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ABSTRACT Zero crossings are a practical and efficient feature to approximate the frequency of a sampled
series of data. Some research describes in different ways how to compute the zero crossings feature starting
from its definition, and in some of them, a threshold is included as part of it. This research compiles a
comprehensive list of description methods for zero crossings, both with or without threshold. In addition,
an improvement of one method is proposed, mainly to save time resources. Moreover, it increases the
precision when the objective is to perform some classification. This feature is often used as a vector of
a matrix of features in signal classification. To test the different variations of the zero crossings methods,
a classification of electromyographic signals was performed using support vector machines. The results
obtained by the proposed method threw near to a 40% improvement in the classification compared to those
approaches that do not consider a threshold and more than 7% compared to those with a threshold. The
processing time of this work is shortened compared to others that also take into account a threshold.

INDEX TERMS Zero Crossings, threshold, EMG signal, signal classification, SVM, signal processing.

I. INTRODUCTION
Nowadays, the use of electromyographic signals (EMG) for
the classification of movements based on pattern recognition
has increased in different areas of science, mainly in those
focused on prosthetic control.

In general, the myoelectric activity can be acquired by two
types of sensors, namely, superficial and intramuscular. The
former is placed on the surface of the skin and the latter
under it. Thus, the latter are considered invasive. Sampling
of these myoelectric signals generates EMG signals that can
be described by different tools.

The successful classification based on pattern recognition
lies in the features extracted and the classifier used [1].

It is important to describe the signals in the best possi-
ble way to be able to perform a correct classification; for
this purpose, feature extraction techniques are used. The
features of the signals can be analyzed in the time or fre-
quency domain, or in the frequency spectrum, among others.
The features in the time domain (TD) are very common in
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electromyographic control due to their computational sim-
plicity and therefore easy to implement, since they do not
need any transformation [2]. Among the most prominent
techniques in the TD are the Mean Absolute Value (MAV),
the Slope Sign Changes (SSC), the Waveform Length (WL),
and the Zero Crossings (ZC) [3], [4].

The ZC computation for signals involves other factors
in addition to the certainty of whether the signal actually
went through zero or not, since at the time of the signal
extraction, on many occasions, environment or line noise is
also read. Therefore, this ZC value does not always yield a
clear parameter with respect to the signal. When a threshold
is considered, the effect of noise is reduced when the signal
is characterized.

Electromyographic control based on pattern recognition
requires the use of a threshold. However, there is no
consensus regarding the best option to obtain an optimal
threshold [2].

One of the most used methods for pattern recognition
in EMG signals is the SVM technique, whose main func-
tion is to detect a n-dimensional hyperplane meant to sep-
arate a set of input feature points into different classes.
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This method has the potential to differentiate complex pat-
terns [5]. In several comparisons, SVM has demonstrated
better classification precision when compared to other clas-
sifiers such as Artificial Neural Network (ANN), Linear Dis-
criminant Analysis (LDA) and Particle Swarm Optimization
(PSO) [5]–[10].

The key concepts underlying the SVMmethod are (a) sep-
aration hyperplanes, (b) the kernel function, (c) the optimal
separation hyperplane, and (d) a soft margin (hyperplane
tolerance).

This article presents a compilation ofmethods that describe
how to calculate crossings by zero, with and without using
a threshold, contained in Section II. Subsequently, a brief
description of the SVM is given in Section II-B, and the
parameters used to evaluate the performance of the classifier
are described in II-C. An improvement of one method for a
better classification and save processing time is also included
in Section III. Then, the methods and manner in which the
experiments were developed are described in Section IV.
Finally, the results and conclusions are found in Sections V
and VI, respectively.

II. STATE-OF-THE-ART
A. ZERO CROSSINGS DESCRIPTORS
ZC is defined as the number of times a (digital) signal crosses
zero, and this feature is meant to approximate the signal
frequency. However, there are different ways of calculating
this value, according to different descriptions analyzed in the
literature. A number of authors often mention the use of ZC
in their work [2], [11]–[17], but they do not specify precisely
which method was used to determine a zero crossing. As a
consequence, it is not clear which description they used to
perform the count; this is because of the basic definition of
the ZC,

ZC =
∑
i

fZC(·),

allows the definition of fZC to be varied. The following sub-
sections describe different ways of defining the fZC function.
In some algorithms, a threshold is used to avoid counting
zero crossings due to signal fluctuations. These correspond
to voltage signals read by the measuring instruments, with a
relatively small amplitude compared to the rest of the signal,
since they correspond to idle states; where there should be no
voltage variations because there is no movement, as can be
seen in Fig. 1, where the threshold is the estimated absolute
value of these fluctuations, also called signal noise. The signal
in Fig. 1 is an example of a signal that starts from an exciting
state and ends in a resting period.

Certain research papers specify the obtained classi-
fication precision when using only ZC, for example,
Roldan-Vasco [9] gets 38.25%, while Kamavualo et al. [18]
obtain 66.5%, Phinyomark et al. [16] reach 71.58% and,
Phinyomark et al. [19] 86.93%.

FIGURE 1. Visually estimated threshold of EMG signal.

1) METHOD 1
It is the simplest method since it consists of reviewing two
continuous samples and comparing them to see if there was a
zero crossing so that it can be described as:

fZC(xi, xi+1) =


1, xi > 0 and xi+1 < 0

or xi < 0 and xi+1 > 0,
0, otherwise.

(1)

Unfortunately, regardless of how efficient the zero crossing is
verified, this method is highly sensitive to noise.

2) METHOD 2
Mathematically, a zero-crossing occurs when two consec-
utive samples have a different sign. It happens when one
sample is greater than zero and the other is less than zero,
and so their product must be a negative number. It can be
written as:

fZC(xi, xi+1) =

{
1, xi · xi+1 < 0
0, otherwise.

(2)

Furthermore, since floating-point comparisons are expensive,
some authors add a simple operation to reduce processing
time at the moment of evaluating the value concerning to
zero. It implies the use of the sgn function after the sample
multiplication. This method is thus carried out as:

fZC(xi, xi+1) =

{
1, sgn(−xi · xi+1) > 0
0, otherwise,

(3)

where the comparison is done with integer values.
In reference [20], in addition to performing the multiplica-

tion, they inspect if xi+1 is much bigger than xi, to know if
one of the samples is high due to the noise. This modifies the
initial equation and can be described as follows:

fZC(xi, xi+1) =
∑
i

g(xi, xi+1)+
∑
i

h(xi, xi+1), (4)

where

g(xi, xi+1) =

{
1, if xi · xi+1 < 0,
0, otherwise,
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h(xi, xi+1) =

1, if
xi+1
xi
= 0,

0, otherwise.

3) METHOD 3
This method considers that, besides the change of sign
between both samples, counting by the comparisons, like (1),
the absolute value of the difference between these most be
greater than the determined threshold T , to be considered
the ZC:

fZC(xi, xi+1) =


1, if xi > 0 and xi+1 < 0

or xi < 0 and xi+1 > 0,
and |xi − xi+1| ≥ T ,

0, otherwise.

(5)

4) METHOD 4
It also considers the absolute value of the difference between
samples to measure the threshold T , as in Eq. (5). Also,
it combines the method 2 when using the product of samples
to know when zero crossings occur. It can be described as:

fZC(xi, xi+1) =


1, if xi · xi+1 < 0

and |xi − xi+1| ≥ T ,
0, otherwise.

(6)

Reference [21] instead of measuring the threshold with the
absolute value of the difference of the samples, uses only the
absolute value of the current sample.

Like in Eq. (2), certain works extract just the sign of the
samples to simplify the computational cost of the comparison
between the samples; this is calculated as:

fZC(xi, xi+1) =


1, if sgn(xi · xi+1) < 0

and |xi − xi+1| ≥ T ,
0, otherwise.

(7)

Reference [22] uses sign function with both samples and
instead of comparing if the multiplication is less or greater
than zero, check if it equals −1, that is:

fZC(xi, xi+1) =


1, if sgn(xi) · sgn(xi+1) = −1

and |xi − xi+1| ≥ T
0, otherwise.

(8)

5) METHOD 5
This method considers besides the previous sample xi−1, and
is proposed by [23]. Their method is described as follow,
where T is the threshold:

fZC(xi, xi+1) =

{
1, if (xi − xi−1) (xi − xi+1) ≥ T
0, otherwise.

(9)

Table 1 shows the equation used by some references related
with EMG signals classification. Eq. (7) is the most utilized,
followed by Eq. (6).

TABLE 1. Equation utilized by reference.

FIGURE 2. SVM geometric definition.

B. SUPPORT VECTOR MACHINES
One of the most used methods for pattern classification
is SVM. The patterns can be body movements, images,
sounds, etc. This theory was introduced byVapnik and Corina
in 1995 [48]. By SVM, an optimal separating hyperplane
is constructed into a high dimensional feature space. It is
possible to distinguish between two objects, as depicted
in Fig. 2, or more, by using non-linear functions, in which
the entries are mapped.

The input space is mapped into a high-dimensional feature
space, and the separation hyperplane is found in this new
space, to solve the nonlinear separable problem. The optimal
hyperplane must discriminate different classes correctly, and
so, it is necessary to find the hyperplane with maximum
clearance between categories, i.e., the hyperplane that best
separates them.

The training algorithm of an SVM is reformulated as a
problem to solve by Quadratic Programming (QP), whose
solution is global and unique. Considering input training
data (x1, y1), . . . , (xm, ym) ∈ RN

× {−1,+1}, where xi
corresponds to the input value and yi to the assigned class
(−1 or +1) to which it belongs. When data are not linearly
separable; it is possible to map them by a non-linear trans-
formation φ : RN

→ RM inside of a new feature space RM

where the transformed data will be linearly separable. Thus,
the obtained hyperplane that separates object types can be
seen as

ω · φ(x)+ b = 0, (10)

where ω ∈ RM and b ∈ R.
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The QP problem is used to construct an optimal hyperplane
with a maximum value of separation and a closed error ξ =
(ξ1, . . . , ξm) in the training algorithm, describes as Eq. (11).

min
ω,b

1
2
‖ω‖2 + C

m∑
i=1

ξi. (11)

subject to

yi(ω · φ(xi)+ b) ≥ 1− ξi, i = 1, . . . ,m.

When the data points are very nearby, it is tricky to separate
them directly. Thus, a kernel functionK must be used. That is,

F(α) =
m∑
i=1

αi −
1
2

m∑
j,k=1

αjαkyjykK (xj, xk ), (12)

subject to
m∑
i=1

yiαi = 0, C ≥ αi ≥ 0, i = 1, . . . ,m.

where K (xj, xk ) is the kernel function. The most used kernels
are Radial Basis Function (RBF), a Gaussian, a polynomial,
among others. The latter kernel can be linear, quadratic,
cubic or of any degree d [8], and it can be described as

KP(xj, xk ) = (1+ xj · xk )d . (13)

The RBF of two samples, which are feature vectors, is defined
by [49]:

KR(xj, xk ) = exp(−γ ‖xj − xk‖2). (14)

The Gaussian function is described as [8]

KG(x, µ, σ ) =
1

2πσ
exp

[
−
(x − µ)2

2σ 2

]
, (15)

where γ = 1/2σ 2 and σ is the standard deviation.
SVM is designed to separate only two classes, but it clas-

sifies more than two classes by two different strategies. One
Against All (OAA) separates each class from the rest, and
One Against One (OAO) compared the first category only
against other, one by one.

C. PERFORMANCE ANALYSIS
The performance of the classification using each of the calcu-
lation equations of the ZC, was evaluated using performance
indices such as precision (PRE), accuracy (ACC), specificity
(SPE), and sensitivity (SEN). The formulations are described
as follows:

PRE =
TP

TP+ FP
× 100%, (16)

ACC =
TP+ TN

TP+ TN + FP+ FN
× 100%, (17)

SPE =
TN

TN + FP
× 100%, (18)

SEN =
TP

TP+ FN
× 100%. (19)

The parameters in Eqs. (16), (17), (18) and (19) are defined
as a confusion matrix, where TP and TN are the number of
True Positives and Negatives, respectively, and FP and FN
the number of False Positives and Negatives, respectively.

III. IMPROVED METHOD
A. PROPOSED METHOD
To simplify operations and save processing time, this method
suggests making at the same time the comparison to find
crosses by zero and eliminate samples in the range of the
threshold T . The T value is considered with the same ampli-
tude up and down of the mid-line of the signal, which is,
the zero line. Thus, we use

fZC(xi, xi+1) =


1, if xi > T and xi+1 < T

or xi < T and xi+1 > T ,
0, otherwise.

(20)

The operations avoided are:
• Multiplications, which have a high computational cost.
• Subtraction.
• Absolute value.
This description avoids the execution of an excess of oper-

ations when performing the comparison that initially was
zero with the defined T . In addition, this description allows
operating with different threshold values, above and below
zero. However, in this research, a method to determine the T
is also proposed, which is described in the next sub-section.

B. THRESHOLD
The threshold T was calculated with quadruple of the average
of 10 samples of the subject in resting state because when no
movements are made, there should no be voltage variation.
If in the database the muscular activities start from a rest
period, just take the first ten samples of every execution.
Otherwise, it takes the information from the resting repeti-
tions. The threshold T is determined as:

T = 4

(
1
10

10∑
i=1

xi

)
. (21)

IV. METHODS AND EXPERIMENTATION
A. DATABASE
The data were collected by [24] in a database. It consists of
signals extracted from five healthy subjects, three women and
two men, normally limbed without muscle disorders, with an
approximate age of 20 to 22 years. Four electrodes positioned
in pairs and one for ground reference are the sensor system.
Velocity and force of movements were removed to the will of
the subject.

The sensor system was placed on the skin over the muscles
by elastic bands, in Flexor Carpi Ulnaris and Carpi Radi-
alis Extensor, Longus y Brevis muscles, with a reference
electrode in the center, sensing the differential potential. Six
different movements were made, with the name as corre-
sponds to the object held in Fig. 3. Data have the following
characteristics:
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FIGURE 3. Executed movements by subjects with their names [24].

• Every movement was executed for six seconds.
• 30 repetitions of each movement were made.
• Two channels of EMG.
• Sampling frequency of 500 Hz.

B. DATA PROCESSING
For data processing, MATLAB and the LIBSVM library
version 3.2 were used in this work [50]. A linear kernel was
used. Two different digital filters were applied in software to
remove undesirable noise from the collected sEMG signals.
First, a 50Hz Notch filter and then, a Butterworth bandpass
filter between 15 and 500Hz. The functions used were filter,
butter, and poly.
In the training process, a feature vector was built with ZC

for every channel. Then, these two vectors form the feature
matrix, which is used as input to train the SVM classifier.
Then, in a similar way, for the test process with the remaining
samples, a feature matrix for the testing process was formed.

C. EXPERIMENTATION
The PC used for calculations has an Intel(R) Core(TM)
i7 CPU at 1.8GHz, with a RAM of 8GB and a 64 bits
operating system; with MATLAB R2015b version.

From the database, the considered window size is 500 ms,
i.e., of 250 samples. The data were divided into two groups,
the training, and the testing data; 10 samples for the first
group, and 20 for the second. In other words, the database
which is composed of 900 movements, from five different
people and six different movements; 300 samples were used
to train the SVM and the other 600 were used to test the clas-
sification performance. Diagram in Fig. 4, shows the general
process of the experiment, starting from signal acquisition.

V. RESULTS
Eqs. (1), (2), (3), and (4) give the same classification perfor-
mance; this is because they evaluate only if it exists a zero-
crossing with two consecutive samples, and it does not take
into account the threshold. So, the main differences are in the
way to calculate if a zero-crossing occurs.

In the same way, with Eqs. (6) and (7), the classification
performance is the same. In fact, in the description, also

FIGURE 4. General diagram of the experiment.

FIGURE 5. Classification precision obtained with ZC by equation. Subjects
F1, F2 and F3 are females and, M1 and M2 are males.

TABLE 2. Performance analysis parameters obtained only with ZC by
equation.

Eqs. (5) and (8) are the same that Eqs. (6) and (7), but,
the result is different because some quantities are too small
and by multiplying them, the total is rounded to zero by the
software.

Fig. 5, shows an average view of the results. Those
obtained with Eq. (9) and Eq. (20) have the best performance;
however, Eq. (20) shows the best classification. Also, with
equations in the first block, the acquired results are the worst.
Thus, it is a better option to make the calculations of ZC using
a threshold.

Also, in Table 2 are shown the parameters selected to eval-
uate the classification performance per equation but grouping
the equations that give the same result. The last column has
the result obtained by the proposed method, that is Eq. (20).
The computed data throw the average of the results obtained
by classifying the movements made by each subject.

The best average classification is obtained by the pro-
posed method, with Eq. (20). Although, in terms of accu-
racy, the difference is not so pronounced; in precision,
Eq. (20) shows the best performance, more than double of that
obtained with the Eq. (1). The confusion matrix for the data
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FIGURE 6. Normalized confusion matrix for the obtained classification by
Eq. (20), male 2 for six classes (cyrindarical grasp (M1), tip (M2),
hook or snap (M3), palmar (M4), spherical (M5) and lateral (M6)).

TABLE 3. Processing time of a sample by equation.

of male 2, for the classification obtained with ZC calculated
by the proposed method with Eq. (20) is in Figure 6.

Table 3 illustrates the average and the standard deviation
processing time obtained by a sample. This information was
calculated using the timeit function. The minimum time by
equations without threshold is 5.48µs, and the maximum is
24.7µs. In contrast, with equations that consider a thresh-
old value, the minimum time is 7.69µs and the maximum
37.9µs, at least five more times. These results demonstrate
that the proposed method is a better option when it is impor-
tant to save time resources, due to the proposed method only
is superior by 0.33µs of Eq. (6); but it is better in precision
with 40% and accuracy of 13.5%.

VI. CONCLUSION
This research work shows that in ZC computing it is impor-
tant consider the proposed algorithm description, for two
main reasons:

• If it is possible to remove all noise or it can be neglected;
in ZC computing is not necessary to consider a T .
Otherwise, it depends on the use of featured signal, if it
is important take into account the required processing
time. Eqs. (1), (2), (3) and (4) do not contemplate a
threshold, so they yield the same classification precision.
However, Eq. (2) provides the shortest processing time.

• When a threshold must be considered during ZC com-
puting, it is important to deem the method through the T
is calculated and the algorithm description to use. In this
work, it is suggested the T calculation by the signal
information read while resting state. Then, ZC comput-
ing by the proposed depiction in Eq. (20), because of this
equation has the best classification precision compared
to the other methods. Furthermore, it has one of the
shorter processing time. Save time resources normally
is important for control applications, from the operation
of a prosthesis to the operation of machines made by
movement.

This research work pretends to point out the improvement
for ZC. Thus, in extension, it improves the precision obtained
by combining it with certain features.
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