

(12)

3) POPULATION EVOLUTION
Particle velocity and position are updated based on the for-
mula (1) and (2) in this step. The fitness functions in sub-
populations and main-population are as follows:
fitness function(1)=0.8× fitness1+0.2× fitness2
fitness function(2)=0.2× fitness1+0.8× fitness2
fitness function(3)=0.5× fitness1+0.5× fitness2

(13)

Fitness function (1) focuses on peak-shifting performance,
so particles in sub-population 1 have a better effect on peak-
shifting. Fitness function (2) focuses on battery life pro-
tection performance, so particles in sub-population 2 have
a better effect on battery degradation suppression. Fitness
function (3) is the fitness function of main-population, with
high requirement on both optimization objectives, the best
solution for multi-objective optimization can be found in
main-population.

4) MULTI-POPULATION INFORMATION SHARING
After the sub-population and main-population evolved N
times independently, particles in sub-population and main-
population are exchanged, and the variety of main-population
is enriched. The sub-group in sub-populations and main-
population are extracted and denoted as G1.1,G1.2,. . . ,G1.S;
G2.1,G2.2,. . . ,G2.S; G3.1,G3.2,. . . ,G3.S. As illustrated
in Fig. 3, the particles in each sub-population are arranged
according to their fitness, the color from shallow to dark rep-
resents the fitness from low to high. The inferior particles in
main-population would be gradually eliminated and replaced
by those superior particles in sub-population.
After the replacement, particles are generated again for

sub-population under the initialization principal in step 2 for
keeping the population size. Then turn to step 3, the particle
velocity and position are updated iteratively.

V. RESULTS AND DISCUSSIONS
A. SIMULATION ENVIRONMENT SETUP AND DATASET
DESCRIPTION
The V2G participants’ behavior data were collected by Bei-
jing Electric Vehicles Monitoring and Service Center, which
is affiliated to National Engineering Laboratory for Electric
Vehicles and serves as a national big data platform for electric
vehicles in China. The monitoring data of a residential area
with 40 households were downloaded from the established
big data platform and served as the basic simulation data of
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TABLE 1. An example charging segment of the collected datasets.

this paper. As shown in Table 1, the individuals’ travel behav-
ior data, including the vehicle tamp, vehicle grid-connected
time and SoC, departure time and SoC, battery system param-
eters, etc. are further extracted from the collected data set to
simulate the users’ V2G behaviors and verify the proposed
scheduling method.

The baseload demand curve used in our work is also
obtained from the aforementioned residential area by Smart
Meter technology. It is worth noting that unusual dates such
as the Chinese Spring Festival Holiday, the NewYear holiday,
and the weekends are excluded from the data set in advance.
The detailed information of the simulation platform is shown
in Table 2.

In order to reach the optimal performance of the proposed
V2G scheduling algorithm, we prepared multiple algorithm
parameter settings. However, not all results are reported in the
paper, the comparison is only made with the optimal settings
of each algorithm. The parameters of the conventional PSO
algorithm and proposed MCM method are set as follows for
better performance through multiple experiments:

Parameter of PSO algorithm

Interation times ∈ {50}

Population size ∈ {60000}

learning factor ∈ {c1 = 0.8, c2 = 0.5}

Penalty factor ∈ {500, 500}

Inertia weight ∈ {0.4}
Parameter of MCM algorithm

Interation times ∈ {50}

Number of sub-groups ∈ {5}

Population size ∈ {20000, 20000, 20000}

Particle exchange times{2}
Particle exchange position{10,20}
Particle exchange length{1500}
Learning factor ∈ {c1 = 0.8, c2 = 0.5}

Penalty factor ∈ {500, 500}

Inertia weight ∈ {0.4}

The most active V2G period (16:00-24:00 and 00:00-08:00)
is taken into consideration in this study, the baseload profile
in this period is shown in Fig. 5.

In the random charging scenario, it is assumed that EV
owners would immediately charge their cars with rated power
upon arriving home until the batteries are fully charged.
As shown in Fig. 5, most EVs are connected to the grid during

TABLE 2. The parameters of the simulation environment.

FIGURE 5. The power system baseload and total load profile when EVs
random charging.

19:00-22:00 (zone A), while the baseload also booms in this
period and peaks at around 21:00, as a result, the grid peak
load is elevated to 504kw.While after 00:00 (zone B), most of
the EVs have been fully charged and the minimum grid load
is only 97.5kw. To ensure the safe, stable and economic grid
operation, it is necessary to suppress the grid load fluctuation.

B. THE RESULTS OF V2G SCHEDULING
The results of the conventional PSO algorithm based V2G
scheduling [52], [53] are shown in Fig. 6 (a). During grid
peak hours, the EVs are scheduled to feed energy back to
the grid, the EVs’ charging load is no longer overlapping the
baseload and the peak load of the grid is reduced successfully.
However, the V2G scheduling is inherently characterized as a
high-dimensional, large-scale optimization problem, it is very
difficult to get the global optimal solution, which is reflected
in the following two aspects: Firstly, the conventional PSO
algorithm can only realize long term load-shifting, but the
grid load fluctuation is not sufficiently suppressed: the load
profile keeps fluctuating from 22:00 to 06:00; Secondly, its
peak-shaving performance is not satisfying, with only 8%
drop compared to baseload profile, which means that only
a small part of EVs are scheduled to discharge during peak
hours. The aforementioned issue is more serious when con-
sidering active battery anti-aging. To further improve the
load-shifting ability of the V2G scheduling system, a MCM
method is proposed in this paper and the result is shown
in Fig. 6 (b).With the proposedmechanism, theV2G schedul-
ing system can not only realize the long-term load-shifting
performance but also suppress short-term grid load fluctua-
tion. When compared to random charging, the load peak and
load Standard Deviation (STD) is reduced by 32% and 60.4%
respectively.
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FIGURE 6. Power system load profile (a) under the conventional PSO
algorithm and (b) MCM method.

FIGURE 7. The comparison of (b, d) the battery anti-aging V2G scheduling
method and (a, c) conventional V2G scheduling method.

To verify the proposed battery anti-aging V2G scheduling
method, the battery cycles in the conventional V2G schedul-
ing method [32], [54] and the proposed one are compared
in Fig. 7. Subfigure (a) and (b) are the SoC profiles, sub-
figure (c) and (d) are the corresponding charge/discharge
cycles statistics by the RCC algorithm. With the proposed
battery degradation suppression method, the battery number
of cycles during participating in V2G service are reduced
significantly: the number of half-cycles drops from 4 to 3, and
the number of full cycles drops from 4 to 2, which indicates
that the battery is protected successfully by the proposed anti-
aging algorithm.

C. COMPARISON OF DIFFERENT ALGORITHMS
PERFORMANCE
The performance of different V2G behavior management
methods is compared in Table 3. The coordination of EV

FIGURE 8. The convergence speed of the proposed multi-population
collaborative mechanism.

charge/discharge behavior can be realized by using con-
ventional PSO algorithm based V2G management method
[32], [52]–[54], which reduces 22.2% peak load and 30.1%
grid load STD, but it is not able to further suppress the
load fluctuation and has poor performance on peak-shaving
service. The proposed MCMmethod can further decrease the
peak load and load STD with 32% and 60.4% respectively,
and the grid energy quality is significantly improved. Com-
pared to the conventional V2G scheduling method, the num-
ber of full-cycles (NFC) and half-cycle (NHC) in active
battery anti-aging V2G scheduling method drops 79.4% and
15.6% respectively, which indicates that the proposedmethod
is capable of suppressing battery degradation phenomenon in
V2G service.

The convergence speed of the proposed MCM method is
shown in Fig. 8, where the red curve represents the fitness
value of the main-population, the blue one and the orange
one represent that of sub-population 1 and sub-population
2 respectively. There are two fitness functions in each sub-
population, the solid line denotes the particle peak-shaving
performance, and dashed dot line denotes the particle battery
degradation suppression performance. The load fluctuation
suppressing is the mainly considered optimization objective
in Sub-population 1, the battery degradation mitigating is
that of in Sub-population 2, and two objectives are treated
equally in main-population. Each population has independent
fitness functions (see Eq. 10 to 12), so the dropping speed
of different fitness functions are also different. The fitness 1
drops faster than fitness 2 in sub-population 1, as the fit-
ting function of sub-population 1 mainly focuses on evalu-
ating the peak-shifting performance of candidate solutions.
Similarly, for the same reason, fitness 2 drops faster than
fitness 1 in sub-population 2, which verifies the effectiveness
of proposed population evolution principles. The fitness func-
tion of the main-population drops slowly, and the evolution
process stops at 5th, 15th, and 25th iteration because of
poor swarm diversity. But by exchanging particles between
main-population and sub-population, the evolution process
is accelerated significantly. The fitness function of the main-
population drops from 0.7 to 0.25 after two exchanges at 10th
and 20th iteration, which indicates that the proposed MCM
method can boost population evolution and improves theV2G
scheduling efficiency effectively.
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TABLE 3. The result of different V2G management method.

TABLE 4. The calculation time of different algorithm-based V2G
scheduling method.

To verify the effectiveness of the proposed V2G scheduling
method, we compare the complexity of different algorithms
in the paper. The program is implemented on a high-
performance workstation equipped with 2×E5-2690v4 pro-
cessor, and the MATLAB Parallel Computing Toolbox is
employed to improve the efficiency of MCM algorithm: dif-
ferent sub-populations and sub-groups are assigned to dif-
ferent threads of the processor and thus the evolution of the
population can be performed in parallel. The calculation time
of different V2G scheduling methods in real scenarios is
compared in Table 4.

The conventional PSO algorithm is not able to utilize
the modern multi-core CPU resources effectively, the aver-
age CPU usage is only 13%, and with the proposed MCM
method, the CPU computation resources can be used more
reasonable (86% on average). As a result, the calculation time
of the conventional PSO algorithm within 50 iterations is as
long as 476s on average, and this number is reduced to 135s
with the MCM method, which validates the effectiveness of
the proposed scheduling method. The maximum calculation
time of MCM method in the whole scheduling period can
be limited within 426s, which indicates that the V2G man-
agement system can schedule the charging behaviors of grid-
connected EVs in time (15 minutes, 900s).

VI. CONCLUSION AND FUTURE WORK
A battery anti-aging V2G behavior management method
is presented in this paper. By using the RCC algorithm
based battery degradation quantificationmethod, the minimal
battery aging effect was designed as one of the optimiza-
tion objectives in the mathematical model. Compared to the
conventional V2G management method, the battery num-
ber of full-cycles and half-cycle are reduced by 79.4% and
15.6% respectively, which indicates that the battery degrada-
tion phenomenon during the V2G application is suppressed
effectively. The designed multi-population collaborative

mechanism can utilize the computational resources reason-
ably to solve the high-dimensional and multi-objective opti-
mization problem in V2G scheduling. The simulation results
revealed that the particle exchange process can boost pop-
ulation evolution and improve the algorithm performance
effectively, the peak load and load STD were further reduced
by 32% and 60.4% respectively, which validated that the grid
energy quality can also be improved by the proposed battery
active anti-aging V2G scheduling method.

This paper mainly focuses on suppressing the battery
degradation problem in V2G scheduling. It is assumed that
the baseload profile and battery state can be predicted and
estimated accurately. But the prediction or estimation errors
cannot be avoided in real scenarios and may influence the
operation of the V2G management system. For instance, the
prediction error of baseload and EV charging information
may influence the V2G scheduling results and have a neg-
ative impact on system peak-shaving performance. Likewise,
the battery state estimation error may also influence the V2G
scheduling, especially when quantifying the battery degrada-
tion phenomenon. Future work can be conducted on studying
the influence of the prediction error and how to suppress these
influences in V2G scheduling.
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