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ABSTRACT An interval-valued Pythagorean hesitant fuzzy set (IVPHFS) not only can be regarded as
the union of some interval-valued Pythagorean fuzzy sets but also represent the Pythagorean hesitant
fuzzy elements in the form of interval values. So IVPHFSs are extensions of Pythagorean hesitant fuzzy
sets (PHFSs) and interval-valued Pythagorean fuzzy sets (IVPFSs), which are powerful tools to represent
more complicated, uncertain and vague information. This paper focuses on the four kinds of correlation
coefficients for PHFSs, and extends them to the correlation coefficients and the weighted correlation
coefficients for IVPHFSs. In the processing, we develop the least common multiple expansion (LCME)
method to solve the problem that the cardinalities of Pythagorean hesitant fuzzy elements (PHFEs) (or
interval-valued Pythagorean hesitant fuzzy elements (IVPHFEs)) are different. In addition, we propose score
functions and accuracy functions of Pythagorean fuzzy elements (PFEs) (or interval-valued Pythagorean
fuzzy elements (IVPFEs)) to rank all the PFEs (or IVPFEs) in a PHFE (or an IVPHFE). Especially, score
functions and accuracy functions of IVPFEs are both presented as interval numbers. Then use the comparison
method of interval numbers to compare two revised IVPHFEs in order to keep the original fuzzy information
as far as possible. What’s more, we define the local correlations and local informational energies which
can depict the similarity between two IVPHFEs more meticulously and completely. At last the numerical
examples to show the feasibility and applicability of the proposed methods in multiple criteria decision
making (MCDM) and clustering analysis.

INDEX TERMS Interval-valued Pythagorean hesitant fuzzy set (IVPHFS), Pythagorean hesitant fuzzy set
(PHFS), correlation, informational energy, correlation coefficient.

I. INTRODUCTION
Correlation plays an important role in mathematics, statis-
tics and engineering sciences. The interdependency between
two variables can be measured with the aid of correlation
analysis. The Karl Pearson coefficient, as a popular correla-
tion coefficient, has been applied widely to various research
domains and practical fields, such as data analysis and
classification [30], decision-making [33], [37], [45], pattern
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recognition [20] and so on. Since the information is fre-
quently incomplete, fuzzy and imperfect in many situations,
some researchers have developed the correlation coefficients
in fuzzy environments. Chiang and Lin [9] defined the con-
cept of correlation of fuzzy sets. Gerstenkorn andManko [14]
discussed the correlation of intuitionistic fuzzy sets. Bustince
and Burillo [5] developed the correlation coefficient in
interval-valued intuitionistic fuzzy environment. Then Zeng
and Wang [47] and Parket al. [28] both added indeterminacy
degrees to study the correlation coefficient of interval-valued
intuitionistic fuzzy sets. Moreover, Mitchell [26] studied the
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correlation coefficient for Type-2 fuzzy sets. It can be seen
that the correlation measure is one of the hot spots in the
research of fuzzy information. In this paper, we mainly focus
on the correlation measures for PHFSs and IVPHFSs.

Torra and Narukawa [35] and Torra [36] introduced the
concept of hesitant fuzzy sets (HFSs) which permit the mem-
bership degree of an object to a set of several possible val-
ues. Because of its outstanding application ability in group
decision-making problems, it has been explored in depth.
Interval-valued hesitant fuzzy sets [6], [8], [32],dual hesitant
fuzzy sets [51], interval-valued dual hesitant fuzzy sets [15],
hesitant N-soft sets [3], [4] and interval-valued probabilistic
hesitant fuzzy sets [12], [17], [18] have been proposed and
applied to decision-making problems successfully. Xu and
Xia [42], Chen et al. [7] studied the correlation coefficients
for classic HFSs. Their methods expand the possible mem-
bership degrees through adding some extreme values to the
hesitant fuzzy element (HFE) which has the less cardinality
of elements. However, if the extreme value is far from the
other possible membership values, the extended HFE will be
quite different from the original HFE. And if hesitant mem-
bership degrees of one HFS is always zero, the correlation
coefficients between it and other HFS cannot be calculated.
Liao et al. [22] defined a novel correlation coefficient formula
based on the mean of a HFE and extended the range of
the correlation coefficients to the interval [−1, 1]. When a
HFS is represented by a constant function, the correlation
coefficient between it and other HFSs will still not be cal-
culated. Sun et al. [34] focused on improving the counter-
intuitions of the existing correlation coefficients of HFSs
in [7], [22], [42]. Its contribution is mainly in the case of
improving the weighted correlation coefficients, but it does
not improve the general case. Meng and Chen [24] proposed
the correlation coefficients of HFSs based on fuzzy measures
and they [25] extended the method to study the case of
interval-valued hesitant fuzzy sets. However, the definition
is too cumbersome. In addition, Tyagi [37] and Ye [46]
studied the correlation coefficients of dual hesitant fuzzy
sets. Das et al. [10] addressed the correlation coefficients of
hesitant fuzzy soft sets. Although there exist several corre-
lation coefficients for HFSs, many unreasonable cases can
be made by such concepts. Some unreasonable examples are
illustrated in Example 8 and Example 10.

With the development of research, Yager [43], [44] pro-
posed another class of non-standard fuzzy sets, called
Pythagorean fuzzy sets (PFSs), which allow the sum of
squares of the Pythagorean membership degrees and the
corresponding Pythagorean non-membership degree to be
less than or equal to 1, rather than the sum of both less
than or equal to 1. Obviously a PFS is another extension
of an intuitionistic fuzzy set. Due to the broad definition
of PFSs, their application has involved various fuzzy prob-
lems. For example, Akram et al. [1], [2] introduced group
decision making methods in Pythagorean fuzzy environment.
Yager and Abbasov [44] studied Pythagorean fuzzy aggre-
gation. Li and Zeng [19] developed the distance measure

of PFSs and applied them in MCDM. Nguyen [27] pro-
posed the correlation coefficients of PFSs based on the mean
of all the Pythagorean fuzzy elements. This method fails
when a PFS takes all constant functions. Garg [13] studied
other correlation coefficients of PFSs and applied them to
decision-making processes, whereas they may encounter sit-
uations where the correlation cannot be distinguished. Exam-
ple 12 shows the drawbacks of his correlation coefficients.

Subsequently, some scholars combined PFSs with HFSs
and introduced Pythagorean hesitant fuzzy sets (PHFSs),
but their definitions are little different. Liu and He [23],
Khan et al. [16] and Liang and Xu [21] separated possible
Pythagorean membership degrees from possible Pythagorean
non-membership degrees and considered possible member-
ship degrees and possible non-membership degrees to form
two independent HFEs. Wei et al. [38] saw a Pythagorean
hesitant fuzzy element (PHFE) as a set of several Pythagorean
fuzzy elements (PFEs). Since the evaluations of alternatives
based on attributes by some expert are always presented in
the form of pairs in real-life decision making, we think Wei’s
definition is more reasonable than others. However, we have
seen few researches on correlation coefficients for PHFSs
so far.

In practical problems, we usually encounter possible
Pythagorean membership degrees and possible Pythagorean
non-membership degrees of an object are represented by
several possible interval numbers. On the basis of Wei’s
definition, Zhang et al. [50] put forward the concept of
interval-valued Pythagorean fuzzy sets (IVPHFSs), which
satisfy each interval-valued Pythagorean hesitant fuzzy ele-
ment (IVPHFE) is a set of some pairs of possible Pythagorean
membership interval values and possible Pythagorean non-
membership interval values. The theory depicts the compli-
cated, fuzzy environments more suitably.

The aim of this paper is to study the correlation coefficients
for PHFSs and IVPHFSs and their applications. Considering
that the existing methods of comparing two HFSs are greatly
affected by extreme values, firstly we use the least common
multiple expansion (LCME) method to make the cardinali-
ties of two PHFEs (or two IVPHFEs) are consistent. This
method does not add any additional extreme information.
Then construct score functions and accuracy functions of
PFEs in order to sort the PFEs in a PHFE. Especially, while
sorting the IVPFEs in an IVPHFE, define score functions
and accuracy functions of IVPFEs in the form of interval
numbers so as to keep the original fuzzy information as far as
possible. What’s more, we introduce the concepts of the local
correlations and the local informational energies, and then
we deduce the four formulas of correlation coefficients for
PHFSs and IVPHFSs and the four weighted correlation coef-
ficients for IVPHFSs. Our correlation coefficients can not
only degenerate into the correlation coefficients of HFSs or
PFSs, but also solve the problem that the existing correlation
of HFSs or PFSs cannot handle. Their applications inmultiple
criteria decision-making (MCDM) and clustering analysis are
illustrated.
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The structure of this paper is organized as follows: In
Section 2, we review some basic concepts and results of
HFSs, PHFSs and IVPHFSs. Section 3 gives the definitions
of the correlations, informational energies and correlation
coefficients of PHFSs and discusses some properties. Fur-
thermore, the correlation coefficients and the weighted cor-
relation coefficients for IVPHFSs are proposed in Section 4.
Section 5 solves a MCDM problem and a clustering problem
by the proposed weighted correlation coefficients in interval-
valued Pythagorean hesitant fuzzy environments. Concluding
remarks are made in Section 6.

II. PRELIMINARIES
Let U = {xi|i = 1, 2, · · · , n} be the universe of discourse in
this paper, unless otherwise specified.

A. HESITANT FUZZY SET (HFS)
A hesitant fuzzy set (HFS), introduced by Torra and
Narukawa [35], [36], allows the membership degree of an
element to a set represented by several possible values. It is
very suitable for describing problems that are difficult to be
determined by only one membership degree.
Definition 1 [36]: A hesitant fuzzy set (HFS) A on U

is described as A = {〈x, hA(x)〉|x ∈ U}, here hA(x) =
{µA(x)|µA(x) ∈ [0, 1]} represents the set of possible mem-
bership degrees of A at x.
For convenience, Xia and Xu [40] call h = hA(x) a hesitant

fuzzy element (HFE). And Torra and Narukawa [35] defined
some operators on HFEs, such as:

(1) hC = {1− µ|µ ∈ h};
(2) h1 ∪ h2 = {max{µ1, µ2}|µ1 ∈ h1, µ2 ∈ h2};
(3) h1 ∩ h2 = {min{µ1, µ2}|µ1 ∈ h1, µ2 ∈ h2}.
HFSs have been applied to get the optimal alternatives

in decision-making problems with multiple attributes and
multiple decision makers.

B. PYTHAGOREAN FUZZY SET (PFS)
A Pythagorean fuzzy set (PFS), introduced by Yager
in 2013 [43], is characterized by a membership function and a
non-membership function, where the sum of the square of the
membership degree and the non-membership degree of x is
less than or equal to 1, while an intuitionistic fuzzy set is also
characterized by them, where the sum is less than or equal
to 1. Obviously PFSs are more general than intuitionistic
fuzzy sets. A PFS has emerged as an effective tool to solve
multiple criteria decision making problems [31].
Definition 2 [43]: A Pythagorean fuzzy set (PFS) P on

U is described as: P = {〈x, µP(x), νP(x)〉|x ∈ U},
here µP(x), νP(x) ∈ [0, 1] are Pythagorean membership
degree and Pythagorean non-membership degree of P at x,
respectively. They satisfy 0 6 µ2

P(x) + ν2P(x) 6 1. The
Pythagorean indeterminacy degree is given by πP(x) =√
1− µ2

P(x)− ν
2
P(x).

For convenience, Zhang and Xu [49] called a Pythagorean
fuzzy element (PFE), denoted by P = 〈µP, νP〉.

Yager and Abbasov [44] continued to study the operators
on PFSs. Let A = 〈µA, νA〉 and B = 〈µB, νB〉 be two PFEs
on U . He defined the following operators:
(1) AC = 〈νA, µA〉;
(2) A

⋃
B = 〈max{µA, µB},min{νA, νB}〉;

(3) A
⋂
B = 〈min{µA, µB},max{νA, νB}〉.

Obviously an intuitionistic fuzzy set is a special PFS, or say
that a PFS is a generalization of an intuitionistic fuzzy set.

C. PYTHAGOREAN HESITANT FUZZY SET (PHFS)
Based on the concept of PFS and HFS, Wei proposed the
concept of Pythagorean hesitant fuzzy sets (PHFSs) [38],
whose membership degree is a set of several possible PFEs.
That is:
Definition 3 [38]: A Pythagorean hesitant fuzzy set (PHFS)

P on U is described as:

P = {〈x, hP (x)〉|x ∈ U},

where hP (x) = {〈µP (x), νP (x)〉|µ2
P (x) + ν2P (x) 6

1} is a set of some PFEs in U, denoting the possible
Pythagorean membership degree and possible Pythagorean
non-membership degree of P at x. We call hP = hP (x)
a Pythagorean hesitant fuzzy element (PHFE), here hP =

{〈µ, ν〉|µ2
+ ν2 6 1}.

Definition 4 [38]: Let hP = {〈µ, ν〉}, hP1 = {〈µ1, ν1〉}

and hP2 = {〈µ2, ν2〉} be three PHFEs and λ > 0. The basic
operators on PHFEs are defined as:

(1) hCP = {〈ν, µ〉|〈µ, ν〉 ∈ hP };
(2) hλP = {〈µ

λ,
√
1− (1− ν2)λ 〉|〈µ, ν〉 ∈ hP };

(3) λhP = {〈
√
1− (1− µ2)λ, νλ〉|〈µ, ν〉 ∈ hP };

(4) hP1 ⊕ hP2 = {〈

√
(µ1)2 + (µ2)2 − (µ1µ2)2, ν1ν2〉
|〈µi, νi〉 ∈ hPi , i = 1, 2};

(5) hP1 ⊗ hP2 = {〈µ1µ2,
√
(ν1)2 + (ν2)2 − (ν1ν2)2 〉

|〈µi, νi〉 ∈ hPi , i = 1, 2};
(6) hP1

⋃
hP2 = {〈max{µ1, µ2},min{ν1, ν2}〉

|〈µi, νi〉 ∈ hPi , i = 1, 2};
(7) hP1

⋂
hP2 = {〈min{µ1, µ2},max{ν1, ν2}〉

|〈µi, νi〉 ∈ hPi , i = 1, 2}.

D. INTERVAL-VALUED PYTHAGOREAN HESITANT FUZZY
SET (IVPHFS)
As mentioned earlier, in many practical problems, it is dif-
ficult for decision makers to determine precise membership
degrees or non-membership degrees. Interval numbers can
avoid the information loss better and enhance the flexibility
and applicability of decision-making models in dealing with
qualitative information. We extend PHFSs to interval-valued
Pythagorean hesitant fuzzy sets (IVPHFSs) in [50].
Definition 5 [50]: An interval-valued Pythagorean hesitant

fuzzy set (IVPHFS) P̃ on U is described as

P̃ = {〈x, hP̃ (x)〉|x ∈ U},

where

hP̃ (x) = {〈µ̃P̃ (x), ν̃P̃ (x)〉

|µ̃P̃ (x) = [µ−
P̃
(x), µ+

P̃
(x)] ∈ D[0, 1],
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ν̃P̃ (x) = [ν−
P̃
(x), ν+

P̃
(x)] ∈ D[0, 1],

(µ+
P̃
(x))2 + (ν+

P̃
(x))2 6 1}.

µ̃P̃ (x) and ν̃P̃ (x) are the possible Pythagorean member-
ship intervals and the possible Pythagorean non-membership
intervals of P̃ at x, respectively. The possible Pythagorean
indeterminacy degree of P̃ at x is a set of some pairs of
intervals defined as

π̃P̃ (x) = {[π−
P̃
(x), π+

P̃
(x)]

|π−
P̃
(x) =

√
1− (µ+

P̃
(x))2 − (ν+

P̃
(x))2,

π+
P̃
(x) =

√
1− (µ−

P̃
(x))2 − (ν−

P̃
(x))2,

〈[µ−
P̃
(x), µ+

P̃
(x)], [ν−

P̃
(x), ν+

P̃
(x)]〉

= 〈µ̃P̃ (x), ν̃P̃ (x)〉 ∈ hP̃ (x)}.

For convenience, we call each set of pairs hP̃ = hP̃ (x)
as an interval-valued Pythagorean hesitant fuzzy element
(IVPHFE), where hP̃ = {〈µ̃, ν̃〉|µ̃ = [µ−, µ+], ν̃ =
[ν−, ν+], (µ+)2 + (ν+)2 6 1}. For each IVPHFE hP̃ , if µ̃
and ν̃ both degenerate into one singleton, the IVPHFS is a
PHFS; if hP̃ includes only one pair of intervals, the IVPHFS
degenerates into an IVPFS [29]; if ν̃ ≡ [0, 0], the IVPHFS
is an interval-valued hesitant fuzzy set [6]; if µ+ + ν+ 6 1,
the IVPHFS is an interval-valued intuitionistic hesitant fuzzy
set, similar to [48].

Now we define some basic operators on IVPHFSs.
Definition 6 [50]: Let hP̃ = {〈µ̃, ν̃〉|µ̃ = [µ−, µ+], ν̃ =

[ν−, ν+]}, hP̃1
= {〈µ̃1, ν̃1〉|µ̃1 = [µ−1 , µ

+

1 ], ν̃1 =

[ν−1 , ν
+

1 ]}, hP̃2
= {〈µ̃2, ν̃2〉|µ̃2 = [µ−2 , µ

+

2 ], ν̃2 =

[ν−2 , ν
+

2 ]} be three IVPHFEs and λ > 0. The basic operators
on IVPHFEs are defined as follows:

(1) hC
P̃
= {〈[ν−, ν+], [µ−, µ+]〉|〈µ̃, ν̃〉 ∈ hP̃ };

(2) hλ
P̃
= {〈[(µ−)λ, (µ+)λ],

[
√
1− (1− (ν−)2)λ,

√
1− (1− (ν+)2)λ]〉|〈µ̃, ν̃〉 ∈ hP̃ };

(3) λhP̃ = {[
√
1− (1− (µ−)2)λ,

√
1− (1− (µ+)2)λ ],

[(ν−)λ, (ν+)λ]〉|〈µ̃, ν̃〉 ∈ hP̃ };

(4) hP̃1
⊕ hP̃2

= {〈[
√
(µ−1 )

2 + (µ−2 )
2 − (µ−1 )

2(µ−2 )
2,√

(µ+1 )
2 + (µ+2 )

2 − (µ+1 )
2(µ+2 )

2 ],

[ν−1 ν
−

2 , ν
+

1 ν
+

2 ]〉
|〈µ̃i, ν̃i〉 ∈ hP̃i

, i = 1, 2};
(5) hP̃1

⊗ hP̃2
= {〈[µ−1 µ

−

2 , µ
+

1 µ
+

2 ],

[
√
(ν−1 )

2 + (ν−2 )
2 − (ν−1 )

2(ν−2 )
2,√

(ν+1 )
2 + (ν+2 )

2 − (ν+1 )
2(ν+2 )

2 ]〉,
|〈µ̃i, ν̃i〉 ∈ hP̃i

, i = 1, 2};
(6) hP̃1

⋃
hP̃2
= {〈[max{µ−1 , µ

−

2 },max{µ+1 , µ
+

2 }],
[min{ν−1 , ν

−

2 },min{ν+1 , ν
+

2 }]〉
|〈µ̃i, ν̃i〉 ∈ hP̃i

, i = 1, 2};
(7) hP̃1

⋂
hP̃2
= {〈[min{µ−1 , µ

−

2 },min{µ+1 , µ
+

2 }],
[max{ν−1 , ν

−

2 },max{ν+1 , ν
+

2 }]〉
|〈µ̃i, ν̃i〉 ∈ hP̃i

, i = 1, 2}.

Similar to the cases of PHFEs, hC
P̃
, hλ

P̃
, λhP̃ , hP̃1

⊕hP̃2
,

hP̃1
⊗ hP̃2

, hP̃1

⋃
hP̃2

and hP̃1

⋂
hP̃2

are all IVPHFEs.

III. CORRELATION COEFFICIENTS FOR PHFSS
A. EXISTING CORRELATION COEFFICIENTS FOR HFSS
Correlation coefficients can reflect the degrees of relationship
between two variables. As a probability parameter, it has
been successfully applied to many real problems. Many
approaches [7], [22], [42] have been introduced to study
the correlation coefficients of HFSs. Since the cardinalities
of two HFEs may be different, Xu [42] proposed the two
methods based on the pessimistic principle and the optimistic
principle to make the cardinalities of two HFEs same. Spe-
cificmethods include: (1) Addmultipleminimum elements to
the collection with a small cardinality (pessimistic principle);
and (2) Add multiple maximum elements to the collection
with a small cardinality (optimistic principle). For example,
when |hA(xi)| 6= |hB(xi)| for some xi ∈ U , assume |hA(xi)| <
|hB(xi)|. hA(xi) should add theminimum values by pessimistic
principle (or the maximum values by optimistic principle) in
it until it has the same cardinality with hB(xi). Finally the two
cardinalities realize |hB(xi)| = max{|hA(xi)|, |hB(xi)|}.
At the same time, Chen [7] arranged HFEs in a decreas-

ing order. For any HFE h = {µj|j = 1, 2, · · · ,m}, let
σ :(1, 2, · · · ,m)→ (1, 2, · · · ,m) be a permutation satisfying
µσ (j) ≥ µσ (j+1), j ∈ {1, 2, · · · ,m − 1}, and µσ (j) be the
jth largest value in h. So we have the extended HFE h′ =
{µσ (j)|j = 1, 2, · · · ,m}. Then the correlation coefficient for
HFSs can be defined as follows.
Definition 7 [7]: Let A = {〈xi, hA(xi)〉|xi ∈ U},

B = {〈xi, hB(xi)〉|xi ∈ U} be two HFSs on U. The correlation
coefficient between A and B, denoted by ρ(1)H (A,B), is defined
as

ρ
(1)
H (A,B)=

CH (A,B)
√
EH (A)

√
EH (B)

=

n∑
i=1

(
1
li

li∑
j=1
µAσ (j)(xi)µBσ (j)(xi))√

n∑
i=1

(
1
lAi

lAi∑
j=1
µ2
Aσ (j)(xi))

√
n∑
i=1

(
1
lBi

lBi∑
j=1
µ2
Bσ (j)(xi))

,

where

CH (A,B) =
n∑
i=1

(
1
li

li∑
j=1

µAσ (j)(xi)µBσ (j)(xi))

is called the correlation between A and B.

EH (A) =
n∑
i=1

(
1
lAi

lAi∑
j=1

µ2
Aσ (j)(xi)),

EH (B) =
n∑
i=1

(
1
lBi

lBi∑
j=1

µ2
Bσ (j)(xi))

are called the informational energy of A and B, respectively.
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Here µAσ (j)(xi) ∈ h′A(xi), µBσ (j)(xi) ∈ h′B(xi),
li = max{|hA(xi)|, |hB(xi)|} = |h′A(xi)| = |h

′
B(xi)|, lAi =

|hA(xi)| and lBi = |hB(xi)|.
Example 8: Let A1 = {〈x, {0}〉},B1 = {〈x, {0.2, 0.3}〉} be

two HFSs on U1 = {x}.
Since EH (A1) = 0, we cannot calculate the correlation

coefficient between A1 and B1 based on Definition 7.
In 2015, Liao [22] presented a novel correlation coefficient

for HFSs based on the classical correlation coefficient in
statistics.
Definition 9 [22]: Let A = {〈xi, hA(xi)〉|xi ∈ U},B =
{〈xi, hB(xi)〉|xi ∈ U} be two HFSs on U. The correlation
coefficient between A and B, denoted by ρ(2)H (A,B), is defined
as

ρ
(2)
H (A,B) =

∑n
i (hA(xi)− A)(hB(xi)− B)√∑n

i=1(hA(xi)− A)2
√∑n

i=1(hB(xi)− B)2
,

here hA(xi) = {µA1(xi), µA2(x2), · · · , µAlAi (xi)},

hB(xi) = {µB1(xi), µB2(x2), · · · , µBlBi (xi)},

hA(xi) =
1
lAi

lAi∑
k=1

µAk (xi), hB(xi) =
1
lBi

lBi∑
k=1

µBk (xi),

A =
1
n

n∑
i=1

hA(xi), B =
1
n

n∑
i=1

hB(xi).

Example 10: Let A2 = {〈x1, {0.2}〉, 〈x2, {0.2}〉} and B2 =
{〈x1, {0.1}〉, 〈x2, {0.2, 0.3}〉} be two HFSs on U2 = {x1, x2}.

Since hA2 (x1) = hA2 (x2) = A2 = 0.2, ρH (A2,B2) cannot
be calculated by Definition 9.

We can find the above existing two definitions
of correlation coefficients for HFSs both have some
drawbacks.

B. EXISTING CORRELATION COEFFICIENTS FOR PFSS
Garg [13] discussed the correlation coefficients between two
PFSs, which consider not only Pythagorean membership
degrees and Pythagorean non-membership degrees, but also
Pythagorean indeterminacy degrees.
Definition 11: Let A = {〈x, µA(x), νA(x)〉|x ∈ U}, B =
{〈x, µB(x), νB(x)〉|x ∈ U} be two PFSs on U. The two cor-
relation coefficients between A and B, denoted by ρ(1)P (A,B)
and ρ(2)P (A,B), respectively, are defined as

ρ
(1)
P (A,B) =

CP(A,B)
√
EP(A)

√
EP(B)

;

ρ
(2)
P (A,B) =

CP(A,B)
max{EP(A),EP(B)}

,

where

CP(A,B) =
n∑
i=1

(µ2
A(xi)µ

2
B(xi)+ ν

2
A(xi)ν

2
B(xi)

+π2
A(xi)π

2
B(xi)),

EP(A) =
n∑
i=1

(µ4
A(xi)+ ν

4
A(xi)+ π

4
A(xi)),

EP(B) =
n∑
i=1

(µ4
B(xi)+ ν

4
B(xi)+ π

4
B(xi)).

Since they add Pythagorean indeterminacy degrees to cor-
relation coefficients, the definitions are more accepted by a
large number of researchers. However, they may meet the
indistinguishable situation.
Example 12: Let A,B,C be three PFSs on U =

{x1, x2, x3}, here

A = {〈x1, 0.6,
√
0.55〉, 〈x2, 0.5, 0.3〉, 〈x3, 0.4, 0.5〉};

B = {〈x1, 0.3,
√
0.55〉, 〈x2, 0.5, 0.4〉, 〈x3, 0.3, 0.5〉};

C = {〈x1, 0.1,
√
0.98〉, 〈x2, 1, 0〉, 〈x3, 0, 1〉}.

We can compute the correlation coefficients as follows:

ρ
(1)
P (A,C) = ρ(1)P (B,C) = 0.5158,

ρ
(2)
P (A,C) = ρ(2)P (B,C) = 0.3525.

Obviously Garg’s method cannot distinguish the above
situation.

C. CORRELATIONS AND CORRELATION COEFFICIENTS
FOR PHFSS
For PHFSs, the first problem is that we should adjust their
cardinalities to compare them, since the cardinalities of two
PHFEs are often different. Based on the previous analysis,
we find the construction of correlation coefficients of HFSs
needs to add some minimum values or some maximum val-
ues, whichmay cause the fuzzy information to be inconsistent
with the original HFEs. The twomethods both have the draw-
back, which is the methods depend on the decision makers’
subjective perception of risk preferences which are affected
by the extreme values. In this paper we propose the least
common multiple expansion LCME) method similar to [39],
which can add information from the original PHFEs evenly
and not just add extreme values.
Definition 13: Let hAt (xi) = {〈µi1, νi1〉, · · · , 〈µiSti , νiSti 〉}

(t = 1, 2, · · · ,T ) be some PHFEs about xi on U with Sti =
|hAt (xi)|. Take the least common multiple number of all Sti
(t = 1, 2, · · · ,T ) and denote it Si. Then for any t, hAt (xi)
can be extended to

h′At
(xi) = {〈µi1, νi1〉, · · · , 〈µi1, νi1〉︸ ︷︷ ︸

Si
Sti

times

, · · · ,

〈µiSti , νiSti 〉, · · · , 〈µiSti , νiSti 〉︸ ︷︷ ︸
Si
Sti

times

}.

Then |h′A1
(xi)| = |h′A2

(xi)| = · · · = |h′AT
(xi)| = Si.

The method is called the least common multiple expan-
sion (LCME) method.

Then we face the second problem: how to rank the
pairs of PFEs in a PHFE? As presented earlier research in
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Pythagorean fuzzy environment [49], the score function is
used to measure PFEs. The bigger the score values, the larger
the PFEs. However, we may face the situation that the score
values of two PFEs are equal. We develop a method for
Pythagorean fuzzy environments based on the score function
and the accuracy function.
Definition 14: For any PFE P = 〈µP, νP〉 on U, here

µ2
P + ν

2
P 6 1, the accuracy function S is defined to map P

to [−1, 1], which satisfies:

S(P) = µ2
P − ν

2
P.

The accuracy function H is defined to map P to [0, 1],
which satisfies:

H (P) = µ2
P + ν

2
P.

Let A = 〈µA, νA〉 and B = 〈µB, νB〉 be two PFEs.
(1) If S(A) < S(B), then we say A ≺ B;
(2) If S(A) > S(B)), then we say A � B;
(3) If S(A) = S(B), furthermore,

when H (A) < H (B), then we say A ≺ B;
when H (A) > H (B), then we say A � B;
when H (A) = H (B), then we say A = B.

For two PHFSs A and B, if for any x ∈ U , extend hA (x)
and hB(x) based on LCME method and rank all PFEs in
hA (x) and hB(x) based on the order ‘‘�’’. Then we have the
revised h′A (x) and h′B(x).
Example 15: Let hA (x) = {〈0.2, 0.4〉, 〈0.3, 0.4〉},

hB(x) = {〈0.4, 0.5〉, 〈0.4, 0.7〉, 〈0.3, 0.6〉} and hC (x) =
{〈0.5, 0.8〉, 〈0.6, 0.8〉} be three PHFEs on U = {x}.
Firstly we use LCME method to extend all the PHFEs:

hA (x) = {〈0.2, 0.4〉, 〈0.2, 0.4〉, 〈0.2, 0.4〉,

〈0.3, 0.4〉, 〈0.3, 0.4〉, 〈0.3, 0.4〉};

hB(x) = {〈0.4, 0.5〉, 〈0.4, 0.5〉, 〈0.4, 0.7〉,

〈0.4, 0.7〉, 〈0.3, 0.6〉, 〈0.3, 0.6〉};

hC (x) = {〈0.5, 0.8〉, 〈0.5, 0.8〉, 〈0.5, 0.8〉,

〈0.6, 0.8〉, 〈0.6, 0.8〉, 〈0.6, 0.8〉}.

Then we rank all the PHFEs based on ‘‘�’’:

h′A (x) = {〈0.3, 0.4〉, 〈0.3, 0.4〉, 〈0.3, 0.4〉,

〈0.2, 0.4〉, 〈0.2, 0.4〉, 〈0.2, 0.4〉};

h′B(x) = {〈0.4, 0.5〉, 〈0.4, 0.5〉, 〈0.3, 0.6〉,

〈0.3, 0.6〉, 〈0.4, 0.7〉, 〈0.4, 0.7〉};

h′C (x) = {〈0.6, 0.8〉, 〈0.6, 0.8〉, 〈0.6, 0.8〉,

〈0.5, 0.8〉, 〈0.5, 0.8〉, 〈0.5, 0.8〉}.

Through the extension and ranking of PHFE, the revised
PHFE h′ does not add extreme information. Then we propose
the correlation coefficients of PHFSs.
Definition 16: Let A = {〈xi, hA (xi)〉|xi ∈ U} and B =
{〈xi, hB(xi)〉|xi ∈ U} be two PHFSs on U, and Si be the least
common multiple number of |hA (xi)| and |hB(xi)|. The total

correlation between A and B is defined as

CPH (A ,B)

=
1
n

n∑
i=1

(
1
3Si

Si∑
j=1

(µ2
A σ (j)(xi)µ

2
Bσ (j)(xi)

+ ν2A σ (j)(xi)ν
2
Bσ (j)(xi)+ π

2
A σ (j)(xi)π

2
Bσ (j)(xi))).

And

CµPH (A ,B) =
1
n

n∑
i=1

(
1
2Si

Si∑
j=1

(µ2
A σ (j)(xi)µ

2
Bσ (j)(xi)

+ (1− µ2
A σ (j)(xi))(1− µ

2
Bσ (j)(xi))),

CνPH (A ,B) =
1
n

n∑
i=1

(
1
2Si

Si∑
j=1

(ν2A σ (j)(xi)ν
2
Bσ (j)(xi)

+ (1− ν2A σ (j)(xi))(1− ν
2
Bσ (j)(xi))),

CπPH (A ,B) =
1
n

n∑
i=1

(
1
2Si

Si∑
j=1

(π2
A σ (j)(xi)π

2
Bσ (j)(xi)

+ (1− π2
A σ (j)(xi))(1− π

2
Bσ (j)(xi)))

are called the membership, non-membership and indetermi-
nacy correlation between A and B, respectively. The three
kinds of correlations are collectively referred to as the local
correlations between A and B.
Here 〈µA σ (j)(xi), νA σ (j)(xi)〉 and 〈µBσ (j)(xi), νBσ (j)(xi)〉

are the jth largest PFEs in h′A (xi) and h′B(xi), respectively.
Definition 17: LetA = {〈xi, hA (xi)〉|xi ∈ U} be an PHFS

on U with Ti = |hA (xi)|. The total informational energy of
A is defined as

EPH (A ) =
1
n

n∑
i=1

(
1
3Ti

Ti∑
j=1

(µ4
A j(xi)+ ν

4
A j(xi)+ π

4
A j(xi))).

And

EµPH (A ) =
1
n

n∑
i=1

(
1
2Ti

Ti∑
j=1

(µ4
A j(xi)+ (1− µ2

A j(xi))
2),

EνPH (A ) =
1
n

n∑
i=1

(
1
2Ti

Ti∑
j=1

(ν4A j(xi)+ (1− ν2A j(xi))
2),

EπPH (A ) =
1
n

n∑
i=1

(
1
2Ti

Ti∑
j=1

π4
A j(xi)+ (1− π2

A j(xi))
2)

are called the membership, non-membership and indetermi-
nacy informational energy ofA , respectively. The three kinds
of informational energies are collectively referred to as the
local informational energies of A .
Here 〈µA j(xi), νA j(xi)〉 ∈ hA (xi).
Remark 18: Let h′A (xi) = {〈µA σ (j)(xi), νA σ (j)(xi)〉|j =

1, 2, · · · , Si} be the revised hA (xi) = {〈µA j(xi), νA j(xi)〉|j =
1, 2, · · · ,Ti}, here Si = |h′A (xi)| and Ti = |hA (xi)|. We can
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find

EPH (A )

=
1
n

n∑
i=1

(
1
3Ti

Ti∑
j=1

(µ4
A j(xi)+ ν

4
A j(xi)+ π

4
A j(xi)))

=
1
n

n∑
i=1

(
1
3Si

Si∑
j=1

(µ4
A σ (j)(xi)+ ν

4
A σ (j)(xi)+ π

4
A σ (j)(xi))).

So in the following context, we do not emphasize which
method is used to calculate the informational energies when
we mention them. The case of EµPH , E

ν
PH and EπPH are similar.

Proposition 19: The correlations and informational ener-
gies of PHFSs satisfy:

(1) 0 6 CPH (A ,B) 6 1,
0 6 CµPH (A ,B), CνPH (A ,B), CπPH (A ,B) 6 1;
0 6 EPH (A ), EµPH (A ), EνPH (A ), EπPH (A ) 6 1;

(2) CPH (A ,B) = CPH (B,A );
CµPH (A ,B) = CµPH (B,A );
CνPH (A ,B) = CνPH (B,A );
CπPH (A ,B) = CπPH (B,A );

(3) CPH (A ,A ) = EPH (A );
CµPH (A ,A ) = EµPH (A );
CνPH (A ,A ) = EνPH (A );
CπPH (A ,A ) = EπPH (A ).
Proof: Proposition 19 can be proved by Defini-

tion 16 and Definition 17 easily. Here the process is
omitted. �
Definition 20: LetA andB be two PHFSs on U. Then the

correlation coefficients betweenA andB, can be defined as
the following four forms:

ρ
(1)
PH (A ,B)=

CPH (A ,B)
√
EPH (A )

√
EPH (B)

;

ρ
(2)
PH (A ,B)=

CPH (A ,B)
max{EPH (A ), EPH (B)}

;

ρ
(3)
PH (A ,B)=

1
3
(ρµPH (A ,B)+ρνPH (A ,B)+ρπPH (A ,B));

ρ
(4)
PH (A ,B)=

1
3
(ρµ

′

PH (A ,B)+ρν
′

PH (A ,B)+ρπ
′

PH (A ,B)).

Here,

ρ
µ
PH (A ,B) =

CµPH (A ,B)√
EµPH (A )

√
EµPH (B)

,

ρνPH (A ,B) =
CνPH (A ,B)√

EνPH (A )
√
EνPH (B)

,

ρπPH (A ,B) =
CπPH (A ,B)√

EπPH (A )
√
EπPH (B)

,

ρ
µ′

PH (A ,B) =
CµPH (A ,B)

max{EµPH (A ), EµPH (B)}
,

ρν
′

PH (A ,B) =
CνPH (A ,B)

max{EνPH (A ), EνPH (B)}
,

ρπ
′

PH (A ,B) =
CπPH (A ,B)

max{EπPH (A ), EπPH (B)}
.

Proposition 21: The correlation coefficients of PHFSs sat-
isfy the following properties:

(1) ρ(1)PH (A ,B) = ρ(1)PH (B,A );
ρ
(2)
PH (A ,B) = ρ(2)PH (B,A );
ρ
(3)
PH (A ,B) = ρ(3)PH (B,A );
ρ
(4)
PH (A ,B) = ρ(4)PH (B,A );

(2) 0 6 ρ(2)PH (A ,B) 6 ρ(1)PH (A ,B) 6 1;
0 6 ρ(4)PH (A ,B) 6 ρ(3)PH (A ,B) 6 1;

(3) ρ(1)PH (A ,B) = ρ
(2)
PH (A ,B) = ρ

(3)
PH (A ,B) =

ρ
(4)
PH (A ,B) = 1⇔ A = B.

Proof: Claim (1) and (3) can be proved by Defini-
tion 20 easily. Here the processes are omitted. Claim (2) can
be proved as following:

Obviously the inequality ρ(1)PH (A ,B), ρ(2)PH (A ,B) > 0.
By Cauchy-Schwarz inequality

(x1y1 + x2y2 + · · · + xnyn)2

6 (x21 + x
2
2 + · · · + x

2
n ) · (y

2
1 + y

2
2 + · · · + y

2
n),

here (x1, x2, · · · , xn), (y1, y2, · · · , yn) ∈ Rn, we have

C2
PH (A ,B)

= (
1
n

n∑
i=1

(
1
3Si

Si∑
j=1

(µ2
A σ (j)(xi)µ

2
Bσ (j)(xi)

+ ν2A σ (j)(xi)ν
2
Bσ (j)(xi)+ π

2
A σ (j)(xi)π

2
Bσ (j)(xi)))

2

= (
1
n

S1∑
j=1

(
µ2

A σ (j)(x1)
√
3S1

·

µ2
Bσ (j)(x1)
√
3S1

+

ν2A σ (j)(x1)
√
3S1

·

ν2Bσ (j)(x1)
√
3S1

+

π2
A σ (j)(x1)
√
3S1

·

π2
Bσ (j)(x1)
√
3S1

)+ · · ·

+
1
n

Sn∑
j=1

(
µ2

A σ (j)(xn)
√
3Sn

·

µ2
Bσ (j)(xn)
√
3Sn

+

ν2A σ (j)(xn)
√
3Sn

·

ν2Bσ (j)(xn)
√
3Sn

+

π2
A σ (j)(xn)
√
3Sn

·

π2
Bσ (j)(xn)
√
3Sn

))2

6 (
1
n

S1∑
j=1

(
µ4

A σ (j)(x1)

3S1
+

ν4A σ (j)(x1)

3S1
+

π4
A σ (j)(x1)

3S1
)

+ · · · +
1
n

Sn∑
j=1

(
µ4

A σ (j)(xn)

3Sn
+

ν4A σ (j)(xn)

3Sn
+

π4
A σ (j)(xn)

3Sn
))

· (
1
n

S1∑
j=1

(
µ4

Bσ (j)(x1)

3S1
+

ν4Bσ (j)(x1)

3S1
+

π4
Bσ (j)(x1)

3S1
)+ · · ·

+
1
n

Sn∑
j=1

(
µ4

Bσ (j)(xn)

3Sn
+

ν4Bσ (j)(xn)

3Sn
+

π4
Bσ (j)(xn)

3Sn
))

= (
1
n

n∑
i=1

1
3Si

Si∑
j=1

(µ4
A σ (j)(xi)+ ν

4
A σ (j)(xi)+ π

4
A σ (j)(xi)))

· (
1
n

n∑
i=1

1
3Si

Si∑
j=1

(µ4
Bσ (j)(xi)+ ν

4
Bσ (j)(xi)+ π

4
Bσ (j)(xi)))

= EPH (A ) · EPH (B).
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TABLE 1. Correlation coefficients of PHFSs.

Therefore CPH (A ,B) 6
√
EPH (A ) ·

√
EPH (B), so 0 6

ρ
(1)
PH (A ,B) 6 1.
Since EPH (A ) 6 max{EPH (A ), EPH (B)}, EPH (B) 6

max{EPH (A ), EPH (B)} and
√
EPH (A )EPH (B) 6

max{EPH (A ), EPH (B)}. So ρ(2)PH (A ,B) 6 ρ
(1)
PH (A ,B).

Hence 0 6 ρ(2)PH (A ,B) 6 ρ(1)PH (A ,B) 6 1.
Similarly, we have 0 6 ρ

(4)
PH (A ,B) 6 ρ

(3)
PH (A ,B)

6 1. �
Example 22 (Continued From Example 15): Compute the

correlation coefficients between A and B, B and C , A
and C .
Based on Definition 16 and Definition 17, we have

CPH (A ,B) = 0.1502, CPH (B,C ) = 0.0998,

CPH (A ,C ) = 0.0559,

CµPH (A ,B) = 0.4081, CµPH (B,C ) = 0.3208,

CµPH (A ,C ) = 0.3362,

CνPH (A ,B) = 0.2953, CνPH (B,C ) = 0.2313,

CνPH (A ,C ) = 0.2024,

CπPH (A ,B) = 0.2471, CπPH (B,C ) = 0.2471,

CπPH (A ,C ) = 0.1290;

EPH (A ) = 0.2106, EPH (B) = 0.1405,

EPH (C ) = 0.1706,

EµPH (A ) = 0.4398, EµPH (B) = 0.3831,

EµPH (C ) = 0.2911,

EνPH (A ) = 0.3656, EνPH (B) = 0.2774,

EνPH (B) = 0.2696,

EπPH (A ) = 0.3262, EπPH (B) = 0.2610,

EπPH (C ) = 0.4511.

So we have the correlation coefficients in Table 1. It shows
the four results of ranking are consistent.

D. COMPARATIVE ANALYSIS WITH THE EXISTING
CORRELATION COEFFICIENTS
As we have presented in the introduction, the concept of
PHFS is controversial. About the correlation coefficients of
Liu’s PHFS we have not seen the related reports. Considering
PHFSs are the extension of HFSs and PFSs, we will compare
the existing correlation coefficients of HFSs and PFSs with
our definition.

(1) Let A = {〈x, hA(x)〉|x ∈ U} be a HFS on U , here
hA(x) = {µA(x)}. We can generalize hA(x) to hA(x) =

{〈µA(x),
√
1− µ2

A(x)〉}. Then A is extended to a PHFS.

Continue to Example 8 as an example. Denote A1 and B1
as two PHFSs:

hA1 (x) = {〈0, 1〉}, hB1 (x) = {〈0.2,
√
0.96〉, 〈0.3,

√
0.91〉}.

Then compute the correlation coefficients between A1 and B1
based on Definition 20 as follows:

ρ
(1)
PH (A1,B1) = 0.9969, ρ

(2)
PH (A1,B1) = 0.9350,

ρ
(3)
PH (A1,B1) = 0.9979, ρ

(4)
PH (A1,B1) = 0.9567.

Continue to Example 10 as an example. Denote A2 and B2
as two PHFSs:

hA2 (x1) = {〈0.2,
√
0.96〉}, hA2 (x2) = {〈0.2,

√
0.96〉},

hB2 (x1) = {〈0.1,
√
0.99〉},

hB2 (x2) = {〈0.2,
√
0.96〉, 〈0.3,

√
0.91〉}.

Then compute the correlation coefficients between A2 and B2
based on Definition 20 as follows:

ρ
(1)
PH (A2,B2) = 0.9988, ρ

(2)
PH (A2,B2) = 0.9952,

ρ
(3)
PH (A2,B2) = 0.9992, ρ

(4)
PH (A2,B2) = 0.9968.

(2) Let A = {〈x, µA(x), νA(x)〉|x ∈ U} be a PFS onU , here
0 6 µ2

A(x) + ν
2
A(x) 6 1, for any x ∈ U . We also can see A

as a PHFS, whose responding PHFEs only include one PFE
{〈µA(x), νA(x)〉}.
Continue to Example 12 as an example and compute the

correlation coefficients between A and B based on Defini-
tion 20, we have

ρ
(1)
PH (A,C) = ρ

(1)
PH (B,C) = 0.5158,

ρ
(2)
PH (A,C) = ρ

(2)
PH (B,C) = 0.3525,

ρ
(3)
PH (A,C) = 0.7094, ρ

(3)
PH (B,C) = 0.7066,

ρ
(4)
PH (A,C) = 0.5703, ρ

(4)
PH (B,C) = 0.5702.

We can find that our first two definitions of correlation
coefficients are consistent with Garg’s definition. What’s
more, our last two definitions of correlation coefficients can
distinguish two different situations.

IV. CORRELATION COEFFICIENTS FOR IVPHFSS
A. CORRELATIONS AND CORRELATION COEFFICIENTS OF
IVPHFSS
Furthermore, we try to study the correlation coefficients of
IVPHFSs. We may use LCME method to solve the inconsis-
tent problem of the cardinalities of IVPHFEs, while we still
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need to consider the ranking problem in one IVPHFE. Here
we recall the operators of interval numbers.
Definition 23 [11]: Let a = [a−, a+] and b = [b−, b+] be

two interval numbers. The interval arithmetic can be defined
as:

(1) a+ b = [a− + b−, a+ + b+];
(2) a− b = [a− − b+, a+ − b−];
(3) an = [(a−)n, (a+)n], here a− > 0, n ∈ N.
Definition 24 [41]: Let a = [a−, a+] and b = [b−, b+]

be two interval numbers, and l(a) = a+ − a−, l(b) =
b+ − b−, then the possibility degree of a > b is defined as
follows:

P(a > b) = max{1−max{
b+ − a−

l(a)+ l(b)
, 0}, 0}.

The equation of the possibility degree is used to compare
two interval numbers. If P(a > b) > 0.5, then a is superior to
b, denoted by a � b; If P(a > b) = 0.5, then a is equivalent
to b, denoted by a = b.

Similar to the discussion about PHFEs, we develop
the score function and the accuracy function to compare
IVPHFEs. It is worth noting that an IVPHFE includes
some pairs of interval-valued Pythagorean fuzzy elements
(IVPFEs). The arithmetic of interval numbers can keep the
original fuzzy information more than that of real numbers.
So we propose the following concepts of score functions and
accuracy functions about IVPFEs.
Definition 25: For any IVPFE P̃ = 〈µ̃P̃, ν̃P̃〉 =

〈[µ−
P̃
, µ+

P̃
], [ν−

P̃
, ν+

P̃
]〉 on U, here (µ+

P̃
)2 + (ν+

P̃
)2 6 1,

the score function S is defined to map P̃ to 2[−1,1], which
satisfies

S (̃P) = (µ̃P̃)
2
− (̃νP̃)

2

= [(µ−
P̃
)2 − (ν+

P̃
)2, (µ+

P̃
)2 − (ν−

P̃
)2].

The accuracy function H is defined to map P̃ to 2[0,1],
which satisfies

H (̃P) = (µ̃P̃)
2
+ (̃νP̃)

2

= [(µ−
P̃
)2 + (µ+

P̃
)2, (ν−

P̃
)2 + (ν+

P̃
)2].

Let Ã = 〈µ̃Ã, ν̃Ã〉, B̃ = 〈µ̃B̃, ν̃B̃〉 be two IVPFEs on U.
(1) If P(S (̃A) > S (̃B)) < 0.5, then Ã ≺ B̃;
(2) If P(S (̃A) > S (̃B)) > 0.5, then Ã � B̃;
(3) If P(S (̃A) > S (̃B)) = 0.5, furthermore,

when P(H (̃A) > H (̃B)) < 0.5, then Ã ≺ B̃;
when P(H (̃A) > H (̃B)) > 0.5, then Ã � B̃;
when P(H (̃A) > H (̃B)) = 0.5, then Ã = B̃.

For two IVPHFEs, extend the IVPHFEs by LCMEmethod
and rank all the pairs in one IVPHFE based on the order
‘‘�’’. Then we have the revised IVPHFEs and compare
them.
Definition 26: Let Ã = {〈xi, hÃ (xi)〉|xi ∈ U} and B̃ =
{〈xi, hB̃(xi)〉|xi ∈ U} be two IVPHFSs on U, and Si be the
least common multiple number of |hÃ (xi)| and |hB̃(xi)|. The

total correlation between Ã and B̃ is defined as

CIVPH (Ã , B̃)

=
1
n

n∑
i=1

(
1
6Si

Si∑
j=1

((µ−
Ã σ (j)

(xi)µ
−

B̃σ (j)
(xi))2

+ (ν−
Ã σ (j)

(xi)ν
−

B̃σ (j)
(xi))2 + (π−

Ã σ (j)
(xi)π

−

B̃σ (j)
(xi))2

+ (µ+
Ã σ (j)

(xi)µ
+

B̃σ (j)
(xi))2 + (ν+

Ã σ (j)
(xi)ν

+

B̃σ (j)
(xi))2

+ (π+
Ã σ (j)

(xi)π
+

B̃σ (j)
(xi))2)).

And

CµIVPH (Ã , B̃) =
1
n

n∑
i=1

(
1
4Si

Si∑
j=1

((µ−
Ã σ (j)

(xi)µ
−

B̃σ (j)
(xi))2

+ (µ+
Ã σ (j)

(xi)µ
+

B̃σ (j)
(xi))2

+ (1− (µ−
Ã σ (j)

(xi))2)(1− (µ−
B̃σ (j)

(xi))2)

+ (1− (µ+
Ã σ (j)

(xi))2)(1− (µ+
B̃σ (j)

(xi))2)),

CνIVPH (Ã , B̃) =
1
n

n∑
i=1

(
1
4Si

Si∑
j=1

((ν−
Ã σ (j)

(xi)ν
−

B̃σ (j)
(xi))2

+ (ν+
Ã σ (j)

(xi)ν
+

B̃σ (j)
(xi))2

+ (1− (ν−
Ã σ (j)

(xi))2)(1− (ν−
B̃σ (j)

(xi))2)

+ (1− (ν+
Ã σ (j)

(xi))2)(1− (ν+
B̃σ (j)

(xi))2)),

CπIVPH (Ã , B̃) =
1
n

n∑
i=1

(
1
4Si

Si∑
j=1

((π−
Ã σ (j)

(xi)π
−

B̃σ (j)
(xi))2

+ (π+
Ã σ (j)

(xi)π
+

B̃σ (j)
(xi))2

+ (1− (π−
Ã σ (j)

(xi))2)(1− (π−
B̃σ (j)

(xi))2)

+ (1− (π+
Ã σ (j)

(xi))2)(1− (π+
B̃σ (j)

(xi))2))

are called the membership, non-membership and indetermi-
nacy correlations between Ã and B̃, respectively. The three
kinds of correlations are collectively referred to as the local
correlations between Ã and B̃.
Here 〈[µ−

Ã σ (j)
(xi), µ

+

Ã σ (j)
(xi)], [ν

−

Ã σ (j)
(xi), ν+

Ã σ (j)
(xi)]〉

and 〈[µ−
B̃σ (j)

(xi), µ
+

B̃σ (j)
(xi)], [ν

−

B̃σ (j)
(xi), ν

+

B̃σ (j)
(xi)]〉 are the

jth largest interval-valued PFEs in h′
Ã
(xi) and h′

B̃
(xi),

respectively.
Definition 27: Let Ã = {〈xi, hÃ (xi)〉|xi ∈ U} be an

IVPHFS on U and Ti = |hÃ (xi)|. The total informational
energy of Ã is defined as

EIVPH (Ã ) =
1
n

n∑
i=1

(
1

6 Ti

Ti∑
j=1

((µ−
Ã j

(xi))4 + (µ+
Ã j

(xi))4

+ (ν−
Ã j

(xi))4 + (ν+
Ã j

(xi))4

+ (π−
Ã j

(xi))4 + (π+
Ã j

(xi))4)).
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And

EµIVPH (Ã ) =
1
n

n∑
i=1

(
1
4Ti

Ti∑
j=1

((µ−
Ã j

(xi))4 + (µ+
Ã j

(xi))4

+ (1− (µ−
Ã j

(xi))2)2 + (1− (µ+
Ã j

(xi))2)2)),

EνIVPH (Ã ) =
1
n

n∑
i=1

(
1

4 Ti

Ti∑
j=1

((ν−
Ã j

(xi))4 + (ν+
Ã j

(xi))4

+ (1− (ν−
Ã j

(xi))2)2 + (1− (ν+
Ã j

(xi))2)2)),

EπIVPH (Ã ) =
1
n

n∑
i=1

(
1

4 Ti

Ti∑
j=1

((π−
Ã j

(xi))4 + (π+
Ã j

(xi))4

+ (1− (π−
Ã j

(xi))2)2 + (1− (π+
Ã j

(xi))2)2))

are called the local membership, non-membership and inde-
terminacy informational energies of Ã , respectively. The
three kinds of informational energies are collectively referred
to as the local informational energies of Ã .
Here 〈[µ−

Ã j
(xi), µ

+

Ã j
(xi)], [ν

−

Ã j
(xi), ν

+

Ã j
(xi)]〉 ∈ hÃ (xi).

Proposition 28: The correlations and informational ener-
gies of IVPHFSs satisfy:

(1) 0 6 CIVPH (A ,B) 6 1,
0 6 CµIVPH (A ,B),CνIVPH (A ,B), CπIVPH (A ,B) 6 1;

0 6 EIVPH (A ) 6 1,
0 6 EµIVPH (A ), EνIVPH (A ), EπIVPH (A ) 6 1;

(2) CIVPH (Ã , B̃) = CIVPH (Ã , B̃);
CµIVPH (Ã , B̃) = CµIVPH (Ã , B̃);
CνIVPH (Ã , B̃) = CνIVPH (Ã , B̃);
CπIVPH (Ã , B̃) = CπIVPH (Ã , B̃);

(3) CIVPH (Ã , Ã ) = EIVPH (Ã );
CµIVPH (Ã , Ã ) = EµIVPH (Ã );
CνIVPH (Ã , Ã ) = EνIVPH (Ã );
CπIVPH (Ã , Ã ) = EπIVPH (Ã ).

Definition 29: Let Ã and B̃ be two IVPHFSs on U. Then
the correlation coefficients between Ã and B̃ can be defined
as the following four forms:

ρ
(1)
IVPH (Ã , B̃) =

CIVPH (Ã , B̃)√
EIVPH (Ã )

√
EIVPH (B̃)

;

ρ
(2)
IVPH (Ã , B̃) =

CIVPH (Ã , B̃)

max{EIVPH (Ã ), EIVPH (B̃)}
;

ρ
(3)
IVPH (Ã , B̃) =

1
3
(ρµIVPH (Ã , B̃)+ ρνIVPH (Ã , B̃)

+ ρπIVPH (Ã , B̃));

ρ
(4)
IVPH (Ã , B̃) =

1
3
(ρµ

′

IVPH (Ã , B̃)+ ρν
′

IVPH (Ã , B̃)

+ ρπ
′

IVPH (Ã , B̃)).

Here,

ρ
µ
IVPH (Ã , B̃) =

CµIVPH (Ã , B̃)√
EµIVPH (Ã )

√
EµIVPH (B̃)

,

ρνIVPH (Ã , B̃) =
CνIVPH (Ã , B̃)√

EνIVPH (Ã )
√
EνIVPH (B̃)

,

ρπIVPH (Ã , B̃) =
CπIVPH (Ã , B̃)√

EπIVPH (Ã )
√
EπIVPH (B̃)

,

ρ
µ′

IVPH (Ã , B̃) =
CµIVPH (Ã , B̃)

max{EµIVPH (Ã ), EµIVPH (B̃)}
,

ρν
′

IVPH (Ã , B̃) =
CνIVPH (Ã , B̃)

max{EνIVPH (Ã ), EνIVPH (B̃)}
,

ρπ
′

IVPH (Ã , B̃) =
CπIVPH (Ã , B̃)

max{EπIVPH (Ã ), EπIVPH (B̃)}
.

Proposition 30: The correlation coefficients of IVPHFSs
satisfy the following properties:

(1) ρ(1)IVPH (Ã , B̃) = ρ(1)IVPH (B̃, Ã );
ρ
(2)
IVPH (Ã , B̃) = ρ(2)IVPH (B̃, Ã );
ρ
(3)
IVPH (Ã , B̃) = ρ(3)IVPH (B̃, Ã );
ρ
(4)
IVPH (Ã , B̃) = ρ(4)IVPH (B̃, Ã );

(2) 0 6 ρ(2)IVPH (Ã , B̃) 6 ρ(1)IVPH (Ã , B̃) 6 1;
0 6 ρ(4)IVPH (Ã , B̃) 6 ρ(3)IVPH (Ã , B̃) 6 1;

(3) ρ(1)IVPH (Ã , B̃) = ρ
(2)
IVPH (Ã , B̃) = ρ

(3)
IVPH (Ã , B̃) =

ρ
(4)
IVPH (Ã , B̃) = 1⇔ Ã = B̃.
Example 31: Let Ã , B̃, C̃ be three IVPHFSs on U = {x}.

Here

Ã = {x, 〈[0.2, 0.5], [0.3, 0.4]〉};

B̃ = {x, 〈[0.2, 0.4], [0.3, 0.7]〉, 〈[0.2, 0.4], [0.3, 0.5]〉};

C̃ = {x, 〈[0.3, 0.5], [0.2, 0.4]〉}.

Compute the correlation coefficients between them.
Firstly we give the revised IVPHFEs:

hÃ (x) = {〈[0.2, 0.5], [0.3, 0.4]〉, 〈[0.2, 0.5], [0.3, 0.4]〉};

hB̃(x) = {〈[0.2, 0.4], [0.3, 0.5]〉, 〈[0.2, 0.4], [0.3, 0.7]〉};

hC̃ (x) = {〈[0.3, 0.5], [0.2, 0.4]〉, 〈[0.3, 0.5], [0.2, 0.4]〉}.

Based on Definition 26 and 27, we have

CIVPH (Ã , B̃) = 0.1905, CIVPH (B̃, C̃ ) = 0.1901,

CIVPH (Ã , C̃ ) = 0.2000;

CµIVPH (Ã , B̃) = 0.3983, CµIVPH (B̃, C̃ ) = 0.3868,

CµIVPH (Ã , C̃ ) = 0.3756;

CνIVPH (Ã , B̃) = 0.3562, CνIVPH (B̃, C̃ ) = 0.3664,

CνIVPH (Ã , C̃ ) = 0.4021;

CπIVPH (Ã , B̃) = 0.3171, CπIVPH (B̃, C̃ ) = 0.3171,

CπIVPH (Ã , C̃ ) = 0.3225;

EIVPH (Ã ) = 0.2005, EIVPH (B̃) = 0.1965,

EIVPH (C̃ ) = 0.2005,

EµIVPH (Ã ) = 0.3871, EµIVPH (B̃) = 0.4136,

EµIVPH (C̃ ) = 0.3653,

EνIVPH (Ã ) = 0.3919, EνIVPH (B̃) = 0.3497,
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TABLE 2. Correlation coefficients of IVPHFSs in Example 31.

EνIVPH (C̃ ) = 0.4136,

EπIVPH (Ã ) = 0.3225, EπIVPH (B̃) = 0.3261,

EπIVPH (C̃ ) = 0.3225.

So we have the correlation coefficients in Table 2.
Although the four ranking results are little different, IVPHFS
Ã and IVPHFS C̃ are always the most similar.

B. WEIGHTED CORRELATION COEFFICIENTS OF IVPHFSS
In the above section, we discuss the case that all objects are
equally important. In many practical situations, the different
objects may have different weights. This section develops the
concept of the weighted correlation coefficients of IVPHFSs.
Definition 32: Let Ã and B̃ be two IVPHFSs on U.

Let ω = (ω1, ω2, · · · , ωn)T be the weight vector of U

with
n∑
i=1
ωi = 1. Then the weighted correlation coefficients

between Ã and B̃ can also be defined as the following four
forms:

ρ
(1)
IVPHω (Ã , B̃) =

CIVPHω (Ã , B̃)√
EIVPHω (Ã )

√
EIVPHω (B̃)

;

ρ
(2)
IVPHω (Ã , B̃) =

CIVPHω (Ã , B̃)

max{EIVPHω (Ã ), EIVPH (B̃)}
;

ρ
(3)
IVPHω (Ã , B̃) =

1
3
(ρµIVPHω (Ã , B̃)+ ρνIVPHω (Ã , B̃)

+ ρπIVPHω (Ã , B̃));

ρ
(4)
IVPHω (Ã , B̃) =

1
3
(ρµ

′

IVPHω (Ã , B̃)+ ρν
′

IVPHω (Ã , B̃)

+ ρπ
′

IVPHω (Ã , B̃)).

Here,

CIVPHω (Ã , B̃) =
n∑
i=1

(
ωi

6Si

Si∑
j=1

((µ−
Ã σ (j)

(xi)µ
−

B̃σ (j)
(xi))2

+, (ν−
Ã σ (j)

(xi)ν
−

B̃σ (j)
(xi))2

+ (π−
Ã σ (j)

(xi)π
−

B̃σ (j)
(xi))2

+, (µ+
Ã σ (j)

(xi)µ
+

B̃σ (j)
(xi))2

+ (ν+
Ã σ (j)

(xi)ν
+

B̃σ (j)
(xi))2

+, (π+
Ã σ (j)

(xi)π
+

B̃σ (j)
(xi))2));

CµIVPHω (Ã , B̃) =
n∑
i=1

(
ωi

4Si

Si∑
j=1

((µ−
Ã σ (j)

(xi)µ
−

B̃σ (j)
(xi))2

+ (µ+
Ã σ (j)

(xi)µ
+

B̃σ (j)
(xi))2

+ (1− (µ−
Ã σ (j)

(xi))2)(1− (µ−
B̃σ (j)

(xi))2)

+ (1− (µ+
Ã σ (j)

(xi))2)(1−(µ
+

B̃σ (j)
(xi))2));

CνIVPHω (Ã , B̃) =
n∑
i=1

(
ωi

4Si

Si∑
j=1

((ν−
Ã σ (j)

(xi)ν
−

B̃σ (j)
(xi))2

+ (ν+
Ã σ (j)

(xi)ν
+

B̃σ (j)
(xi))2

+ (1− (ν−
Ã σ (j)

(xi))2)(1− (ν−
B̃σ (j)

(xi))2)

+ (1− (ν+
Ã σ (j)

(xi))2)(1− (ν+
B̃σ (j)

(xi))2));

CπIVPHω (Ã , B̃) =
n∑
i=1

(
ωi

4Si

Si∑
j=1

((π−
Ã σ (j)

(xi)π
−

B̃σ (j)
(xi))2

+ (π+
Ã σ (j)

(xi)π
+

B̃σ (j)
(xi))2

+ (1− (π−
Ã σ (j)

(xi))2)(1− (π−
B̃σ (j)

(xi))2)

+ (1− (π+
Ã σ (j)

(xi))2)(1− (π+
B̃σ (j)

(xi))2));

EIVPHω (Ã ) =
n∑
i=1

(
ωi

6 Ti

Ti∑
j=1

((µ−
Ã j

(xi))4 + (µ+
Ã j

(xi))4

+ (ν−
Ã j

(xi))4 + (ν+
Ã j

(xi))4

+ (π−
Ã j

(xi))4 + (π+
Ã j

(xi))4));

EµIVPHω (Ã ) =
n∑
i=1

(
ωi

4 Ti

Ti∑
j=1

((µ−
Ã j

(xi))4 + (µ+
Ã j

(xi))4

+ (1− (µ−
Ã j

(xi))2)2+(1−(µ
+

Ã j
(xi))2)2));

EνIVPHω (Ã ) =
n∑
i=1

(
ωi

4 Ti

Ti∑
j=1

((ν−
Ã j

(xi))4 + (ν+
Ã j

(xi))4

+ (1− (ν−
Ã j

(xi))2)2+(1− (ν+
Ã j

(xi))2)2));

EπIVPHω (Ã ) =
n∑
i=1

(
ωi

4 Ti

Ti∑
j=1

((π−
Ã j

(xi))4 + (π+
Ã j

(xi))4

+ (1− (π−
Ã j

(xi))2)2+(1−(π
+

Ã j
(xi))2)2));

ρ
µ
IVPHω (Ã , B̃) =

CµIVPHω (Ã , B̃)√
EµIVPHω (Ã )

√
EµIVPHω (B̃)

;

ρνIVPHω (Ã , B̃) =
CνIVPHω (Ã , B̃)√

EνIVPHω (Ã )
√
EνIVPHω (B̃)

;
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ρπIVPHω (Ã , B̃) =
CπIVPHω (Ã , B̃)√

EπIVPHω (Ã )
√
EπIVPHω (B̃)

;

ρ
µ′

IVPHω (Ã , B̃) =
CµIVPHω (Ã , B̃)

max{EµIVPHω (Ã ), EµIVPHω (B̃)}
;

ρν
′

IVPHω (Ã , B̃) =
CνIVPHω (Ã , B̃)

max{EνIVPHω (Ã ), EνIVPHω (B̃)}
;

ρπ
′

IVPHω (Ã , B̃) =
CπIVPHω (Ã , B̃)

max{EπIVPHω (Ã ), EπIVPHω (B̃)}
.

Proposition 33: Let Ã and B̃ be two IVPHFSs
on U. Then the weighted correlation coefficients between
Ã and B̃ satisfy:

(1) ρ(1)IVPHω (Ã , B̃) = ρ(1)IVPHω (B̃, Ã ),

ρ
(2)
IVPHω (Ã , B̃) = ρ(2)IVPHω (B̃, Ã ),

ρ
(3)
IVPHω (Ã , B̃) = ρ(3)IVPHω (B̃, Ã ),

ρ
(4)
IVPHω (Ã , B̃) = ρ(4)IVPHω (B̃, Ã );

(2) 0 6 ρ(2)IVPHω (Ã , B̃) 6 ρ(1)IVPHω (Ã , B̃) 6 1,

0 6 ρ(4)IVPHω (Ã , B̃) 6 ρ(3)IVPHω (Ã , B̃) 6 1;

(3) ρ(1)IVPHω (Ã , B̃) = ρ(2)IVPHω (Ã , B̃) = ρ(3)IVPHω (Ã , B̃) =

ρ
(4)
IVPHω (Ã , B̃) = 1⇔ Ã = B̃.

(4) If ω = (
1
n
, · · ·

1
n
)T ,

C (1)
IVPHω (Ã , B̃) = C (1)

IVPH (Ã , B̃),

C (2)
IVPHω (Ã , B̃) = C (2)

IVPH (Ã , B̃),

C (3)
IVPHω (Ã , B̃) = C (3)

IVPH (Ã , B̃),

C (4)
IVPHω (Ã , B̃) = C (4)

IVPH (Ã , B̃),

E (1)
IVPHω (Ã ) = E (1)

IVPH (Ã ),

E (2)
IVPHω (Ã ) = E (2)

IVPH (Ã ),

E (3)
IVPHω (Ã ) = E (3)

IVPH (Ã ),

E (4)
IVPHω (Ã ) = E (4)

IVPH (Ã ),

ρ
(1)
IVPHω (Ã , B̃) = ρ(1)IVPH (Ã , B̃),

ρ
(2)
IVPHω (Ã , B̃) = ρ(2)IVPH (Ã , B̃),

ρ
(3)
IVPHω (Ã , B̃) = ρ(3)IVPH (Ã , B̃),

ρ
(4)
IVPHω (Ã , B̃) = ρ(4)IVPH (Ã , B̃).

V. APPLICATIONS
This section will apply the correlation coefficients for
IVPHFSs to MCDM problems and clustering analysis.

A. MCDM PROBLEM
Let A = {Ai|i = 1, 2, · · · ,m} be a finite set of alter-
natives and C = {Cj|j = 1, 2, · · · , n} be a set of cri-
teria, ω = (ω1, ω2, · · · , ωn)T be the weight vector of
the criteria, where ωj ∈ [0, 1] (j = 1, 2, · · · , n) and
n∑
j=1
ωj = 1. Suppose M = (hÃij

)m×n is an interval-valued

Pythagorean hesitant fuzzy decision matrix (IVPHFDM),
where hÃij

= {〈[µ−ij , µ
+

ij ], [ν
−

ij , ν
+

ij ]〉|(µ
+

ij )
2
+ (ν+ij )

2 6
1}, (i = 1, 2, · · · ,m, j = 1, 2, · · · , n) is an IVPHFE given
by decision makers to evaluate the alternative Ai with respect
to the criteria Cj.
The concrete algorithm is listed as follows:
Step 1 Input M = (hÃij

)m×n, ω = (ω1, ω2, · · · , ωn)T

and λ ∈ [0, 1].
Step 2 Make M the revised IVPHFDM M ′ = (h′

Ãij
)m×n.

The cardinalities of different IVPHFEs may be different
even in the same criteria, that is |hÃkj

| 6= |hÃlj
|, (k, l =

1, 2, · · · ,m, k 6= l, j = 1, 2, · · · , n). Use the LCME method
to make the cardinalities of two IVPHFEs are consistent and
order all the interval-valued PFEs in each IVPHFE. Then
we have |h′

Ãkj
| = |h′

Ãlj
|, and the revised IVPHFDM M ′ =

(h′
Ãij

)m×n is formed.

Step 3 Compute the weighted correlation coefficients
between each Ãi and Ã ∗.
Here Ãi = (h′

Ãi1
, h′

Ãi2
, · · · , h′

Ãin
) (i = 1, 2, · · · ,m) can be

seen as the IVPHFS which represents the fuzzy degree of the
alternative Ai about all the criteria. Ã ∗ is the IVPHFS which
represents the fuzzy degree of the ideal solution A∗ about all
the criteria. For the benefit criterion Cj, the ideal solution is
depicted by the IVPHFE hÃ ∗j

= {〈[1, 1], [0, 0]〉}; For the
cost criterionCj, the ideal solution is depicted by the IVPHFE
hÃ ∗j
= {〈[0, 0], [1, 1]〉}. Then Ã ∗ = (hÃ ∗1

, hÃ ∗2
, · · · , hÃ ∗n

)

which satisfies |hÃ ∗j
| = |h′

Ãij
| for any j ∈ {1, 2, · · · , n}.

Step 4Get the priority of the alternatives Ai by ranking the
above correlation coefficients. End.
Example 34: An investment company should evaluate four

possible projects Ai (i = 1, 2, 3, 4) according to the three
criteria Cj (j = 1, 2, 3). Here C1 and C2 are both benefit
criteria while C3 is a cost criterion. Suppose that the weight
vector of the criteria is ω = (0.3, 0.45, 0.25)T . The decision
matrix is given by the experts as Table 3.

Considering that |hÃ1j
| 6= |hÃ2j

| for any j ∈ {1, 2, 3},
we revised the matrixM intoM ′ in Table 4. Table 5 gives the
correlations between the four IVPHFSs and the ideal IVPHFS
and informational energies of the four IVPHFSs. Further-
more, compute the four correlation coefficients between this
alternatives and the ideal alternatives in Table 6. The result
shows the project A3 are always the most optimal, although
the four ranking results are little different.

B. CLUSTERING ANALYSIS
Let Ãi (i = 1, 2, · · · ,m) be m IVPHFSs on U , and R =
(ρij)m×m be their interval-valued Pythagorean hesitant fuzzy
relation matrix, where ρij = ρ

(1)
IVPHω (Ãi, Ãj). R obviously

satisfies: for any i, j = 1, 2, · · · ,m,
(1)(Boundedness) 0 6 ρij 6 1;
(2)(Reflexivity) ρii = 1;
(3)(Symmetry) ρij = ρji.
So R can be regarded as a similarity relation matrix.
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TABLE 3. IVPHFDM M in Example 34.

TABLE 4. Revised IVPHFDM M′ in Example 34.

TABLE 5. Correlations and informational energies in M′ in Example 34.

TABLE 6. Correlation coefficients of IVPHFSs in Example 34.

Define R2 = R ◦ R = (ρ̃ij)m×m, here

ρ̃ij =

m∨
k=1

(
ρik
∧
ρkj

)
, i, j = 1, 2, · · · ,m.

Then we say R2 a composition matrix of R. Similarly, R3 =
R2 ◦R, · · · ,Rn = Rn−1 ◦R, · · · Usually, for any nonnegative

integers n1 and n2, the composition matrix Rn1+n2 = Rn1◦Rn2
is still a relation matrix.

If R2 ⊆ R, that means
m∨
k=1

(
ρik
∧
ρkj
)
6 ρij, for any i, j =

1, 2, · · · ,m. We say R is transitive. When a relation satisfies
the reflexivity, symmetry and transitivity, it is an equivalence
relation. Then we can say the interval-valued Pythagorean
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TABLE 7. IVPHFDM M in Example 38.

TABLE 8. Clustering results of six cars.

hesitant fuzzy similarity relation matrix R is an equivalence
relation matrix. In fact, a similarity relation matrix can be
composited into an equivalence relation matrix.
Proposition 35: Let R = (ρij)m×m be an interval-valued

Pythagorean hesitant fuzzy relation matrix on U. Then after
the finite times of compositions: R → R2 → R4 → · · · →
R2

k
−→ · · · , there must exist a positive integer k such that

R2
k
= R2

k+1
and R2

k
is also an interval-valued Pythagorean

hesitant fuzzy equivalence relation matrix.
Definition 36: Let R = (ρij)m×m be an interval-valued

Pythagorean hesitant fuzzy relation matrix on U and λ ∈
[0, 1]. We say Rλ = (λρij)m×m the λ−cutting matrix of R,
where

λρij =

{
0, if ρij < λ

1, if ρij > λ
i, j = 1, 2, · · · ,m.

Proposition 37: Let R = (ρij)m×m be an interval-valued
Pythagorean hesitant fuzzy relation matrix on U and λ ∈
[0, 1]. R is an interval-valued Pythagorean hesitant fuzzy
equivalence relation matrix iff Rλ is a classic equivalence
relation matrix for any confidence level λ.
Now we propose an algorithm of clustering IVPHFSs as

follows:
Step 1 Input M = (hÃit

)m×n and ω = (ω1, ω2, · · · , ωn)T .

Step 2 Compute ρ
(1)
IVPHω (Ãi, Ãj), for any i, j =

1, 2, · · · ,m, and get R = (ρij)m×m, where ρij =

ρ
(1)
IVPHω (Ãi, Ãj).
Step 3 Initiate D = R and E = ∅.
Step 4 While E 6= D, do E = D and E = E2, end.
Step 5 Give any Confidence level λ, and classify all these

IVPHFSs Ãi (i = 1, 2, · · · ,m) based on Eλ. End.

Example 38: With the continuous improvement of people’s
living standards, the automobile industry is developing faster
and faster. To better evaluate six different cars U = {Ai|i =
1, 2, · · · , 6} on the market, we need to cluster them according
to the following three attributes: C1: power performance; C2:
handling stability; and C3: fuel economy. Because the users
have different professions and levels of knowledge, they may
give different evaluations of the same car. To clearly reflect
the differences of the opinions, we keep all the evaluations by
interval-valued Pythagorean hesitant fuzzy information listed
in Table 7. Suppose that the weight vector of the criteria is
ω = (0.3, 0.25, 0.45)T .

According to the weighted correlation coefficients ρij =
ρ
(1)
IVPHω (Ãi, Ãj), we derive the relation matrix R = (ρij)6×6 as

following:

R =


1.0000 0.7633 0.8703 0.8965 0.8705 0.8490
0.7633 1.0000 0.7238 0.7671 0.7219 0.7573
0.8703 0.7238 1.0000 0.8677 0.8967 0.8823
0.8965 0.7671 0.8677 1.0000 0.9336 0.9678
0.8705 0.7219 0.8967 0.9336 1.0000 0.9266
0.8490 0.7573 0.8823 0.9678 0.9266 1.0000

 ,
Composite R and deduce the equivalence relation matrix:

R8 =


1.0000 0.7671 0.8965 0.8965 0.8965 0.8965
0.7671 1.0000 0.7671 0.7671 0.7671 0.7671
0.8965 0.7671 1.0000 0.8967 0.8967 0.8967
0.8965 0.7671 0.8967 1.0000 0.9336 0.9678
0.8965 0.7671 0.8967 0.9336 1.0000 0.9336
0.8965 0.7671 0.8967 0.9678 0.9336 1.0000


= R10,

Now classify the six cars based on the λ−cutting matrix R8λ
in Table 8:
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VI. CONCLUSION
The paper has introduced four correlation coefficients for
PHFSs and IVPHFSs. Based on LCMEmethod and the com-
parison method of interval numbers, the correlations between
two IVPHFEs can be derived. In addition, we have added
the local correlations and local informational energies for
PHFSs and IVPHFSs, so we can more completely depict
the similarity between two PHFSs or two IVPHFSs. And
the ranking results of the proposed correlation coefficients
by local correlations and local informational energies are
basically consistent with that by the conventional definitions
of correlation coefficients. At the same time, we have applied
the correlation coefficients for interval-valued Pythagorean
hesitant fuzzy environment in MCDM problems and cluster-
ing analysis to demonstrate the effectiveness.
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