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ABSTRACT An on-line modified least-squares identification algorithm is proposed for linear time-varying
systems with bounded disturbances under relaxed excitation conditions. An extra term which enhances
the tracking ability for time-varying parameters is added to the covariance’s update law. An indicator of
the regressor’s excitation level based on the maximum eigenvalue of the covariance matrix is developed.
By combining the maximum eigenvalue with its variation trend shown by the sensitivity of the maximum
eigenvalue to change in the covariance matrix, a novel identification law, which is switched between a
modified least-squares algorithm and a gradient algorithm based on fixed σ -modification, is proposed. The
boundedness of the estimation error and the covariance matrix are guaranteed via Lyapunov stability theory.
The superiority of the proposed method is verified by simulations.

INDEX TERMS Least-squares identification algorithms, linear time-varying systems, relaxed excitation
conditions, covariance matrix.

I. INTRODUCTION
Parameter estimation algorithms are widely used in the
field of signal processing [1] and adaptive control [2], [3].
Most of them deal with time-invariant parameters. However,
time-varying (TV) behavior of the plant parameters may be
unavoidable due to the complexmechanisms, themodel-plant
mismatch, or unmeasured inputs [2]. The existing results
about estimation convergence and robustness analysis are
usually derived based on the assumption that the regressor is
persistently excited (PE). Unfortunately, the regressor cannot
always satisfy PE condition especially in adaptive feedback
control systems since control input which forms the regressor
is generated from the feedback controller. The robust on-line
identification of TV parameters with bounded disturbances
and relaxed excitation conditions is still an open problem,
which has been attested by numerous textbooks [4], [5] and
becomes the key motivation of this paper.

There exist two classical algorithms to estimate unknown
parameters: gradient algorithms [6] and least-squares (LS)
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algorithms [7], [8]. It is generally accepted that LS algorithms
achieve faster convergence speed and have better robustness
with respect to noise and disturbances than gradient algo-
rithms. However, the standard LS method has poor ability in
tracking TV parameters since the covariance matrix becomes
arbitrarily small with time, which slows down adaptation
[5]. Resetting the covariance matrix is used to ensure the
tracking ability for TV parameters, but it is difficult to choose
suitable resetting time interval [9]. Exponential forgetting
of data [10]–[12] is another effective method to address
TV parameters. The main idea is that the past data should
be discounted when the current parameters are estimated.
Considering TV load disturbances and time invariant plant
parameters, Dong et al [13]–[15] introduced two independent
forgetting factors to estimate the model parameters and the
load disturbances response. This method has the benefit of
avoiding the so-called ‘‘wind-up’’ effect when expediting the
convergence rates. Some other methods, such as polynomial
approximation [16], finite-time identification algorithm [17],
and fixed-time identification algorithm [17] can also be used
for TV parameters. In the former method, polynomials with
unknown constant coefficients (e.g. Taylor-series) are used to
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approximate the TV parameters in small time intervals. How-
ever, this method increases the number of estimated param-
eters and leads to large complexity. The latter two methods
realize the identification of TV parameters in a finite time or
fixed time by introducing the sign function into the adaptation
laws. But the inclusion of sign functionwould induce chatting
phenomenon, which excites the unmodeled dynamics when
the parameter estimates are used in feedback controller. The
above-mentioned methods are all assumed that the regressor
should satisfy PE condition. As pointed out in [18], a constant
forgetting factor may result in unboundedness of covariance
matrix when PE condition is lost. Moreover, the variable
forgetting factors are reported to be beneficial for speed-
ing estimation convergence. Therefore, LS algorithms with
elaborately constructed variable forgetting factor were pro-
posed [19]–[21]. The main purpose of the above-mentioned
methods [19]–[21] is to avoid unboundedness while keeping
the ability in tracking TV parameters. Nevertheless, if PE
is not satisfied, the estimation errors would drift to infinite
under the influence of disturbances [19]. Therefore, under the
relaxed excitation condition where whether the regressor sat-
isfies PE condition is unknown (e.g. the regressor is generated
form feedback controller), these methods may fail to exhibit
the ideal property.

Robustness to the bounded disturbances is another basic
requirement of the identification algorithms when being
applied in practice. When the regressor is PE, gradient
algorithm [19] and LS algorithm [22], [23] can handle
bounded disturbances. Furthermore, bounded time-varying
disturbances can also be estimated along with system param-
eters as mentioned in [12]–[15] under the assumption of PE
condition. A milder exciting condition that the regressor is
sufficiently excited over a finite time interval is introduced to
develop an adaptive law for estimation of unknown constant
parameters under the influence of bounded disturbances [24].
However, the milder initially exciting condition is also diffi-
cult to satisfy in the case of adaptive control. For the time-
varying case, not even stability of the recursive estimation
algorithms can be guaranteed without some modifications in
the absence of PE condition. Some modifications (e.g. dead-
zone [25], [26], parameter projection [5] and switching σ -
modification [27]) require a priori knowledge of bounds on
disturbances or unknown parameters to enhance the robust-
ness of algorithms. However, this requirement can hardly be
satisfied in practical systems. Without any prior knowledge,
fixed σ -modification [28] and e1-modification [29] are used
to estimate constant unknown parameters at the expense of
poor estimation accuracy.

A preliminary method which is available for linear time-
varying (LTV) systems with unknown bounded disturbances,
variation ranges of the parameters and exciting conditions
of the regressor is proposed in our previous work [30]. The
minimum eigenvalue of the covariance matrix is intuitively
used to detect whether the regressor is persistently excited or
not. However, it lacks strict mathematical proof. In addition,
the covariance matrix should be calculated in advance to

justify the variation trend of the covariancematrix’sminimum
eigenvalue, which increases the complexity of the algorithm.
Another problem is that complex resetting operation causes
difficulties in implementing. In order to overcome the afore-
mentioned problems, a novel identification algorithm is pro-
posed in this paper. This algorithm is the combination of the
following elements: (a) the inclusion of an extra unit matrix
multiplied by µ in the update law of the covariance matrix
P (t); (b) the necessary and sufficient condition that the
regressor ϕ (t) satisfies PE is that the maximum eigenvalue
of P (t) is bounded; (c) the variation trend of the covariance
matrix’s maximum eigenvalue which can be predicted by
calculating the sensitivity of the eigenvalue to change in the
matrix; (d) the switching strategy when estimating the param-
eter vector. Element (a) has been proposed by Wu et al [31]
mainly as a variable forgetting factor to enhance the ability in
tracking TV parameters. Element (b) together with element
(c) can be used to explicitly indicate the excitation level of
ϕ (t) and its variation trend. Element (d) is used to switch the
parameter estimation algorithm between a gradient algorithm
based on fixed σ -modification and a modified least-squares
algorithm according to the information provided by element
(b) and (c).

This paper is organized as follows. Section 2 introduces the
estimation problem. Estimation law for TV parameters and
stability analysis are given in Section 3. Section 4 presents
simulation results and conclusions are provided in section 5.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
Before stating the problem, certain definition and notations
are introduced here.
Definition 1 (PE Condition): A bounded vector or matrix

ϕ (t) satisfies PE condition [3] with a level of excitation
α0 > 0, if T0 > 0 exists, such that

1
T0

∫ t+T0

t
ϕ (τ)ϕT (τ ) dτ ≥ α0I ,∀t ≥ 0. (1)

Notations: The following notations are used
(a) λmin (·) and λmax (·) are the minimum and maximum

eigenvalues of the corresponding matrix, respectively.
(b) If ν (t) is the function with respect to time t , then ν̇ (t)

represents the time-derivative of ν (t).
(c) ‖ν (t)‖ denotes the Euclidean norm of ν (t) at t .
(d) The L∞ is defined as ‖ν (t)‖∞ = sup0≤t ‖ν (t)‖, and we

say ν (t) ∈ L∞ when ‖ν (t)‖∞ exists.

B. PROBLEM FORMULATION
Consider a parametric LTV system with bounded distur-
bances, i.e.,

y (t) = ϕ (t)T θ (t)+ w (t) , (2)

where θ (t) ∈ Rm is the unknown TV parameter vector to be
estimated, y (t) ∈ Rn is the system output, ϕ (t) ∈ Rm×n is
the known regressor matrix and w (t) ∈ Rn is an unknown
disturbances vector.
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Assumption 1: The unknown TV parameter vector θ (t)
exists an upper bound (but may be unknown).

‖θ (t)‖∞ ≤ M . (3)

Assumption 2:An upper bound of the unknown TV param-
eter vector’s variance ratio θ̇ (t) exists (but may be unknown).∥∥θ̇ (t)∥∥

∞
≤ ε. (4)

Assumption 3: The unknown disturbances vector w (t)
exists an upper bound (but may be unknown).

‖w (t)‖ ≤ d0. (5)

Remark 1:Model (2) is a quite general form. On one hand,
any linear system filtered by exponentially stable filters of
proper order can be converted into this form [20]. If the order
of the studied system is unknown, the method in [32] can be
used to change the system to the standard form as (2). On the
other hand, by using the so-called X-swapping technique,
some nonlinear systems can also be reformulated as the form
(2), as seen in [33]. The system output y (t) and the regressor
matrix ϕ (t) are assumed to be bounded and accessible for
measurement. The assumptions (3-5) have been widely used
in the literature [9], [19], [34]. It should be noted that the true
values of the upper boundsM , ε and d0 are not necessarily to
be known in advance because they are only used for analytical
purpose.

III. ON-LINE ESTIMATION OF TV PARAMETERS
Firstly, we define the covariance matrix as [31]

Ṗ (t) = βP (t)− P (t) ϕ (t) ϕ (t)T P (t)+ µI , (6)

where P (t) denotes the covariance matrix with P (0)T =
P (0) > 0, I represents the identity matrix, β > 0 is the
forgetting factor, µ > 0 is a design constant.
ϕ (t) can be chosen to be PE in open-loop systems. How-

ever, in feedback control systems, the regressor ϕ (t) is deter-
mined by the control input which is generated from feedback
controller. Hence, ϕ (t) cannot always be PE. In order to
overcome this problem, an on-line explicit indicator of the
regressor’s excitation level should be developed. Fortunately,
the maximum eigenvalue of the covariance matrix can play
this role. We will prove that the sufficient and necessary con-
dition for the validation of the regressor vector’s PE condition
is λmax (P (t)) ∈ L∞.
Lemma 1: Consider the LTV system (2) with adaptive law

(6) under assumptions (3-5), then
(a) If the regressor vector ϕ (t) is PE, then

λmax (P (t)) ∈ L∞;
(b) If λmax (P (t)) ∈ L∞, then the regressor vector ϕ (t)

is PE.
Proof: (a) Define R (t) = P−1 (t), R(0) = P (0)−1 > 0,

firstly. Then from (6), it follows that

Ṙ(t) =
d
dt
P (t)−1 = −βR (t)+ ϕ(t)ϕ(t)T − µR (t)2 .

When ϕ (t) is PE, we conclude γ1I ≤ R(t) ≤ γ2I , for some
γ1 > 0, γ2 > 0[31]. Therefore, γ−12 I ≤ P(t) ≤ γ−11 I and
consequently λmax (P (t)) ∈ L∞. Where γ1, γ2 denote the
lower and upper bound of R (t), respectively.
(b) The condition λmax (P (t)) ∈ L∞ implies that

λmin (R (t)) > c for c > 0. Because µ > 0, hence

Ṙ(t)=−βR (t)+ϕ(t)ϕ(t)T−µR (t)2 ≤ −βR (t)+ϕ(t)ϕ(t)T.

The following inequality can be obtained by applying the
comparison principle

R (t + T0) ≤ e−β(t+T0)R (t)+
∫ t+T0

t
e−β(t+T0−τ)ϕ(τ)ϕT(τ )dτ

≤ e−β(t+T0)R (t)+ e−βT0
∫ t+T0

t
ϕ (τ) ϕT (τ ) dτ .

(7)

The inequality (7) can be rewritten as∫ t+T0

t
ϕ (τ) ϕT (τ ) dτ ≥ eβT0R (t + T0)− e−βtR (t) .

Due to the positive definite property of matrix R (t) and
its continuity, there exist α0 > 0, T0 > 0 such that∫ t+T0
t ϕ (τ) ϕT (τ ) dτ ≥ α0T0I , ∀t ≥ 0. Then according to
Definition 1, the regressor vector ϕ (t) is PE. �
Before putting forward the identification algorithm, two

variables are defined as

Pd (t) = βP (t)− P (t) ϕ (t) ϕ (t)T P (t)+ µI , (8)

Q (t) =
d (λmax (P (t)))

dt

=
tr (adj (P (t)− λmax (P (t)) · I ) · Pd (t))

tr (adj (P (t)− λmax (P (t)) · I ))
. (9)

where the formula of Q (t) is derived from [35], tr (·) and
adj (·) denote the trace and adjoint of the corresponding
matrix, respectively. P (0) can be selected as a diagonal
matrix whose diagonal elements should have different values
to avoid that tr (adj (P (t)− λmax (P (t)) · I )) = 0.

Then based on Lemma 1, the following on-line LS identi-
fication algorithm is proposed for LTV system (2) as follows

Ṗ (t) =


Pd if λmax (P (t)) < PU or

if λmax (P (t)) = PU and Q (t) < 0
0 otherwise,

(10)

˙̂
θ (t) =


P (t) ϕ (t) e (t) if λmax (P (t)) < PU or

if λmax (P (t)) = PU and Q (t) < 0
P (t) ϕ (t) e (t)− σP (t) θ̂ (t) otherwise,

(11)

where θ̂ (t) represents the estimate of the unknown parameter
vector, PU is a designed scalar with P (0) < PU I , σ > 0
represents the fixed σ -modification. e (t) is the prediction
error

e (t) = y (t)− ŷ (t) = y (t)− ϕT (t) θ̂ (t)

= −ϕT (t) θ̃ (t)+ w (t) , (12)

where θ̃ (t) = θ̂ (t)− θ (t) is the estimation error.
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Hereafter, we drop in the notation the explicit dependence
on t (that is, let R = R (t), P = P (t) and so on), for
simplicity. The properties of this algorithm are established in
the following theorem.
Theorem 1: For the LTV model (2), when the assump-

tions (3-5) are satisfied, then the novel estimation algorithm
described by the equations (10) and (11) guarantees that

(a) P,P−1, e, θ̂ , ˙̂θ ∈ L∞ [0,∞);
(b) If ϕ is independent of w and satisfies PE condition

as (1) beforehand, θ̃ would exponentially converge to the
residual set

Rθ̃ =

{
θ̃

∣∣∣∣∣ ∥∥∥θ̃∥∥∥ ≤
√(
µd20 + ε

2
)

βµλmin (R)

}
, (13)

where ε and d0 are defined in (4-5).
Proof: From Lemma 1, we can conclude that P ≥

γ−12 I . In order to proof the boundedness of P, define a
convex set with a smooth boundary almost everywhere as
S = {P |λmax (P)− PU ≤ 0 }. We start from an initial point
P(0) ∈ S. The equation for the covariance matrix P is mod-
ified so that at the point in the interior of S, P is updated
according to (6). If the current point is on the boundary of
S and the direction of search given by the unconstrained
algorithm is pointing inside S, then we keep this algorithm.
If the direction of search is pointing away from S, then P
is a constant matrix, and, therefore, the adaptive law at that
point is a gradient algorithm with σ -modification. The above
strategy is similar to the adaptive laws with projection pro-
posed in [5]. And the conclusion λmax (P) ≤ PU can always
be guaranteed, which implies that P, P−1 ∈ L∞ [0,∞).

The Lyapunov-like function is selected as

V
(
θ̃
)
=
θ̃TRθ̃
2

.

Case I:When P is a constant matrix, we have Ṙ = 0. The
derivative V̇ is derived as

V̇ =−e2+ew−σ θ̂T θ̃−θ̇TRθ̃≤−
e2

2
+
w2

2
−σ θ̂T θ̃−θ̇TRθ̃ .

We apply the completion of squares

−σ θ̂T θ̃ ≤ −σ θ̃T θ̃ + σ

∣∣∣θT θ̃ ∣∣∣ ≤ −σ θ̃T θ̃
2
+
σ ‖θ‖2

2

−θ̇TRθ̃ = −

∥∥∥∥δRθ̃ + θ̇

2δ

∥∥∥∥2 + δ2 ∥∥∥Rθ̃∥∥∥2 +
(∥∥θ̇∥∥

2δ

)2

, (14)

where δ > 0. It can be shown that

V̇ ≤ −
e2

2
+
w2

2
−
σ θ̃T θ̃

2
+
σ ‖θ‖2

2
+ δ2

∥∥∥Rθ̃∥∥∥2+(∥∥θ̇∥∥
2δ

)2
≤ −

e2

2
−

(
σλmin (P)−

2δ2

λmin (P)

)
V+

d20
2
+
σM2

2
+
ε2

4δ2

≤ −

(
σγ−12 −2δ

2γ2

)
V+

d20
2
+
σM2

2
+
ε2

4δ2
. (15)

Since d0, M , ε ∈ L∞, if σ > 2δ2γ 2
2 , it can readily

be shown that V and θ̃ are bounded. It needs to be pointed

out that δ in (14) can be any constant greater than zero, the
stability of V can be guaranteed as long as σ > 0. But the
value of σ is related to the estimation performance, which
would be discussed in Remark 2.
Case II:When P is updated according to (6), then

V̇ = ˙̃θTRθ̃ +
1
2
θ̃T

d (R)
dt

θ̃ ,
˙̃
θTRθ̃ = −e2 + ew− θ̇TRθ̃ .

Consider (14) and let δ =
√
µ
/
2, we obtain

V̇ = −e2 + ew− θ̇TRθ̃ +
1
2
θ̃T (ϕϕT − βR− µR2)θ̃

= −e2 + ew− θ̇TRθ̃ +
1
2
(ϕT θ̃ )2 − βV −

1
2
µ

∥∥∥Rθ̃∥∥∥2
= −

e2

2
+
w2

2
+

∥∥θ̇∥∥2
2µ
−

∥∥∥∥√µ2 Rθ̃ + θ̇
√
2µ

∥∥∥∥2 − βV
≤

w2

2
−
e2

2
+

∥∥θ̇∥∥2
2µ
− βV ≤

d20
2
+
ε2

2µ
− βV . (16)

If V ≥ l = 1
β

(
d20
2 +

ε2

2µ

)
then V̇ ≤ 0, which illustrates

that V converges to a set with respect to l.
Combining (15) with (16), we can conclude that V ∈ L∞.

Hence, θ̃ ∈ L∞. The boundedness of θ̃ implies that θ̂ ∈ L∞,
which, together with ϕ ∈ L∞, imply that e, ˙̂θ ∈ L∞. So the
conclusion (a) in Theorem 1 is tenable. Since P is bounded as
shown in Lemma 1, if ϕ is PE, the conclusion (b) in Theorem 1
is also tenable. �
Remark 2: The key point of the proposed algorithm is that

λmax (P) and its variation tendency are used as an online
indicator of ϕ’s PE condition. For the case of PE condition,
a novel LS algorithm whose estimation performance can
be effectively enhanced is used to estimate the unknown
TV parameters. Otherwise the gradient algorithm with fixed
σ -modification is used to guarantee the boundedness of the
adaptation law. According to Theorem 1, the estimation per-
formance of the proposed algorithm depends on the value
of forgetting factor β, extra term µ and leakage term σ .
A lager β leads to faster convergence and stronger ability
in tracking TV parameters at the cost of more oscillations
in the estimated parameters. The extra term µ involves a
similar tradeoff as β. As for σ , the better robustness against
disturbances is reached by a larger value of σ , which, how-
ever, may induce larger estimation error. Additionally, unlike
algorithm in [30], the value of σ can be chosen as any positive
constant, which is independent onµ and another design scalar
PU . It also needs to be pointed out that PU in [30] should
be selected carefully in practice, otherwise the covariance
matrix still may become unbounded when PE condition is
lost. In contrast, PU in the proposed method can be arbitrarily
selected because it actually represents the level of excitation
condition.
Remark 3: ts, ts+1 are defined as the current time-step

and the next step, respectively. To recursively compute the
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FIGURE 1. Flowchart of computing the parameter estimates.

estimates of unknown parameters, the workflow is listed as
following.

1) To initialize, s = 1, θ̂ (t0) and P (t0) are designed.
2) Collect the input-output data ϕ (ts) and P (ts) from

system.
3) Compute Pd (ts),Q (ts), e (ts) according to (8), (9), (12),

respectively.
4) Identify whether PE condition is satisfied and update

P (ts) and θ̂ (ts) according to (10) and (11), respectively.
5) Increase s by 1 and go to step 2.
The flowchart of computing the parameter estimate θ̂ (ts)

is shown in Fig. 1.

IV. SIMULATION STUDIES
Consider the following LTV system, in which the regressor
can be chosen to be PE or not,

y = θ1x1 + θ2x2 + w, (17)

where y is the system output, x1 and x2 are system states that
are assumed to be available, θ1 = 2 + sin t and θ2 = 3 +
cos (0.5t) are the unknown TV parameters, w = rand (1) −
0.5 is the unknown disturbances. This simulation exam-
ple can be transformed into the standard form as (2), with
ϕ = [x1x2]T ; θ = [θ1θ2]T . We can easily proof that assump-
tions (3-5) are satisfied for the LTV system (17).

To illustrate the superiority, LS algorithm with variable
forgetting factor [19], modified LS algorithms [20] and [30]
are compared with the proposed scheme. The parameters
of all algorithms are set to the following values in order to
optimize their performance:

The design parameters of the proposed algorithm are set
as PU = 1000, σ = 10−4, β = 5 and µ = 5. The initial
conditions of both algorithms are set as θ̂1 (0) = θ̂2 (0) = 0,

TABLE 1. Estimation error results using the four algorithms.

P (0) = [10; 00.5]. The design coefficients of the algorithm
in [19] are set as λ0 = 5, k0 = 1000. According to plant
(17), the bounds of actual parameters and their variation ratios
are calculated as ε = 1.12 and M = 5. Thus, the optimal
design coefficients of the algorithm in [20] are set as σ =
µ = ε/M = 0.22. In order to assure the boundedness of
the covariance matrix, the design parameters of the algorithm
in [30] are selected as PU = 0.75, σ = 0.1, β = 5 and
µ = 0.05.
The first element of the regressor ϕ is chosen as x1 =

3 sin (4π t), the second element of the regressor ϕ is set as
a piecewise continuous function

x2 =


2.5 t < 10.125
2.5 sin (4π t) 10.125 ≤ t < 20.125
2.5 20.125 ≤ t < 30.125
2.5 sin (4π t) 30.125 ≤ t < 40.125

It is easy to verify that ϕ satisfies PE condition intermittently.
Under this relaxed excitation condition, the estimation per-
formance of the four algorithms is shown in Fig. 2-4, from
which one we can see that the proposed algorithm exhibits
more superior tracking performance than other algorithms.

D
[
θ̃i (t)

]
=

√
1
t

∫ t
0 θ̃

2
i (τ ) dτ is used to measure the con-

vergence speed of the estimation error. As shown in Fig. 5,
the proposed identification law converges faster than the other
three algorithms. The maximum eigenvalue of the covariance
matrix proposed in this paper is provided in Fig. 6. From this
figure, we can see that λmax (P) exceeds the specified value
PU immediately when ϕ does not satisfy PE condition (i.e.,
when 10.125 ≤ t < 20.125 and 30.125 ≤ t < 40.125).
Otherwise, λmax (P) would be confined within a small
range of changes. This phenomenon demonstrates the effec-
tiveness of Lemma 1. In order to compare the four methods
in terms of statistical evaluation, the integral of the square

norm of the estimation error, Jθ̃ (t) =
∫ t2
t1

∥∥∥θ̃ (τ )∥∥∥2dτ is
adopted. As shown in Table 1, the proposed algorithm gives
smaller estimation errors compared with the algorithm in
[19], algorithm in [20] and algorithm in [30] no matter the
PE condition is satisfied or not.

Simulations are executed to verify the superiority of the
proposed algorithm. The inclusion of an extra unit matrix
multiplied by µ in the update law of the covariance matrix
enhances the tracking ability of the proposed algorithm.
That is the reason why the proposed algorithm and the
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FIGURE 2. Estimation of the unknown TV parameter θ1.

FIGURE 3. Estimation of the unknown TV parameter θ2.

FIGURE 4. Estimation error of unknown TV parameters.

algorithm in [30] achieve faster converge speed than the
algorithm in [19] and algorithm in [20]. For the algorithm in
[20], the−σPθ̂ of the LS algorithm has the tendency to drive
θ̂ to 0. If θ 6= 0, the term may drive θ̂ towards zero and away
from the actual value, whichmay destroy the estimation accu-
racy. In addition, during the design of the algorithm in [20],

FIGURE 5. The speed of convergence of four algorithms.

FIGURE 6. The maximum eigenvalue of the covariance matrix proposed in
this paper.

the optimal design coefficients are based on the bounds of
parameters and their variation ratios, which cannot be easily
realized in practical systems. As a comparison, the proposed
identification algorithm can be implemented without any
priori knowledge on the bounds of the unknown parameters
and the disturbances. If the excitation level increases from
low to sufficiently high, the proposedmethod can be switched
from gradient algorithm to the modified LS algorithm, which
can avoid the adverse effect of σ -modification. Additionally,
the selection of PU in [30] is not arbitrarily, which also
restrains the values ofµ and σ . This unnecessary limitation is
removed in the proposed algorithm so that the optimal value
of design parameters can be chosen. So these are the reasons
for better simulation results. It should be noted that, when PE
condition is not satisfied, the lack of effective information of
the regressor influences the estimation performance. Under
this condition, the proposed method switches to the gradient
algorithm to guarantee the stability of the algorithm.

V. CONCLUSION
In this paper, an on-line identification algorithm is presented
to estimate parameters for LTV systems under some relaxed
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assumptions that the priori knowledge on bounds of the
parameters and the disturbances should not be known in
advance. The boundedness of estimation error, parameter
estimates and their derivatives have been proved. Compar-
ative simulation results validate that the proposed identifi-
cation algorithm has more superb identification accuracy.
Further study will focus on the selection of input signal and
the optimal choices of parameters β, σ and µ, through which
the estimation performance will be enhanced.
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