
SPECIAL SECTION ON INTELLIGENT DATA SENSING, COLLECTION
AND DISSEMINATION IN MOBILE COMPUTING

Received December 20, 2019, accepted January 2, 2020, date of publication January 7, 2020, date of current version January 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964626

Grouping-Based Consistency Protocol Design for
End-Edge-Cloud Hierarchical Storage System
SHUSHI GU 1,2, (Member, IEEE), YIZHEN WANG 1, YE WANG 1,2, (Member, IEEE),
QINYU ZHANG 1,2, (Senior Member, IEEE), AND XUE QIN 3
1School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
2Peng Cheng Laboratory, Shenzhen 518052, China
3Department of Computing Sciences, Texas A&M University at Corpus Christi, Corpus Christi, TX 78412, USA

Corresponding author: Ye Wang (wangye83@hit.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61701136, Grant 61831008, and Grant
61525103, in part by the Guangdong Science and Technology Planning Project under Grant 2018B030322004, in part by The Verification
Platform of Multi-Tier Coverage Communication Network for Oceans under Grant PCL2018KP002, and in part by the Shenzhen Basic
Research Program under Grant JCYJ20170811154233370 and Grant ZDSYS201707280903305.

ABSTRACT With the increasing of the number of edge-devices and the demand of real-time experience,
the end-edge-cloud hierarchical storage system (EECHSS) is emerged recently for reliable caching and fast
offloading of massive amounts of data. EECHSS can accommodate various services, save computing power
and improve storage capacity, due to transformation from central-cloud to edge-cloud, considerable reducing
service delay and communication overhead. One of the main challenges brought by edge-cloud architecture
is consistency problem. It is difficult to guarantee that the data from the two distributed clusters is consistent
by existing consistency protocols. In addition, as the variety of applications increases, the existing fixed
consistency level of classical protocols can no longer satisfy the system dynamic requirements. In this
paper, we focus on designing grouping-based consistency protocols with adaptively selecting consistency
level in EECHSS. At first, we analyze the internal structure and the workflow of EECHSS, and devise two
modified adaptive grouping-based consistency protocols (GM-Paxos and GEPaxos) with efficient grouping
algorithms. Then, for the characteristics that data is offloaded frequently, we design two synchronization
strategies to ensure the consistency of the data cached in the edge-cloud and the central-cloud, respectively.
Experiments show that, our proposed grouping-based consistency protocols of EECHSS can improve the
availability as much as possible while ensuring data consistent.

INDEX TERMS End-edge-cloud hierarchical storage system, adaptive consistency, grouping algorithm,
synchronization strategy.

I. INTRODUCTION
As the explosive growth of big data, cloud storage system has
been deployed widely in the past few years due to its sat-
isfactory advantages, such as convenient data management,
fast access and reliable read [1]. However, with the develop-
ment of the Internet of Things (IoT) technology [2], [3] and
the fifth generation(5G) mobile communication [4], Internet
connection devices increase rapidly. According to the Cisco
Mobile Visual Networking Index (VNI) report, global IP data
traffic will reach 3.3 ZB by 2021, and the amount of mobile

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhongming Zheng.

data generated by terminal devices will occupy 63% of global
data traffic, which is 6.7 times higher than that of 2016.
By 2022, the number of devices connected to the Internet
will reach 28.5 billion units, which will produce massive
amounts of data every day. The high-speed growth brings
a serious challenges to the capacity, the performance and
the power consumption of cloud storage system. In addition,
with the extensive use of deep learning [5] and augmented
reality (AR) technologies [6], i.e., automatic driving [7] and
smart home [8], terminal devices needs the ability of real-
time data processing. However, traditional end-cloud archi-
tecture adopts centralized management, in which all data
flows to the central-cloud (CC), which causes great overhead

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 8959

https://orcid.org/0000-0002-3897-5407
https://orcid.org/0000-0002-6860-8632
https://orcid.org/0000-0002-0464-9136
https://orcid.org/0000-0001-9272-0475
https://orcid.org/0000-0003-2736-7649


S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

of network bandwidth andmakes congestion in CC [9].More-
over, CCmay require data transmitted far across geographical
distances with great delay, which is difficult to meet the real-
time requirements.

To solve the above problem, edge-cloud (EC) [10]–[14],
a new type of cloud storage architecture is deployed near the
terminal data sources. The EC storage consists of the devices
with computing and caching abilities, e.g., base stations,
switches and routers [15] [16]. Divided independently due to
geographic areas, ECs have the responsibilities for processing
data generated in neighboring terminal devices, which greatly
shortens the physical distances of data generation, data calcu-
lation and data storage, and provides ultra-reliability and low-
latency access services [17]. The end-edge-cloud hierarchical
storage system (EECHSS) [18], which aims to sink some
computing and storage tasks fromCC to ECs. It is appropriate
for the user’s needs by reducing service delay and com-
munication overhead at the expense of redundantly storing
data. Therefore, EECHSS has attracted much attention by
academia and industry [19], [20].

Distributed storage technology is the foundation of cloud
storage system [21], mainly related to storage, organization
and management of massive data. Replicates among multiple
servers can ensure strong fault-tolerance and high availability.
However, in replication, if only a part of servers complete the
copy, the client accesses the same data of different servers,
which will cause data inconsistency and system unreliable.
Therefore, data consistency is the most basic precondition to
meet in cloud storage system, and a variety of data consis-
tency protocols are widely studied [22]–[25].

Since end-cloud storage is recognized and used, the current
data consistency protocols is mostly designed of ensuring
CC’s data consistency. However, there are many types of
applications in the current system, but the consistency level
of the protocol is fixed. Different applications have different
requirements for data consistency, so a single level of consis-
tency can no longer meet system requirements. Besides, com-
pared with the end-cloud system, EECHSS adds the ECs with
storage and computing capabilities. ECs store part of data of
CC. The existing protocol can only guarantee the consistency
of the data inside the EC and the CC, but cannot guarantee the
consistency of the data shared by the EC and the CC, which
will cause hierarchical system to be untrusted. It can be seen
that the existing consistency protocols cannot solve this data
consistency problem. At present, many researches are studied
the data consistency between ECs and CCs [26], but there is
no outstanding promotion on the data consistency research of
the EECHSS.

Therefore, based on the characteristics and the require-
ments of EECHSS, we attempt to design a data consistency
protocol according to the workflow of EECHSS. Our main
idea is as follows: after the terminal transmits the request
to the EC, an adaptive grouping-based consistency protocol
(GM-Paxos) is designed for EC with high availability. Con-
sidering the large number of terminals and the high probabil-
ity that clients send requests simultaneously, we choose the

Multi-Paxos protocol with the leader [27] as the benchmark
protocol to avoid high latency caused by request conflicts.
In addition, in the process of passing the ECs’ requests to
CC, we devise a data synchronization strategy, avoiding the
congestion as many requests are sent to CC simultaneously.
Then, after ECs pass data to CC, another adaptive grouping-
based consistency protocol (GEPaxos) is designed tomeet the
high consistency requirement of CC. Because the number of
ECs and the possibility of request conflicts are both small,
the EPaxos protocol without leader [28] is selected as the
benchmark. Lastly, we design a consistency strategy to ensure
the consistency of the shared data between CC and ECs in
EECHSS.

The main contributions of this paper are summarized as
follows:
• Since EC needs low latency and high QoS, three metrics,
i.e., average transmission delay, consistency degree and
relevance degree are defined. The priority of each server
is divided according to the three metrics, and the best
primary group consisting of servers with high priority
is selected by a grouping algorithm. GM-Paxos protocol
is designed to send client requests only to the primary
group. After the primary group is consistent, the request
is considered as the executed one, to reduce the request
response delay and to improve the throughput.

• When EC sends information to CC after the request
execution, in order to avoid the waste of uploading the
same data, we devise a data synchronization strategy.
For data that is frequently changed in the short term,
the upload time interval is adaptively selected according
to the frequency of access to CC, so that the EECHSS
consistency can be ensured with minimized wasting
resource.

• Because CC provides data for the EECHSS and each
EC stores different contents, we defined two metrics,
average delay and related consistency. The GEPaxos
protocol is devised to remove some of the servers with
lower performance, and form a primary group for each
EC. The servers out of primary group require strong
consistency, and servers in the primary group require
lazy release consistency [29], which can ensure that CC
still has better availability with high consistency.

• In order to ensure the consistency of data shared among
CC and ECs, we record the storage state of each EC
in the CC. When CC’s data is updated, it will send the
message to the ECs’ data. The strategy ensures that the
data in EECHSS can be updated with high efficiency and
low consumption, and the data shared by CC and ECs is
consistent.

The rest of the paper is organized as follows. Section II
presents the system architecture of EECHSS and gives some
theoretical analysis. The grouping-based protocols are pro-
posed and devised in Section III. Section IV provides two
synchronization strategies. Finally, we conclude this work
and present future plans in Section V. For the explanation of
the parameters in this paper, please refer to TABLE 1.

8960 VOLUME 8, 2020



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

TABLE 1. Parameters summary.

II. SYSTEM MODEL
The EECHSS architecture is shown in Figure 1. The system
is composed of servers, data centers and devices. The device
that the user can directly interact is called terminal. After
receiving the user request, the terminal sends the request to
the remote large server, which constitutes a CC. Installations
with computing and storage abilities between the terminal
and CC, i.e., base stations, switches and routers, are divided
into multiple ECs according to geographic areas. The termi-
nal is to send user requests to EC, and EC buffers a part of
the data, but each EC’s part is different. EC is to process the
requests and to pass the requests to CC using more power.

CC receives and processes the requests uploaded by each EC.
EC helps CC to process a part of the transaction and EC also
can directly interact with the terminal devices.

A. PROTOCOL CHARACTERISTICS
As an auxiliary device for CC, EC alleviates the problems of
insufficient bandwidth, limited processing capacity, and poor
experience of users. Therefore, reducing the request response
time and improving the users’ experience are the key require-
ments. When designing a protocol, we focus on achieving
fast consistency, ensuring minimizing latency to improve the
system availability. Considering the large number of terminal
devices, the probability that multiple clients send requests
to EC at the same time is so high. To avoid high latency
caused by high-concurrency request conflicts, we choose
Multi-Paxos protocol with the leader as the benchmark, and
the GM-Paxos protocol is proposed firstly.

Moreover, CC is responsible for providing data to each
EC. Once an error occurs, the related EC and its corre-
sponding terminals will receive incorrect data, and the system
will become unreliable. We choose to sacrifice a part of
availability to achieve high consistency when designing the
consistency protocol, but it is still a eventual consistency
protocol, and the degree of consistency is lower than the
strong consistency. When the number of ECs is small and EC
sends a request to CC, the possibility of requesting collision
is very small. To improve efficiency, the EPaxos protocol
without leader is selected as the benchmark, and the GEPaxos
protocol is further proposed.

B. PROTOCOL PROCESS
Based on the workflow of consistency protocol in EECHSS
as shown in Figure 1, and the characteristics and the require-
ments, Figure 2 shows the detailed implementation of the
two situations in which data transmission occurs. When the
terminal device makes a request, the request is first sent to
EC by default, and EC determines whether it has the ability
to process the request depending on the request of the data
cached. If EC can process, as the Situation 1 in the EA:
EC performs the feedback to terminal based on the GM-
Paxos protocol, and judges the frequency of updated data,
and adaptively selects the time of data synchronized to CC.
After CC completes the synchronization based on GEPaxos,
the updated data is sent to the relevant EC that caches the data
according to the record of the content of each EC’s cache.
Between the stage where the EC executes the request and the
stage where the request is sent to the CC, there is a synchro-
nization process, and the time required for this process is the
gap in Figure 2. Therefore, the arrow is discontinuous. If EC
cannot be processed, as the Situation 2 in the EB: EC acts
as a relay to forward the request to CC. After CC performs
the request based on the GEPaxos protocol, CC can give a
feedback, and EC can give a feedback to the terminal. CC also
sends the updated data to the relevant EC that caches the data.
The feedback link is represented by dashed line in Figure 1.

VOLUME 8, 2020 8961



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

FIGURE 1. The end-edge-cloud hierarchical storage system architecture diagram and working principle.

FIGURE 2. The end-edge-cloud hierarchical storage system architecture
execution process.

FA, FB and FC represent the feedbacks to EA, EB and EC,
respectively.

C. DIFFICULTIES IN PROTOCOL DESIGN
In the above scenarios, the problems mainly exist in the
consistency protocol procedure, which can be summarized as
follows:

• Since existing protocols are more general-purpose pro-
tocols, and can not dynamically adjust the level of

consistency according to actual environmental require-
ments [30], we need to design the protocols based on
the characteristics of ECs, and requirements of CC with
high availability.

• In the procedure of EC passing the request to CC, con-
sidering all requests sent directly, the congestion is easy
to occur, making CC processing limited. Even if the
request is transferred to CC, CC needs to be queued for
the execution, which will cause large delay. After CC
data is updated, the traditional method is to send the
update information to all ECs by broadcasting, which
does not consider whether each EC needs to know this
information.

III. PROTOCOL DESIGN
A. GM-Paxos PROTOCOL
As shown in Figure 3, Edge-cloud system has N servers dis-
tributed inside each EC, and each server provides services to
several clients. When a client sends a request to a server (the
server is recorded as server-client), the Multi-Paxos protocol
requires the server-client to send the requested content to all
other servers. And the request is considered completed when
more than half of the servers reply. The consistency level of
the protocol is fixed, and the upper bound of bandwidth will
be reached quickly, that results in degraded performance of
the system. Therefore, we propose GM-Paxos to solve this
problem.

We consider the case where the request content is first
sent to a partial server. Once the partial servers complete

8962 VOLUME 8, 2020



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

FIGURE 3. Edge-cloud system framework.

the synchronization, the request execution is considered as
completed. When the bandwidth resources are sufficient,
the server-client sends the requested content to other servers.
We collect these servers that first receive the request into
the primary group, while the other servers are classified
as secondary group. In this way, the system can complete
the request with a smaller amount of transmitted data in a
shorter time, which will increase the processing power of the
system. The number of primary group determines the level of
consistency of the request.

Since the servers are allocated in various environments,
the processing abilities to requests and the qualities of
communication are different. Therefore, we can choose the
primary group by the difference of servers. In data repli-
cation, latency is directly affecting the users’ experience.
The servers have different communication qualities, so the
average transmission delay will vary. We can choose the
average transmission delay as an indicator. Processing ability
of one server is also important, because the more unprocessed
requests, the longer the queue time and the lower the consis-
tency of the server. Therefore, we definite the consistency
degree as the second metric. Moreover, servers have different
sensitivity to the request contents. Some servers have high
requirements on the real-time performance of the data, and
the amount of access is large. Therefore, we use the relevance
degree as the third metric. The three metrics for selecting the
primary grouping are defined as follows.
Definition 1 Average Transmission Delay: Assume that the

transmission delays from a single server Si to other servers
are denoted by ti1, ti2, · · · , ti(N−1) and the average transmis-
sion delay of a single server denoted by ti is defined as the
ratio of the total transmission delay of the server to all other
servers to the total number of servers N .

ti =

∑N−1
i=1 tin
N

(1)

When the delay is small, the system has short response time
and high availability.
Definition 2 Consistency Degree: The consistency degree

of a single server Si denoted by ci, is the ratio of the number
of processed requests Qcomplete−i to the total number of client
requests Qsum−i.

ci =
Qcomplete−i
Qsum−i

(2)

FIGURE 4. Part of edge-cloud system internal structure.

The high consistency degree of the server indicates that the
server has fewer requests without synchronization, and new
requests can be executed faster.
Definition 3 Relevance Degree: The relevance degree of a

single server denoted by ri, is the ratio of the number of visits
to the server VDB−i to the total number of visits Vsum−i in a
period of time.

ri =
VDB−i
Vsum−i

(3)

If the server with a large number of visits is synchro-
nized first, the probability of the client accessing the latest
data will be increased, and the system reliability will be
guaranteed.

The internal structure of the system is shown in Figure 4.
Different servers have different characteristics. In terms of
the consistency degree ci, the yellow parts represent the
processed transaction and the blue parts represent the unpro-
cessed transaction. The greater the proportion of the yellow
parts, results in the higher the consistency degree. The rele-
vance degree ri represents the number of clients connected
to the server. If the number of clients is large, the rele-
vance degree will be high. The average transmission delay
ti denotes the distance between two servers, and if one server
is far away from most servers, delay will be large. Based on
these three metrics, we can select several servers with high
consistency degree, high relevance degree, and low average
transmission delay as the primary group, which will improve
the consistency level and availability. It should be noted that,
the primary group must be able to represent the majority to
ensure the uniqueness of the decision. The system flowchart
of GM-Paxos is shown in Figure 5, and seven server named
A to G are allocated in the system.

STEP 1: Client sends a request to the nearest server G.
STEP 2: G sends a request to collector D to get the table

data, where the collector is randomly selected. Each server
regularly sends the number of requests completed, and the
number of visits and the average transmission delay per unit
time to the collector.

VOLUME 8, 2020 8963



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

FIGURE 5. System flowchart of GM-Paxos.

STEP 3-4: G obtains the latest metric values from D
and get the primary group which is composed of B and C
according to the metrics.

STEP 5-7:G sends the request to the servers in the primary
group. And after receiving the feedback information from B
and C, it reports back to the client that the request has been
completed.

STEP 8: G sends the request to other servers during the
bandwidth free period and the system will achieve eventual
consistency.

Each server has the above three metrics, and we combine
these three metrics with a formula to get a efficiency metric
defined as follow.
Definition 4 Efficiency Metric ei: Efficiency metric e of a

single server is the ratio of the relevance degree of the server
and the average transmission delay to the waiting delay.

ei =
ri

ti + β(1− ci)
, (4)

where β is the system parameter. The efficiency metric ei is
used to judge the priorities of the servers to form the primary
group.

We define that the sum of efficiency metrics of the servers
in the primary group must be greater than half of the sum of
all servers, to ensure that there are no two primary groups at
the same time. And we also claim that the number of primary
group does not exceed half of the number of all servers, which
can reduce the response time of the request.

Under the above requirements, we can get multiple eligible
sets, so we need to construct an optimization objective func-
tion. By weighing the efficiency metric and the number of
primary groups, we attempt to find the best primary group that
meets the high efficiency metric and the number of servers
within primary group is small.

J0 : max
j

(e · j − PC )

s.t. e · j ≥ EC
N∑
i=1

ji ≤
N
2
, (5)

where e is the vector composed of server efficiency metrics,
which can be expressed as e = [e1, e2, · · · , eN ]. j is the
vector reflecting whether the server belongs to the primary
group, which can be expressed as j = [j1, j2, · · · , jN ] where
ji ∈ [0, 1], i = 0, 1, · · · ,N . ‘‘1’’ indicates that the server is in
the primary group, and ‘‘0’’ indicates that the server is outside
the primary group. PC is the percentage of the servers whose
requests have been synchronized, expressed as:

PC = α

∑N
i=1 ji
N

, (6)

where α is the system parameter. EC is a threshold that
represents half of the total server efficiency metric. The
selected primary group must meet this threshold to represent
the majority. EC specific manifestation is:

EC =
1
2

N∑
i=1

ei. (7)

The optimal group selection algorithm is as following, and
e · j − PC is defined as the efficiency function F .
Gp is the primary group and Gs is the secondary group.

When a client sends a request to the system, the efficiency
index ei of each server in the system is first obtained, and then
the vector e and the threshold EC are obtained (steps 1-4).
By traversing all possible forms of j, we find a j vector
that satisfies the highest efficiency function F on behalf of
the majority (steps 5-12). Then we can know which servers
are composed of primary group. After selecting the primary
group, GM-Paxos can begin data synchronization. Compared
to the Multi-Paxos, we only synchronize the servers within
the primary group to reduce the response delay. Moveover,
after the request is completed, the amount of data that needs to

Algorithm 1 Optimal Primary Group Selection Algorithm
Input:

The average transmission delay ti(i = 1, 2, . . . ,N )
The consistency degree ci(i = 1, 2, . . . ,N )
The relevance degree ri(i = 1, 2, . . . ,N )

Output:
The optimal vector Opt.j

1: for each i ∈ Gp ∪ Gs do
2: Compute ei
3: end for
4: Compute e
5: Compute EC
6: for each j j do
7: if e · j j ≥ EC&&

∑N
i=1 j ji ≤

N
2 then

8: Compute Fj
9: if Fj ≥ MaxF then
10: MaxF = Fj
11: Opt.j = j j
12: end if
13: end if
14: end for

8964 VOLUME 8, 2020



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

FIGURE 6. Central-cloud system framework.

be transferred will decrease and the throughput of the system
will increase.

B. GEPaxos PROTOCOL
CC is a distributed storage system consisting of a set of
high-capacity, high-computing servers. It requires a data con-
sistency protocol to address data consistency issues across
servers within the system. Since the EECHSS uses the data
of CC as the standard, if the consistency level of CC is
low, EC may access the expired data, and the data accessed
by the terminal is expired data, which causes the system to
be unreliable. Because the data cached in EC differs and is
located differently, the optimal server for selecting interac-
tions is different for each EC. In order to ensure that each EC
upload request can be quickly responded, we select an agent
in CC for each EC. If three edge-clouds are assumed, there
are three agents here. Requests from EC are passed directly
to their respective agents, which are scheduled to execute.
In addition, we select a specific primary group for each EC
based on the agent, the average transmission delay of each
server in CC, and the degree of consistency. While ensuring
high system consistency, the protocol ensures that EC request
is executed as quickly as possible. CC system framework is
shown in Figure 6.

The specific execution process is divided into two parts.
When any EC transmits data to CC for the first time, CC first
obtains the agent of EC through election, and then obtains
the primary group by combining the metric and the group
algorithm. In the case of agent mode, EC will pass the request
directly to the agent, and the agent interacts with the primary
group to schedule the execution request.When the agent fails,
the agent is re-selected before continuing to transfer data.

The method of electing an agent is to find a server that
completes the latest request for EC and has the lowest aver-
age latency, because such a server is very computationally
capable and able to communicate quickly with others. The
specific election process is shown in Figure 7. Servers have
three states: looking, following and leading. The voting
information consists of election round, request numbers, and
average delays. Among them, the election number is automat-
ically added after each vote, and the request number is also
monotonically increasing. The voting rule is to compare the

FIGURE 7. Edge-cloud system flow chart.

rounds first. If the externally received information round is
greater than the internal round, the voting needs to be changed
to the received external voting, otherwise the voting will not
be changed. If the rounds are the same, the request numbers
of the external information and the internal information are
compared. If the external information is large, the server
need to change the voting, otherwise the voting will not
be changed. If the round and the request number are the
same, the delay is compared. If the delay of the external
information is small, the voting will be changed, otherwise
it will not change. In this way, we can choose an agent for
each EC.

After finding the corresponding agent for each EC, we will
group each EC based on the agent. Because EC request is
passed directly to the agent, it is sent by the agent to each
server for execution. Therefore, the agent has different trans-
mission delays from other server locations, and the transmis-
sion delay is an important factor affecting the response time of
the request. The average transmission delay is used as an met-
ric to judge the performance of the server. In addition, since
there are multiple agents, the order of requests received by
each server may be different, so the server does not have the
same degree of completion of cache data related requests in
each EC. The higher the completion of the request, the shorter
the queuing time and the faster execution of the request,
so the relevant completion will be used as another metric to

VOLUME 8, 2020 8965



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

judge server performance. The two metrics are extended by
Definitions 1 and 2 respectively.

For GEPaxos, the transmission delay of a single server Si
is only related to the corresponding agent. So according to
Definition 1, the average transmission delay ti is

ti = tia, (8)

where tia is the transmission delay of the server to the agent.
When the delay is small, the system has short response time
and high availability.

For GEPaxos, The degree of relevant consistency is the
percentage of requests that the server has completed in the
request that the agent has completed. So according to Defini-
tion 2, the average transmission delay rci is

cri =
Q(a−complete)−i

Q(a−sum)−i
, (9)

where Q(a−complete)−iis the number of requests completed by
the server in the agent’s completed request, and Q(a−sum)−i
is the number of requests completed by the agent. The high
relevant consistency degree of the server indicates that the
server has fewer requests without synchronization and new
requests can be executed faster.

Every agent will record the transmission delay with each
server and update it regularly. At the same time, in CC,
a contact server is randomly selected to store the cache
information of each EC, and the consistency of each server
is obtained. Since CC pursues high consistency, we hope to
form a primary group by finding servers with high transmis-
sion delay and low correlation consistency. When an agent
in CC receives the request, it preferentially sends the request
to a server other than the primary group, and reduces the
performance of the entire system by reducing some of the
poorly performing servers in the system. In addition, because
CC requires high consistency, the number of servers within
primary group must be less than half.

In order to judge the performance of the server, we com-
bine the above two metrics with a formula to obtain a new
metric called the agent-elimination metric, which is defined
as follows:
Definition 5 Agent-Elimination Metric di: Definition Effi-

ciency metric di of a single server Si is the ratio of the degree
of relevant consistency and the transmission delay.

di =
ti

α(1− rci)
, (10)

where α is the system parameter. The agent-elimination met-
ric di is used to judge the priorities of the servers to form the
primary group.

We define that the sum of the elimination metrics for the
servers in the primary grouping must be greater than half of
the total phasing metrics for all servers to ensure that there are
no two primary groups at the same time. We also require that
the number of primary groups not exceed half of all servers,
which can reduce the response time of requests and increase
the level of consistency of the system after synchronization is

completed. Since the elimination metrics of each server are
different, we can guarantee that even if the number of primary
groups is less than half of the number of all servers, the sum
of the elimination metrics can still exceed half of the sum of
all servers, and the uniqueness of the primary group can be
guaranteed.

According to the above requirements, we can get multiple
eligible collections, so we need to build an optimization
objective function. By weighing the elimination metrics and
the level of consistency of the system, we try to find the
primary grouping that meets the high elimination metric, and
the number of primary groups is as small as possible.

J1 : max
j

(d · j − PC )

s.t. d · j ≥ DC
N∑
i=1

ji ≤
N
2
, (11)

where d is the vector composed of server agent-elimination
metrics, which can be expressed as d = [d1, d2, · · · , dN ].
DC is a threshold that represents half of the total server
agent-elimination metric. The selected primary group must
meet this threshold to represent the majority. EC specific
manifestation is:

DC =
1
2

N∑
i=1

di. (12)

The optimal group selection algorithm is as following, and
d · j − PC is defined as the elimination function B.

When a client sends a request to the system, the agent-
elimination metric Di of each server in the system is first
obtained, and then the vector d and the threshold DC are

Algorithm 2 Optimal Elimination Primary Group Selection
Algorithm
Input:

The transmission delay tia(i = 1, 2, . . . ,N )
The relevant consistency degree rcia(i = 1, 2, . . . ,N )

Output:
The optimal vector Opt.j
for each i ∈ Gp ∪ Gs do

2: Compute di
end for

4: Compute d
Compute DC

6: for each j j do
if d · j j ≥ DC&&

∑N
i=1 j ji ≤

N
2 then

8: Compute Bj
if Fj ≥ MaxB then

10: MaxF = Bj
Opt.j = j j

12: end if
end if

14: end for

8966 VOLUME 8, 2020



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

obtained (steps 1-4). By traversing all possible forms of j,
we find a j vector that satisfies the highest elimination func-
tion B on behalf of the majority (steps 5-12). Then we can
knowwhich servers are composed of primary group. Because
we want to eliminate the servers in the primary group and
prioritize the servers outside the primary group, the set of
servers that are preferentially synchronized is I − j, where
I1×N = [1, 1, · · · , 1].
Select agents separately in CC for each EC. The server’s

elimination priority is determined according to two metrics:
the average transmission delay and the relevant consistency
level. By selecting the best-eliminated primary group to cir-
cumvent the request response time of the entire system due
to a few poorly performing servers. When EC transmits a
request to CC, the server outside the primary group is pref-
erentially synchronized. When the server outside the primary
group feeds back the confirmation message, it considers that
the execution of the request is completed, and ensures the
high availability of the data in CC while improving the avail-
ability of the system as much as possible.

IV. DATA SYNCHRONIZATION STRATEGY
The biggest difference between the EECHSS and traditional
end-cloud system is the addition of ECs, which complicates
the form of data transmission. We need to pay attention to the
data interaction efficiency between each EC and CC and the
consistency of the shared data among ECs and CC.

A. DATA SYNCHRONIZATION STRATEGY
FROM ECS TO CC
In the stage where EC sends the processed data or the
unexecuted request to CC, EC directly transmits the data
completed each time to CC. If multiple requests processed
continuously are changes to the same data, it will result in a
lot of bandwidth and a waste of CC computing. In addition,
there may be cases where requests from each EC are queued
for execution due to too many requests, resulting in high
latency of the entire system. So we will judge each data that
will be uploaded. If there is no other operation of the data
in a short time, the data is uploaded to CC. If the data is
continuously changed in a short time, only the latest data is
transmitted to CC.

The specific algorithm flow of the data synchronization
strategy from EC to CC is shown in Figure 8. When EC
receives the request from the terminal device, it first deter-
mines whether the request can be processed. If the data is
not cached by itself, the request is sent directly to CC. If the
data is cached by itself, the request is updated to update
the data, and it is determined whether the data has been
modified in the ts. If the data has not been modified, the data
is directly synchronized to CC. If the data has been modified,
it is determined whether the time from the last upload to CC
exceeds Ts. When the Ts is exceeded, the data is uploaded to
CC. Otherwise, it is cached in EC, waiting for a new update

FIGURE 8. Flow chart of data synchronization strategy from a EC to CC.

operation or reaching CC after reaching the Ts.

P(o ≤ d) =
n=d∑
n=0

(λTs)ne−λTs

n!
, (13)

where o is the data expiration rate of CC, and d d indicates the
number of times the data was requested in CC. Ts represents
the average arrival rate of the request for the data in CC in
the Ts time. Combined with CC feature, we take the value
of d to zero, and try to ensure that CC is accessed with the
latest correct data. At the same time, in order to ensure that
consecutive requests for the same data in the ts time can be
processed together, it is necessary to satisfy: ts ≤ 1/2Ts.

B. CONSISTENCY STRATEGY FOR DATA
CACHED BY ECS AND CC
After CC data is updated, in order to ensure the data consis-
tency, the update information of the data needs to be noti-
fied to each EC that caches the data. The traditional way is
mainly divided into two types. One is to broadcast the update
information to all ECs after each data update. Regardless
of whether EC needs to be notified, the data consistency
can be better ensured. But the way of broadcasting causes a
large waste of resources, and the other is that EC periodically
synchronizes to CC. The timing of the regular update of this
method is difficult to select and the data consistency of the
system cannot be guaranteed. Therefore, our approach is to
concentrate the cloud storage cache information of each EC.
When the cloud data is updated, the update information is
only sent to EC in which the data is cached. Since the cached

VOLUME 8, 2020 8967



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

FIGURE 9. Flow chart of consistency strategy for data cached
by ECs and CC.

data of each EC is carried when submitting the request to CC,
it does not cost extra resources, so it is more resource-saving
than the existing solution.

The specific process is shown in Figure 9. A contact is
randomly selected in CC to store cache information of each
EC, and the cached information is stored in the form of a
table. If the cache is full, the old cache with the smallest time-
stamp is removed.When CC receives a request, it first records
the content contained in the request into the table, and then
determines whether the request has a data update. If the data
is not updated, no further operations will be continued. And
if the data is updated, all ECs that have this data cached by
the table are found in the table, and the updated data is sent
to these ECs.

V. SIMULATION RESULTS
We divides the simulations into three parts: the GM-Paxos
protocol in ECs, the GEPaxos protocol in CC, and the data
consistency protocol in EECHSS. And the parameters used
are shown in Table 2.

We set 1 CC and 3 ECs in system. CC contains 9 service
nodes, and each EC contains 7 service nodes. Since the client
is sent near the request, the transmission delay of the client
to EC node is fixed to 1 ms. EC is close to the client and
is relatively far away from CC, so the transmission time
from EC to CC without congestion is delayed to 15ms. The
transmission delay between EC and the nodes in CC obeys
a Gaussian distribution with a mean of 25 and variances

TABLE 2. Simulations parameters.

FIGURE 10. Average latency comparison between GM-Paxos and
Multi-Paxos.

of 10 to simulate the actual communication environment.
The geographic area of each EC is relatively small, so the
transmission delay interval between nodes is set to 2-30 ms.
The value of the transmission delay value of each node in CC
is set to 2-50 ms. The client is arbitrarily distributed on each
node, and the client does not send the next request until the
current request is completed.

A. GM-Paxos PROTOCOL PERFORMANCE IN ECS
This section evaluates the average latency and throughput of
GM-Paxos through the experiments and compares them with
the Multi-Paxos protocol in the same environment.

It can be seen in Figure 10 that the average delay of
GM-Paxos is significantly lower than the Multi-Paxos pro-
tocol. Since the primary group is selected by three metrics:
the consistency degree, the relevance degree and the average
transmission delay, the number of servers in the primary
group is less than half of all servers. When the number
of requests is small, the bandwidth resources are sufficient.
At this point, all requests are considered to be sent at the same
time. However, consistency degree and average transmission
delay are related to the total delay and the servers in the
primary group usually have lower latency. When the server
with the highest delay in the primary group completes the
synchronization, time is still shorter than Multi-Paxos. When
the number of clients is close to 1000, Multi-Paxos has a
shortage of bandwidth resources because the request content
is sent to all servers at the same time. It can be seen from the
Figure 4 that the delay of Multi-Paxos is greatly increased,

8968 VOLUME 8, 2020



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

FIGURE 11. Throughput comparison between GM-Paxos and Multi-Paxos.

and a large number of requests cannot be completed quickly.
Our strategy choose only sending requests to the primary
group, so we use a smaller bandwidth for each request than
Multi-Paxos. And when the number of clients is nearly 1200,
we still keep the low latency. Meanwhile, we synchronize
the servers with high relevance degree at first to ensure that
servers with high data real-time requirements can access the
latest data. In short, the average latency of GM-Paxos is lower
than that of Multi-Paxos.

In Figure 11, we compares the throughput of our scheme
and Multi-Paxos. In the figure, both curves are steadily
rising in the previous period, but the throughput of our
strategy is higher than Multi-Paxos. This is because we
only send the request content to the primary group at first
instead of all servers. When the request execution is com-
pleted, the amount of data we transmit is much smaller than
Multi-Paxos. Therefore, under the same bandwidth condition,
GM-Paxos can completed more requests per unit time, and
has a higher throughput. Due to bandwidth limited, the curve
of Multi-Paxos tends to be gentle quickly, but GM-Paxos
still maintains high throughout. Therefore, the throughput of
GM-Paxos is significantly higher than that of Multi-Paxos.

B. GEPaxos PROTOCOL PERFORMANCE IN CC
Figure 12 shows the average delay of 3PC, GEPaxos and
EPaxos. The EPaxos protocol is open to the public only when
more than half of the nodes complete the consensus system,
so the average latency is the lowest. The GEPaxos protocol
combines the EPaxos protocol with group technology, and
the decision conditions are changed from more than half
of the nodes to the nodes outside the main group. When
the system is open to the outside, the GEPaxos protocol
needs to synchronize more nodes than the EPaxos proto-
col, so the average latency is also higher than the EPaxos
protocol. However, because the GEPaxos protocol picks out
individual nodes with poor performance through the group
technology, it avoids the delay caused by waiting for these
nodes to execute requests. In fact, in the case of a node with
poor performance, the response time of the strong agreement
protocol is almost half of the time waiting for the node
with poor performance to receive and execute the request.

FIGURE 12. Average delay comparison among 3PC, GEPaxos and EPaxos.

FIGURE 13. Average delay comparison between GEPaxos and EPaxos
with the autocorrelation rate.

Therefore, compared with 3PC, the average delay of
GEPaxos is significantly reduced.

Figure 13 shows the effect of autocorrelation rate on
GEPaxos and EPaxos. The autocorrelation rate [31] is the
probability of a specific causal relationship between two com-
mands, that is, the probability that two commands are con-
flicts. A high autocorrelation rate means that more commands
need to maintain a sequential relationship and cannot be
executed concurrently. Because the EPaxos protocol allows
unrelated requests to be executed in parallel, if the concurrent
requests are related and then degenerate into Basic Paxos,
the overall latency is greatly increased. Therefore, as the
autocorrelation rate increases, the delay of the EPaxos pro-
tocol becomes larger and larger. Since the GEPaxos protocol
establishes agents, only the agents have the right to execute
the request. Requests can be executed in parallel between
the agents, but the requests executed by each agent execu-
tion are ordered and the agent corresponding to each client
is relatively stable. Therefore, the probability of a conflict
between requests is low. Compared with the EPaxos protocol,
the GEPaxos protocol is less affected by the correlation rate,
and as the autocorrelation rate increases, the delay between

VOLUME 8, 2020 8969



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

FIGURE 14. Data expiration rates of 3PC, GEPaxos and EPaxos.

the GEPaxos protocol and the EPaxos protocol becomes
smaller and smaller.

Users may be able to tolerate inconsistent data acquisition
when acquiring data, but only if the degree of inconsistency
is within acceptable limits. This paper uses the expiration
of system data as an metric to determine the level of con-
sistency. The expiration degree refers to the probability that
the customer accesses the expired error data when accessing
a certain data to the system. By comparing the degree of
data expiration, the level of consistency for the user can
be obtained. In general, the higher the level of consistency,
the more reliable the system.

Figure 14 shows the data expiration of the strong
consistent protocol 3PC, GEPaxos protocol and EPaxos pro-
tocol. Because strong consistency requires all nodes to com-
plete the request system is open to the outside, there is no
possibility of accessing expired erroneous data, so the data
has an expiration of 0. The EPaxos protocol is the classic
Paxos class final consistency protocol. When more than half
of the nodes are consistent, the system is open to the public.
At this point, only 51 % of the nodes in the system are con-
sistent, and the user has a certain probability of accessing the
expired data. The GEPaxos protocol uses group technology to
change the decision condition from more than half to exclude
nodes in the primary group. In the case of a node with poor
performance, more than half of the nodes outside the primary
group complete the request and consider the request to be
completed, and the conditions aremore strict. Nodes that have
been synchronizedwhen the request completes will be greater
than 51 % but less than 100 %. Therefore, the GEPaxos
protocol will likely be accessed by users to expired data.
However, since the selection of the group is related to the
amount of access by the node, the node with a large amount of
user access will not appear in the primary group. Therefore,
the probability of accessing expired data by the GEPaxos
protocol is low, and the level of user consistency is high.

As shown in Figure 12 and Figure 14, the GEPaxos pro-
tocol has a similar level of user consistency compared to
3PC, but the average latency is much lower; Compared with

FIGURE 15. Data expiration rate of Multi-Paxos+ 3PC and
GM-Paxos + GEPaxos.

the EPaxos, the user consistency level of GEPaxos is greatly
improved, although the average delay is higher than the
EPaxos. However, it can be seen from Figure 13 that as the
autocorrelation rate increases, the gap between the average
delays of the two protocols becomes smaller.

C. DATA CONSISTENCY PROTOCOL
PERFORMANCE IN EECHSS
Although the Multi-Paxos, GM-Paxos, 3PC, EPaxos and
GEPaxos have been compared, the effect of combining the
two protocols in EECHSS is unknown. In addition, the effect
of the synchronization strategy also needs proved. Therefore,
we will analyze and compare the two protocol combinations:
Edge-Cloud Multi-Paxos + Central-Cloud 3PC and Edge-
Cloud GM-Paxos + Central-Cloud GEPaxos. Compare the
level of consistency and latency of the systems in the two
collocation schemes by simulating the analysis under the
same conditions. To ensure the reliability of the system,
the synchronization strategy has been added in the scheme.
We compare the performance by simulating the the degree of
consistency and average latency.

The data consistency level of the EECHSS is determined
by the consistency of the internal data of EC and CC and
the consistency of the data shared by EC and CC, not just
the consistency of EC or CC. This section still uses the
expiration of client access data to reflect the consistency of
the system. The lower the expiration, the higher the level of
consistency. The level of consistency here refers to the level
of user consistency.

Since the change in the number of clients does not
have a large impact on the expiration of the system data,
Figure 15 directly shows the comparison of the data expira-
tion degree of the two combination schemes when the client
is 1000. As can be seen from the Figure 15, the combi-
nation scheme of EC Multi-Paxos + CC 3PC can achieve
the final consistency of external services due to the strong
consistency of the 3PC protocol and the completion of more
than half of the Multi-Paxos. With the cooperation of the

8970 VOLUME 8, 2020



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

FIGURE 16. Average delay of Multi-Paxos+ 3PC and GM-Paxos +

GEPaxos.

synchronization strategy, the average data expiration of the
system is 15%. In EC GM-Paxos + CC GEPaxos designed,
since the GEPaxos is not strongly consistent and the number
of nodes in the main group of the GM-Paxos is less than
half, the overall consistency level is relatively lower than the
former, but small differences.

Figure 16 shows the delay comparison of the two com-
binations. As the consistency and availability of the CAP
theorem are mutually balanced, the combined solution delay
of ECGM-Paxos protocol+CCGEPaxos protocol is signifi-
cantly lower than that of ECMulti-Paxos protocol+ CC 3PC
protocol. As the number of customers increases, the gap is
getting bigger. Because 3PC is strong consistency, the condi-
tion for request execution is that all nodes are synchronized,
and the request response time of 3PC is longer. In addition,
the GM-Paxos protocol and the GEPaxos protocol proposed
all prioritize the nodes with better communication quality
according to the group technology, and the response time of
the request is greatly shortened. When the number of clients
reaches 1000, the Multi-Paxos protocol faces bandwidth lim-
itation due to the need to send requests to all other nodes,
but the GM-Paxos protocol only preferentially sends requests
to nodes in the primary group, so it gets more available
bandwidth. Therefore, as the number of clients increases,
the delay between the two combined solutions becomes larger
and larger, and the advantages of the combined solution of EC
GM-Paxos protocol + CC GEPaxos protocol become more
and more obvious.

For the synchronization strategy, since the consistency of
the data shared between EC and CC must be guaranteed,
we will focus on verifying the performance improvement of
the data synchronization strategy from EC to CC. Based on
EC GM-Paxos protocol, CC GEPaxos protocol, and the syn-
chronization strategy of EC and CC shared data, we compare
the delay of the system when adding the EC synchronization
to CC data synchronization strategy and not adding the syn-
chronization strategy.

Before analyzing the simulation, the concept of repeated
operation probability is introduced. The probability of

FIGURE 17. Average latency for protocols with and without
synchronization policies with repeated data rates.

repeated operation refers to the probability of continuously
performing multiple operations on a certain data, that
is, the probability that multiple concurrent or continuous
requests received by the service node are updated for the
same data.

Figure 17 shows the system delay comparison of the cases
of EC and CCwith and without data synchronization strategy.
When the probability of repeated operation is 0, the delay
of the system after joining the synchronization strategy is
slightly higher than that of the original system without the
synchronization strategy, because the judgment process of
the entire synchronization strategy takes a little time, but the
case that the entire system does not have repeated operations
is rare. As the probability of repeated operations increases,
the system delay that does not join the synchronization policy
rises rapidly, which is significantly higher than the system
that joins the synchronization strategy. This is because the
data synchronization strategy of EC to CC will repeat the
same data in a short time. The request for the operation is
first integrated in EC, and the latest request result is uploaded
to CC. The above strategy avoids the queue blocking problem
caused by excessive request uploading to CC, and reduces the
collision probability of concurrent requests sent by each EC
to CC.

VI. CONCLUSION
In this paper, we propose two grouping-based consistency
protocols, named GM-Paxos and GEPaxos, in the end-edge-
cloud hierarchical storage system. We combine the group-
ing algorithm with the existing consistency protocols, and
elaborate the protocol design procedures. And we employ
GM-Paxos to edge-cloud and EPaxos to central-cloud based
on the system characteristics. In addition, we design the
synchronization strategies to ensure the consistency of the
data cached among edge-cloud and central-cloud. Experi-
ment results prove that the proposed protocol can maximize
the availability of the system while ensuring data consistent
compared to traditional consistency protocols.

VOLUME 8, 2020 8971



S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

ACKNOWLEDGMENT
This article was presented in part at the 2019 IEEE/CIC Inter-
national Conference on Communications in China (ICCC)
[32]. (Shushi Gu and Yizhen Wang contributed equally to
this work.)

REFERENCES
[1] P. Zhou, F. Dong, Z. Xu, J. Zhang, R. Xiong, and J. Luo, ‘‘ECStor: A flex-

ible enterprise-oriented cloud storage system based on GlusterFS,’’ in
Proc. Int. Conf. Adv. Cloud Big Data (CBD), Chengdu, China, Aug. 2016,
pp. 13–18.

[2] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, ‘‘Internet of Things
(IoT): Research, simulators, and testbeds,’’ IEEE Internet Things J., vol. 5,
no. 3, pp. 1637–1647, Jun. 2018.

[3] Y. Liu, A. Liu, X. Liu, and M. Ma, ‘‘A trust-based active detection for
cyber-physical security in industrial environments,’’ IEEE Trans. Ind.
Informat., vol. 15, no. 12, pp. 6593–6603, Dec. 2019.

[4] P. Fan, J. Zhao, and C.-L. I, ‘‘5G high mobility wireless communications:
Challenges and solutions,’’ China Commun., vol. 13, pp. 1–13, Dec. 2016.

[5] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, May 2015.

[6] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, ‘‘Mobile augmented
reality survey: From where we are to where we go,’’ IEEE Access, vol. 5,
pp. 6917–6950, 2017.

[7] A. F. Aljulayfi and K. Djemame, ‘‘Simulation of an augmented reality
application for driverless cars in an edge computing environment,’’ inProc.
5th Int. Symp. Innov. Inf. Commun. Technol. (ISIICT), Amman, Jordan,
Oct. 2018, pp. 1–8.

[8] M. Khan, B. N. Silva, and K. Han, ‘‘Internet of Things based energy aware
smart home control system,’’ IEEE Access, vol. 4, pp. 7556–7566, 2016.

[9] S. Yang, P. Wieder, M. Aziz, R. Yahyapour, X. Fu, and X. Chen, ‘‘Latency-
sensitive data allocation and workload consolidation for cloud storage,’’
IEEE Access, vol. 6, pp. 76098–76110, 2018.

[10] A. Sill, ‘‘Standards at the edge of the cloud,’’ IEEE Cloud Comput., vol. 4,
no. 2, pp. 63–67, Mar./Apr. 2017.

[11] P. Skarin, W. Tarneberg, K.-E. Arzen, and M. Kihl, ‘‘Towards mission-
critical control at the edge and over 5G,’’ in Proc. IEEE Int. Conf. Edge
Comput. (EDGE), San Francisco, CA, USA, Jul. 2018, pp. 50–57.

[12] I. Lujic, V. D. Maio, and I. Brandic, ‘‘Efficient edge storage management
based on near real-time forecasts,’’ in Proc. IEEE 1st Int. Conf. Fog Edge
Comput. (ICFEC), Madrid, Spain, May 2017, pp. 21–30.

[13] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
‘‘On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[14] M. Linaje, J. Berrocal, and A. Galan-Benitez, ‘‘Mist and edge stor-
age: Fair storage distribution in sensor networks,’’ IEEE Access, vol. 7,
pp. 123860–123876, 2019.

[15] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[16] X. Liu, M. Zhao, A. Liu, and K. K. L. Wong, ‘‘Adjusting forwarder nodes
and duty cycle using packet aggregation routing for body sensor networks,’’
Inf. Fusion, vol. 53, pp. 183–195, Jan. 2020.

[17] X. Liu, T. Wang, W. Jia, A. Liu, and K. Chi, ‘‘Quick convex hull-based
rendezvous planning for delay-harsh mobile data gathering in disjoint
sensor networks,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be published,
doi: 10.1109/TSMC.2019.2938790.

[18] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. De Foy, and Y. Zhang,
‘‘Mobile edge cloud system: Architectures, challenges, and approaches,’’
IEEE Syst. J., vol. 12, no. 3, pp. 2495–2508, Sep. 2018.

[19] S. C. Shah, ‘‘Mobile edge cloud: Opportunities and challenges,’’ in Proc.
Int. Conf. Comput. Sci. Comput. Intell. (CSCI), Las Vegas, NV, USA,
Dec. 2017, pp. 1572–1577.

[20] J.Wang, ‘‘Edge cloud offloading algorithms: Issues, methods, and perspec-
tives,’’ ACM Comput. Surv., vol. 52, no. 1, p. 2, Feb. 2019.

[21] Q. He, Z. Li, and X. Zhang, ‘‘Study on cloud storage system based on dis-
tributed storage systems,’’ in Proc. Int. Conf. Comput. Inf. Sci., Chengdu,
China, Dec. 2010, pp. 1332–1335.

[22] D. D. Akkoorath, V. Fördős, and A. Bieniusa, ‘‘Observing the consistency
of distributed systems,’’ in Proc. 15th Int. Workshop Erlang-Erlang, Nara,
Japan, Sep. 2016, pp. 54–55.

[23] B. Calder, ‘‘Windows azure storage: A highly available cloud storage
service with strong consistency,’’ in Proc. 23rd ACM Symp. Oper. Syst.
Princ., Cascais, Portugal, Oct. 2011, pp. 143–157.

[24] X. Liu and P. Zhang, ‘‘Data drainage: A novel load balancing strat-
egy for wireless sensor networks,’’ IEEE Commun. Lett., vol. 22, no. 1,
pp. 125–128, Jan. 2018.

[25] W. Vogels, ‘‘Eventually consistent,’’ Commun. ACM, vol. 52, no. 1,
pp. 14–19, Oct. 2014.

[26] B. Pavel, ‘‘Algorithms for maintaining consistency of cached data for
mobile clients in distributed file system,’’ Int. J. Distrib. Syst. Technol.,
vol. 8, no. 1, pp. 17–33, Jan. 2017.

[27] L. Lamport, ‘‘Paxos made simple,’’ ACM SIGACT News, vol. 32, no. 4,
pp. 51–58, Dec. 2016.

[28] I. Moraru, ‘‘There is more consensus in egalitarian parliaments,’’ in
Proc. 24th ACM Symp. Oper. Syst. Princ. (SOSP), Farminton, PA, USA,
Nov. 2013, pp. 358–372.

[29] P. Keleher, A. L. Cox, and W. Zwaenepoel, ‘‘Lazy release consistency
for software distributed shared memory,’’ in Proc. 19th Annu. Int. Symp.
Comput. Archit., Gold Coast, QLD, Australia, Aug. 2002, pp. 19–21.

[30] T. Jun-Feng, Z. Jia-Yao, and D. Rui-Zhong, ‘‘Date hierarchical storage
strategy for data disaster recovery,’’ IEEE Access, vol. 6, pp. 45606–45616,
2018.

[31] Y. Gong, C. Hu,W.Ma, andW.Wang, ‘‘CC-Paxos: Integrating consistency
and reliability in wide-area storage systems,’’ inProc. IEEE 22nd Int. Conf.
Parallel Distrib. Syst. (ICPADS), Wuhan, China, Dec. 2016, pp. 414–421.

[32] Y. Wang, Y. Wang, S. Gu, Q. Zhan, and N. Zhang, ‘‘Adaptive consistency
protocol based on grouping multi-paxos,’’ in Proc. IEEE/CIC Int. Conf.
Commun. China (ICCC), Changchun, China, Aug. 2019, pp. 304–309.

SHUSHI GU (Member, IEEE) received the M.S.
and Ph.D. degrees in information and communi-
cation engineering from the Harbin Institute of
Technology, in 2012 and 2016, respectively. From
2016 to 2019, he was a Postdoctoral Research
Fellow with HITSZ. From 2018 to 2019, he was
a Postdoctoral Research Fellow and a Visiting
Scholar with James Cook University, Cairns, Aus-
tralia. He is currently an Assistant Professor with
the School of Electronic and Information Engi-

neering, Harbin Institute of Technology (Shenzhen), Shenzhen, China. He
is also an Assistant Researcher with the Peng Cheng Laboratory. His current
research interests include the satellite IoT, coding theory, edge caching, and
distributed storage. He received the Best Paper Awards of IEEE WCSP
2015 and EAI WiSATS 2019. He also received the Outstanding Postdoctoral
Award of HITSZ, in 2018.

YIZHEN WANG received the B.S. degree in
communication engineering from Northeastern
University, Qinhuangdao, China, in 2017. She is
currently a graduate student with the Harbin Insti-
tute of Technology (Shenzhen), Shenzhen, China.
Her current research interests include consistency
protocols and distributed storage systems.

8972 VOLUME 8, 2020

http://dx.doi.org/10.1109/TSMC.2019.2938790


S. Gu et al.: Grouping-Based Consistency Protocol Design for EECHSS

YE WANG (Member, IEEE) received theM.S. and
Ph.D. degrees in information and communication
engineering from the Harbin Institute of Technol-
ogy, Shenzhen, China, in 2009 and 2013, respec-
tively. From 2013 to 2014, he was a Postdoctoral
Research Fellow with the University of Ontario
Institute of Technology, Canada. He is currently
an Assistant Professor with the Harbin Institute
of Technology, Shenzhen, China. He is also an
Assistant Researcher with the Peng Cheng Labo-

ratory. He received the Outstanding Postdoctoral Award of HITSZ, in 2016,
the Shenzhen Natural Science Award, in 2017, and the Best Paper Award of
EAI WiSATS, in 2019. His current research interests include the IoT, edge
computing, resource allocation, and the mobile Internet.

QINYU ZHANG (Senior Member, IEEE) received
the bachelor’s degree in communication engi-
neering from the Harbin Institute of Technology
(HIT), in 1994, and the Ph.D. degree in biomedical
and electrical engineering from the University of
Tokushima, Japan, in 2003. From 1999 to 2003,
he was an Assistant Professor with the University
of Tokushima. From 2003 to 2005, he was an
Associate Professor with the Shenzhen Graduate
School, HIT. He was the Founding Director of the

Communication Engineering Research Center with the School of Electronic
and Information Engineering. Since 2005, he has been a Full Professor.
He has served as the Dean for the EIE School. He is also a chief of
Network Communication Research Center with the Peng Cheng Laboratory.
His research interests include aerospace communications and networks,
wireless communications and networks, cognitive radios, signal processing,
and biomedical engineering. He is on the Editorial Board of some academic
journals, such as the Journal on Communications, KSII Transactions on
Internet and Information Systems, and Science China: Information Sciences.
He was the TPC Co-Chair of the IEEE/CIC ICCC’15, the Symposium
Co-Chair of the IEEE VTC’16 Spring, an Associate Chair for Finance of
ICMMT’12, and the Symposium Co-Chair of CHINACOM’11. He has been
a TPC Member for INFOCOM, ICC, GLOBECOM, WCNC, and other
flagship conferences in communications. He was the Founding Chair of
the IEEE Communications Society Shenzhen Chapter. He has received the
National Natural Science Foundation of China for Distinguished Young
Scholars, the Young and Middle-Aged Leading Scientist of China, and the
Chinese New Century Excellent Talents in University, and obtained three
scientific and technological awards from governments.

XUE QIN received the B.S. degree in telecom-
munication engineering from the North University
of China, in 2008, and the master’s degree from
the Conestoga College, Canada, in 2017. She is
currently pursuing the graduate degree with the
Department of Computing Sciences, Texas A&M
University at Corpus Christi, Corpus Christi, TX,
USA. Her research interests include machine
learning and networking.

VOLUME 8, 2020 8973


