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ABSTRACT An aero-engine is a complex aerodynamic thermal system, which can operate in extreme
environments for long periods. It is crucial to diagnose any faults of the aero-engine control system accu-
rately. At present, most aero-engine control system fault diagnosis schemes suffer from large interference,
significant chattering, and low estimation accuracy. To diagnosemulti-faults of the control system effectively,
we introduce and investigate a new fault diagnosis scheme in this paper, which uses joint sliding mode
observers. First, we develop a mathematical model for multi-faults in the control system, which can describe
actuator and sensor faults in detail. Then, we design the joint sliding mode observers for fault detection and
isolation (FDI), using the sliding mode variable structure term to reduce the coupling effect. Finally, during
the fault estimation process, we use a pseudo-sliding form to reduce the chattering problem and suppress the
impact of interference, which leads to an accurate estimation of themulti-fault characteristics. The simulation
results show that, the proposed scheme can effectively detect and isolate faults, which enables superior
timeliness and accuracy compared to a conventional sliding mode observer scheme. During the process of
fault estimation, the effect of chattering is reduced, which shows the advantages of strong sensitivity and
high estimation accuracy.

INDEX TERMS Aero-engine, control system, fault diagnosis, sliding mode observer.

I. INTRODUCTION
An aero-engine is an aerodynamic thermal system that inte-
grates technologies such as aircraft, electricity, gas, and fluid.
Due to the complex aero-engine structure and the harsh oper-
ating environments, as the operating time increases, the reli-
ability decreases gradually, and the occurrence of faults is
inevitable [1], [2]. To improve the stability and safety of aero-
engines, and to extend the service life, it is crucial to diagnose
all faults accurately and effectively [3]. In this paper, we use
a turbofan engine as research object and analyze the control
system faults.

Researchers, worldwide, have proposed plenty of meth-
ods that require observers for control system fault diagno-
sis. At present, the Luenberger observer [4], Kalman filter
(KF) [5], and sliding mode observer (SMO) [6], [7] are com-
monly used. The conventional observer was first proposed
by Luenberger, who used linear feedback to estimate the
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form of the error. Although the Luenberger observer has
good fault detection sensitivity, due to uncertainties such
as noise, interference, and time-varying parameters of the
aero-engine, the Luenberger observer suffers from inaccu-
rate estimate severely [8]. The Kalman filter is robust for
systems with white noise but is less robust for systems with
white noise but less so for systems where interference does
not come in the form of Gaussian white noise [9]. Due to
the strong nonlinearity of a turbofan engine, its accuracy
is high near the modeling area when linearizing. However,
a modeling error occurs throughout the life cycle. When
multi-faults occur, there is strong coupling between differ-
ent faults, which results in a Kalman filter estimation accu-
racy that cannot meet the requirements [10]. In addition,
the extended Kalman Filter (EKF) [11], cubature Kalman
filter (CKF) [12] and unscented Kalman filter (UKF) [13]
have been improved due to an improved Kalman filter algo-
rithm. However, there are some shortcomings, such as a large
initial error and inaccurate estimates for strong nonlinear
systems.
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Sliding mode control (SMC) [14] was first proposed
by the Soviet scholar Emelyanov in the 1960s. During
the development of the sliding mode observer, Utkin [15]
first used discontinuous switching items. Subsequently,
Walcott and Zak [16] used a Lyapunov-based method to
construct observers with discontinuous terms, and the Thau
observer [17] was designed for nonlinear systems. The sliding
mode observer feeds the output estimation error back via a
nonlinear switching term, which effectively solves the prob-
lem that the state estimation cannot approach the system state
due to unknown interference [18], and increases robustness.
Sliding mode theory has been continuously developed for
decades, and the areas of application of this method have been
expanding. In recent years, SMO-based fault diagnosis meth-
ods were studied extensively [19]. However, the sliding mode
observer represents a discontinuous control system. When
reaching the sliding surface, the state trajectory traverses back
and forth on both sides of the sliding surface, which causes
the well-known chattering problem [20]–[22]. In addition,
coupling between different faults has an adverse effect on the
fault diagnosis results. To make better use of SMO for aero-
engine control system fault diagnosis, the following problems
need to be solved: 1) Existing control system fault models
cannot describe multi-faults accurately; 2) Due to coupling
between different faults [23], problems such as insensitive
reaction, false positives and false negatives may occur during
the fault diagnosis process; 3) The chattering problem of
the sliding mode observer affects the estimation accuracy
negatively [24].

To make up for the shortcomings of the conventional
sliding mode observer, we design a more effective multi-
fault diagnosis scheme for the aero-engine control system
using joint sliding mode observers, which can describe all
possible faults by multi-fault model. During the FDI process,
the sliding mode variable structure term can weaken coupling
between different faults, and increase the sensitivity of FDI.
The proposed scheme also can suppress the impact of uncer-
tain factors for fault estimation. This method shows a strong
fault identification and separation capability, and improves
the estimation accuracy, which has the following advan-
tages compared to the conventional sliding mode observer
method:

1 It represents a more comprehensive multi-fault model
for aero-engine control systems, and it supplies a more
accurate description of multi-faults, thereby laying the
foundation for a fully-fledged multi-fault diagnosis.

2 Design of joint sliding mode observers for FDI: Each
of these observers corresponds to a specific fault, which
reduces the coupling effect and improves the accuracy
of the fault diagnosis.

3 During fault estimation, we use a pseudo-sliding form
to reduce the chattering problem and suppress the
impact of interference by H∞ design. This leads to an
accurate estimation of the multi-fault characteristics.

The content of other sections in this paper are as follows:
In Section. II, a multi-fault model for the control system is

FIGURE 1. Shematic diagram of aero-engine control system fault.

presented. The scheme using joint sliding mode observers
for multi-fault diagnosis is established in Section. III.
In Section. IV, some simulation and verification results
are given to evaluate the scheme proposed in this paper.
Section. V concludes the results and discusses the future
direction of related research.

II. FAULT MODEL
The aero-engine control system consists of actuators,
a dynamic system, and sensors [25]. In this section, we study
the actuator faults and sensor faults, and analyze the typical
fault model and mechanism of the actuators and sensors.
Then, we establish a mathematical model for multi-faults in
an aero-engine control system.

A. TYPICAL FAULT MODEL
Faults may occur in actuators, system components and sen-
sors [26], [27], as shown in Fig. 1, which are denoted by fa(t),
fc(t) and fs(t), respectively. In this paper, we study actuator
faults and sensor faults diagnosis of the control system.

Because actuator faults can interrupt or change the output
value of the controller [28], the controlled object cannot
receive the required input [29], and the sensor faults can
change the output value, which can produce inaccurate mea-
surement information [30]. Both actuator faults and sensor
faults usually do not affect the characteristics of the controlled
object [31]. Typical fault modes for actuators and sensors [32]
include stuck, constant gain changes, constant deviations,
and other abnormal behavior. In the control system, uR(t)
represents the stimulus-response to the control input u(t).
If actuator faults occur, uR(t) can be described as

uR(t) = u(t)+ fa(t). (1)

The actual output value is usually not directly avail-
able, and the value needs to be measured by sensors [33].
If sensor faults occur, the measurement output value can be
described as:

y(t) = yR(t)+ fs(t). (2)

B. MULTI-FAULT MODEL
Accounting for control system uncertainties, when multi-
faults occur [34], the model can be formulated as:{

ẋ(t) = Ax(t)+ f (x, t)+ B(u(t)+ fa(t))+ Ed(t)
y(t) = Cx(t)+ Dfs(t),

(3)
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where x ∈ Rn, u ∈ Rm, and y ∈ Rp represent state,
input, and output variables respectively. fa ∈ Rm represents
actuator faults, and fs ∈ Rq represents sensor faults. f (x, t) is
the bounded nonlinear function, which satisfies the Lipschitz
condition. d ∈ Rr represents bounded system uncertainties.
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×q, E ∈ Rn×r , are constant
matrixes, among which B and D are of full rank, so that
when some actuator or sensor faults occur, other parts are
still working normally. In other words, the operation of each
actuator and sensor is independent, and they have no effect
on each other.

The aero-engine control system is complex and change-
able. To establish the multi-fault model that satisfies the
requirements and implement fault diagnosis more effectively,
we make the following assumptions on the related matrixes,
the boundedness of the actuator and sensor faults, and the
nonlinear part characteristics.
Assumption 1: (A,C) is observable.
Assumption 2: The actuator faults, sensor faults and system

uncertainties are bounded functions, i.e. ‖fai‖ 6 λi,
∥∥fsj∥∥ 6

λj, ‖d‖ 6 λd , where λi, λj, and λd are constants greater
than 0.
Assumption 3: Nonlinear function f (x, t) conforms to Lip-

schitz condition for x, i.e. ∀x, x ∈ Rn, there is∥∥f (x, t)− f (x̂, t)∥∥ 6 Lf 1
∥∥x − x̂∥∥ , (4)

where Lf represents the Lipschitz constant.
Based on the above assumptions, the following fault model

can be formulated for possible fault conditions:

ẋ (t) = Ax (t)+ f (x, t)+ Bu (t)

+

α∑
i=1

Bmifami (t)+ Ed (t)

y (t) = Cx (t)+
β∑
j=1

Dqj fsqj (t) .

(5)

When establishing the multi-fault model, the following
content about equation (5) need to be stated:

(1) B =
[
B1 · · · Bi · · · Bm

]
,where Bi is the i-th column

vector of B.
(2) D =

[
D1 · · · Dj · · · Dq

]
,where Dj is the j-th column

vector of D.
(3) fami denotes the i-th actuator fault when α (α 6 m)

actuator faults occur simultaneously, while Bmi denotes the
column vector of the i-th (i = 1, 2, · · · , α) actuator fault.
(4) fsqj denotes the j-th sensor fault when β (β 6 q) sensor

faults occur simultaneously, while Dqj denotes the column
vector of the j-th (j = 1, 2, · · · , β) actuator fault.
(5) Possible fault conditions: α(α 6 m) actuator faults and

β(β 6 q) sensor faults can occur simultaneously.
The integral observer can efficiently estimate unknown

inputs. Therefore, for sensor faults, we use the integral
observer (6) and (7) to transform them into pseudo-actuator
faults, consequently, a control system multi-fault model can
be established to accurately describe the actuator and sen-
sor faults. Other than that, actuator and sensor faults are

expressed in the same form, so the same method can be used
to diagnose actuator and sensor faults, which simplifies the
design of the fault diagnosis scheme.

ϕ =

∫ t

0
y (τ ) dτ , (6)

i.e.

ϕ̇ = Cx (t)+
β∑
j=1

Dqj fsqj (t) . (7)

A new control system equation can be obtained using (5)
and (7): 

[
ẋ
ϕ̇

]
=

[
A 0
C 0

][
x
ϕ

]
+

[
f (x, t)

0

]

+

[
B
0

]
u+

α∑
i=1

[
Bmi
0

]
fami (t)

+

[
E
0

]
d +

β∑
j=1

[
0
Dqj

]
fsqj (t)

ϕ =
[
0 I

] [ x
ϕ

]
.

(8)

By defining x̄ =
[
x
ϕ

]
, ȳ = ϕ, substituted into (8) gives:



˙̄x (t) = Āx̄ (t)+ f̄ (x, t)

+B̄u (t)+
α∑
i=1

B̄mifami (t)

+Ēd (t)+
β∑
j=1

D̄qj fsqj (t)

ȳ (t) = C̄ x̄ (t)

(9)

The matrix parameters in (9) are

Ā =
[
A 0
C 0

]
, f̄ (x, t) =

[
f (x, t)

0

]
,

B̄ =
[
B
0

]
, B̄mi =

[
Bmi
0

]
,

Ē =
[
E
0

]
, C̄ =

[
0 I

]
,

D̄ =
[
0
D

]
, D̄qj =

[
0
Dqj

]
. (10)

Equation (9) means that both sensor and actuator faults
have the same form. This can be further organized into

˙̄x (t) =Āx̄ (t)+ f̄ (x, t)+ B̄u (t)

+

α+β∑
k=1

X̄(m+q)k fk (t)+ Ēd (t)

ȳ (t) =C̄ x̄ (t)

, (11)
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FIGURE 2. Structure diagram of control system fault diagnosis.

where
α+β∑
k=1

X̄(m+q)k fk (t) is the general term for
α∑
i=1

B̄mifami (t)

and
β∑
j=1

Ḡqj fsqj (t), and all types of control system faults

are uniformly denoted by f . α + β, (α + β 6 m+ q) repre-
sents the total number of possible faults. fk (t) represents the
k-th (k = 1, 2, · · · , α + β) fault, and X̄(m+q)k represents the
column vector of X̄ . The relationship of the full rank matrix
X̄ , B̄ and D̄ can be expressed as

X̄ =
[
B̄ D̄

]
. (12)

Equation (11) can also be expressed as{
˙̄x (t) = Āx̄ (t)+ f̄ (x, t)+ B̄u (t)+ X̄ f (t)+ Ēd (t)
ȳ (t) = C̄ x̄ (t) .

(13)

In the above process, we transform sensor faults into
pseudo-actuator faults through the introduction of the integral
observer ϕ, which simplifies the design of fault diagnosis
scheme, while it still fully describes the system faults.

III. MULTI-FAULT DIAGNOSIS SCHEME
In this section, we use joint sliding mode observers to estab-
lish the multi-fault diagnosis scheme. Firstly, we design
observers for the multi-fault model in Section. II to realize
FDI. The second step is to design observers for fault estima-
tion. The effect of the uncertainties on the system is attenu-
ated to a minimum level by the H∞ design [35], [36], which
means the fault characteristics can be estimated accurately.
Fig. 2 shows the fault diagnosis structure diagram.

A. FDI SCHEME
In this paper, we design observers for various types of faults
to construct the joint sliding mode observers. In order to
promote the application to nonlinear systems with sensor
and actuator faults and ensure the accuracy of the proposed
scheme, before designing the observers, we make the follow-
ing assumptions:
Assumption 4: (Ā, C̄) is observable. There exists a

matrix L, which makes Ā0 = Ā− LC̄ stable matrix.

Assumption 5: The nonlinear function f̄ (x, t) conforms to
the Lipschitz condition for x, i.e. ∀x, x ∈ Rn, and there is∥∥f̄ (x, t)− f̄ (x̂, t)∥∥ 6 Lf 2

∥∥x − x̂∥∥ , (14)

where Lf 2 is Lipschitz constant.
Assumption 6: There exist matrixes P and F , which satisfy

PX̄(m+q)k = C̄TFT , where P is a real symmetric positive
definite matrix.
Assumption 7: Q is a real symmetric positive def-

inite matrix, which satisfies the Lyapunov equation
AT0 P+ PA0 = −Q.

When the control system faults occur, the SMO designed
for the l-th (l = 1, 2, · · · , α + β) fault in system (11), based
on the above assumptions, is:
˙̂x̄ l= Ā ˆ̄x+ f̄

(
x̂, t
)
+B̄u+L

(
ȳ−ˆ̄y

)
+

α+β∑
k=1,k 6=l

X̄(m+q)kvk

ˆ̄y = C̄ ˆ̄x,

(15)

where ˆ̄x and ˆ̄y represent the estimated values of x̄ and ȳ respec-
tively. vk is the sliding mode variable structure term, which
can cut off the impact of the remaining faults f(α+β)k (k =
1, 2 . . . . . . α + β, k 6= l) on the system, and L is the gain
matrix. When the l-th (l = 1, 2, · · · , α + β) fault occurs. vk
is expressed as

vk =


ρk

F(m+q)k
(
ȳ− ˆ̄y

)
k∥∥∥F(m+q)k(ȳ− ˆ̄y)
k

∥∥∥ ,
(
ȳ− ˆ̄y

)
k
6= 0

0 ,
(
ȳ− ˆ̄y

)
k
= 0,

(16)

where ρk is the slidingmode variable structure parameter [37],
ρk > 0.

(
ȳ− ˆ̄y

)
k
is the k-th (k = 1, 2, · · · , a + b, k 6= l)

column vector of ȳ− ˆ̄y, and F(m+q)k is the k-th row vector of
the matrix F .

When multi-faults occur in the control system, we need to
design joint slidingmode observers. Each observer is directed
to a specific type of fault, which means that residuals for
all faults can be generated. Then, we can determine whether
faults have occurred and the specific parts of faults based on
the residuals. We now define the state estimation error ē =
x̄−ˆ̄x and themeasurement error ēy = ȳ−ˆ̄y.Whenmulti-faults
occur in the aero-engine control system, the state estimation
error that corresponds to the l-th fault can be expressed as

˙̄el = ˙̄x −
˙̂x̄l

= Āx̄ + f̄ (x, t)+ B̄u+
α+β∑
k=1

X̄(m+q)k f(m+q)k + Ēd

−Ā ˆ̄x − f̄
(
x̂, t
)
− B̄u− L

(
ȳ− ˆ̄y

)
−

α+β∑
k=1,k 6=l

X̄(m+q)kvk

=
(
Ā− LC̄

)
ēl + f̄ (x, t)− f̄

(
x̂, t
)

+

α+β∑
k=1,k 6=l

X̄(m+q)k (fk − vk )+ X̄(m+q)l fl + Ēd . (17)

VOLUME 8, 2020 10189



L. Gou et al.: Multi-Fault Diagnosis of an Aero-Engine Control System Using Joint Sliding Mode Observers

Based on the previous assumptions, we select the
Lyapunov function [38]

V = ēTPē. (18)

(1) Assuming that, when multi-faults occur, not including
the g-th fault, we can obtain

˙̄eg =
(
Ā− LC̄

)
ēg + f̄ (x, t)− f̄

(
x̂, t
)

+

α+β∑
k=1,k 6=g

X̄(m+q)g(fk − vk )+ Ēd . (19)

The derivation of the Lyapunov function [39], [40] is:

V̇ = ēTg (−Q) ēg + 2ēTg P
(
f̄ (x, t)− f̄

(
x̂, t
))

+2ēTg PĒd + 2ēTg P
α+β∑

k=1,k 6=g

X̄(m+q)g(fk − vk )

6 ēTg (−Q) ēg+L
2
f 2

∥∥ēgP∥∥2 + ∥∥ēg∥∥2+2 ∥∥Ē∥∥ ∥∥Pēg∥∥ λd
−2ēTg

 α+β∑
k=1,k 6=g

∥∥∥F(m+q)k(ȳ−ˆ̄y)
k

∥∥∥(ρk−max
{
λi, λj

})
6 ēTg

(
−Q+ L2f 2PP+ I + 2ĒPλd

)
ēg. (20)

When satisfying

[
−Q+ I + 2ĒPλd P

P −
1
L2f 2

]
< 0 and

ρk > max
{
λi, λj

}
, we can get V̇ < 0, so that lim

t→∞
ēg = 0.

(2) Assuming that, when multi-faults occur, including the
z-th fault, we can get

˙̄ez =
(
Ā− LC̄

)
ēz + f̄ (x, t)− f̄

(
x̂, t
)

+

α+β∑
k=1,k 6=z

X̄(m+q)k (fk − vk )+ X̄(m+q)zfz + Ēd, (21)

Because the matrix X̄ is full rank, so that X̄(m+q)k is inde-
pendent of X̄(m+q)z linearity, lim

t→∞
ēz 6= 0.

We can determine that, when k(k 6 α + β) faults occur in
the control system, k corresponding state estimation errors
ē(k) cannot converge to the zero domain, and the remaining
α + β − k state estimation errors ē(α+β−k) can quickly
converge to the zero domain.

When the l-th (l = 1, 2, · · · , α + β) fault in the control
system occurs, the corresponding residual is as follows:

rl =
∥∥ēyl∥∥ . (22)

When k faults occur simultaneously, the corresponding
residuals are

r(k) =
∥∥ēy(k)∥∥ . (23)

This time, the residual of the overall system is

r =
α+β∑
k=1

∥∥ēyk∥∥. (24)

FIGURE 3. Multi-fault detection and isolation scheme.

Based on the above analysis, the FDI scheme using the
joint sliding mode observers in this paper, is as shown
in Fig. 3. The scheme can be described as: When faults occur,
the overall system residual does not converge to the zero
domain. Then we can detect the occurrence of faults in this
way. When k (k 6 α + β) faults occur simultaneously, their
corresponding residuals r(k) are sensitive to the faults and do
not converge to the zero domain ε(k), while the remaining
α+ β − k residuals r(α+β−k) are insensitive to the faults and
converge to the corresponding zero domains ε(α+β−k). There-
fore, fault isolation can be performed using the relationship
between the residual magnitude and the zero domain. The
FDI decision logic is shown in TABLE 1.

B. FAULT ESTIMATION SCHEME
After the faults were accurately isolated, we design the
observers to estimate the fault characteristics. When multi-
faults occur in the control system, we need to design an
observer for each specific fault to estimate the characteristics.
In this section, we use the l-th fault fl as an example to design
the SMO:{

˙̂x̄ l = Ā ˆ̄x + f̄
(
x̂, t
)
+ B̄u− L

(
ȳ− ˆ̄y

)
+ v′l

ˆ̄y = C̄ ˆ̄x.
(25)

The sliding mode variable structure term v′l can eliminate
the effect of uncertainties, so that the residual contains only
fault information [41], which can be expressed as follows:

v′l =


ρ′l

F(m+q)l
(
ȳ− ˆ̄y

)
l∥∥∥F(m+q)r(ȳ− ˆ̄y)
l

∥∥∥ ,
(
ȳ− ˆ̄y

)
l
6= 0

0,
(
ȳ− ˆ̄y

)
l
= 0,

(26)

where the sliding mode variable structure parameter ρ′l > 0.
We define the state estimation error ē′ = x̄ −ˆ̄x and the

measurement error ē′y = ȳ − ˆ̄y. When multi-faults occur,
we can use ē′ to estimate the fault fl , which can be expressed
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TABLE 1. FDI Decision Logic.

as

˙̄e
′

l =
˙̄x l −
˙̂x̄ l

= Āx̄ + f̄ (x, t)+ B̄u+ X̄(m+q)l fl + Ēd

− Ā ˆ̄x − f̄
(
x̂, t
)
− B̄u− L

(
ȳ− ˆ̄y

)
− v′l

=
(
Ā− LC̄

)
ēl + f̄ (x, t)− f̄

(
x̂, t
)

+X̄(m+q)l fl − v′l + Ēd . (27)

After select the Lyapunov function

V ′ = ē′Tl Pē
′. (28)

And substituting (27) into (28) we obtain:

V̇ ′ = ē′Tl (−Q) ē
′
l + 2ē′Tl P

(
f̄ (x, t)− f̄

(
x̂, t
))

+2ē′Tl PX̄(m+q)l fl − 2ē′Tl Pvl
′

6 ē′Tl (−Q) ē
′
l + L

2
f 2

∥∥ē′lP∥∥2 + ∥∥ē′l∥∥2 + 2ρl ′
∥∥Pē′l∥∥

6 ē′Tl
(
−Q+ L2f 2PP+ I + 2Pρ′r

)
ē′l . (29)

When satisfying

[
−Q+ I + 2Pρ′r P

P −
1
L2f 2

]
< 0, we can

get V̇ ′ < 0, so that lim
t→∞

ē′l = 0. The state estimation error is
increasingly stable.

Then we select the sliding surface:

s =
{(
ē′l, ē

′
yl

)
|ē′l = 0

}
. (30)

By adjusting the sliding mode variable structure item,
as shown in Fig. 4, ē′l can move to the sliding surface in a
finite time [42], and then maintain the sliding mode after a
certain chattering process [43] to ensure the robustness of the
system.

FIGURE 4. Diagram of sliding mode motion.

The existence of uncertainties affects the state estimation
error ē′. Therefore, we design H∞ to suppress the impact of
uncertain factors on the residual:

‖H‖∞ = sup
||d ||2 6=0

||ē′||2
||d ||2

6
√
µ, (31)

where µ > 0, and || • ||2 represents a 2-norm.
After the system reaches the sliding surface, it produces

ideal sliding motion for a limited time. Then ˙̄el
′
= 0, ē′l = 0,

and (27) can be written as

0=
(
Ā−LC̄

)
ēl+ f̄ (x, t)− f̄

(
x̂, t
)
+ X̄(m+q)l fl−veq+Ēd,

(32)
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where veq is the equivalent output-error injection, which is
required to maintain the sliding mode motion.

To reduce chattering during sliding mode motion, the slid-
ing mode variable structure is usually in the form of
pseudo-sliding:

v′l ≈ ρ
′
l

F(m+q)l
(
ȳ−ˆ̄y

)
l∥∥∥F(m+q)l(ȳ− ˆ̄y)

l

∥∥∥+ δl , (33)

where δl is a positive scalar with a small absolute value to
reduce the effect of chattering on the estimation result.

Using the concept of equivalent output-error injection,
the fault estimation is expressed as

f̂l = X̄+(m+q)lveq, (34)

where X̄+(m+q)l is the pseudo inverse matrix of X̄(m+q)l .
Equation (32) can be rewritten as

f̂l−fl= X̄
+

(m+q)l

((
Ā−LC̄

)
ēl+ f̄ (x, t)− f̄

(
x̂, t
)
+Ēd

)
. (35)

Calculating the 2-norm of (35) yields:∥∥∥f̂l − fl∥∥∥
2

=

∥∥∥X̄+(m+q)l ((Ā− LC̄) ēl + f̄ (x, t)− f̄ (x̂, t)+ Ēd)∥∥∥2
6 σmax

(
X̄+(m+q)l

(
Ā− LC̄

))
‖ēl‖2

+σmax

(
X̄+(m+q)l

)
Lf 2‖ēl‖2 + σmax

(
X̄+(m+q)l Ē

)
‖d‖2

6 σmax

(
X̄+(m+q)l

(
Ā− LC̄

))
‖ē‖2

+σmax

(
X̄+(m+q)l

)
Lf 2‖ē‖2 + σmax

(
X̄+(m+q)l Ē

)
‖d‖2.

(36)

Based on the design goal of H∞, ‖ē‖2 6
√
µ‖d‖2,

the above equation can be rewritten as∥∥∥f̂l − fl∥∥∥
2

6
√
µσmax

(
X̄+(m+q)l

(
Ā− LC̄

))
||d ||2

+
√
µσmax

(
X̄+(m+q)l

)
Lf 2||d ||2 + σmax

(
X̄+(m+q)l Ē

)
‖d‖2.

(37)

According to the above equation, the error of the fault esti-
mation is related to the system uncertainties. The existence of
system uncertainties d affects the accuracy of the fault estima-
tion. Therefore, it is necessary to design a sufficiently small
µ to make the SMO retain the fault information effectively.

In summary, when the fault estimation error is within the
allowable range, the l-th fault estimation can be approximated
using

f̂l = ρ′l
F(m+q)l X̄

+

(m+q)l

(
ȳ− ˆ̄y

)
l∥∥∥F(m+q)l(ȳ− ˆ̄y)

l

∥∥∥+ δl . (38)

FIGURE 5. Multi-fault estimation scheme.

FIGURE 6. Process of the multi-fault diagnosis.

Base on the above analysis, the multi-fault estimation
scheme is shown in Fig. 5. When multi-faults occur,
we design observers for specific faults, and the term ν′l is used
to suppress the interference and uncertainties of the system.
At the same time, we can achieve accurate fault estimation
through the design of H∞ and the equivalent output error
injection term.

IV. SIMULATION AND VERIFICATION
The multi-fault diagnosis scheme proposed in this paper is
mainly divided into three steps. As shown in Fig. 6, the first
step is to establish a mathematical model of the aero-engine
control system multi-faults. The second step is FDI based on
the joint sliding mode observers. The third step is to design
a fault estimation scheme after isolating the faults to enable
the accurate estimation of multi-faults. The simulation and
verification consist of two parts: FDI verification and fault
estimation verification.

We verify the scheme using MATLAB/Simulink, tak-
ing a twin-shaft turbofan engine as the research object.
We select the operating point H = 7km, Ma = 0.6, nf =
2000RPM .The main parameters are:

A =


0 1.0022 0 0

−47.6554 −1.2587 47.6554 0
0 0 0 10.0128

1.8521 0 −1.8521 0

 ,

B =


0

20.6562
0
0

 , C =

 0 1 0 0
0 0 1 0
0 0 0 1

 ,

D =

 1 0 0
0 1 0
0 0 1

 , E =


1
0
1
1

 .
f (x, t) = sin (x3) , d (t) = sin (t) . (39)
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The following matrixes are obtained via coordinate trans-
formation:

Ā =



0 1.0022 0 0 0 0 0
−47.6554 −1.2587 47.6554 0 0 0 0

0 0 0 10.0128 0 0 0
1.8521 0 −1.8521 0 0 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0



B̄ =



0
20.6562

0
0
0
0
0


C̄ =

 0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 Ē =


1
0
1
1
0
0
0


f̄ (x, t)

=



sin (x3)
0
0
0
0
0
0


X̄ =



0 0 0 0
20.6562 0 0 0

0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(40)

We now consider the following multi-fault situation:
1) fa1: During t = 8s ∼ 18s, the jumping fault of a fuel

metering valve occurs, whose amplitude is 0.1. At t = 18s,
the fault disappears. The respective expression is

fa1 =


0, t 6 8s
0.1, 8s < t < 18s
0, t > 18s.

(41)

2) fa2: During t = 15s ∼ 25s, the gradual fault of the
fuel metering valve occurs, increasing of the slope by 0.03/s.
When t ≥ 25s, the fault magnitude is maintained at 0.3. The
respective expression is

fa2 =


0, t 6 15s
0.03(t − 15), 10s < t < 20s
0.3, t ≥ 25s.

(42)

3) fs1: During t = 10s ∼ 20s, the gradual fault of the
fan-speed sensor occurs, increasing of the slope by 0.01/s.
When t > 20s, the fault magnitude is maintained at 0.1. The
respective expression is

fs1 =


0, t 6 10s
0.01 (t − 10) , 10s < t < 20s
0.1, t > 20s.

(43)

4) fs2: During t = 20s ∼ 30s, due to external interference,
a turbine outlet-temperature sensor sinusoidal fault occurs,
whose amplitude is 0.3. The angular frequency is 1 rad/s.

FIGURE 7. Fault information.

FIGURE 8. Residuals of control system.

At t = 30s, the fault disappears. The respective expression is

fs2 =


0, t 6 20s
0.3 sin (t − 20) , 20s < t < 30s
0, t > 30s

(44)

We select the following matrixes to satisfy assumption 4
and assumption 6:

L =



1.2387 0.2767 0.1766 0.6878
0.8165 −0.0431 −0.3498 0.4377
0.2533 1.5446 −0.3483 1.2546
0.1298 −0.1087 1.1934 −0.2458
2.9879 −0.0512 0.0277 −0.3901
−0.0295 3.0948 0.0306 1.0548
−0.0249 0.0306 3.0108 0.0476


,

F =


1.7475 −0.1873 −0.0435
−0.1470 1.8578 0.0629
−0.0583 0.0908 1.8798
−0.0332 1.4377 0.2843

 . (45)

First, we verify the proposed FDI scheme. In the verifi-
cation process, we compare the joint sliding mode observers
with conventional thau observers, and verify the overall sys-
tem and the above four fault-conditions. The results are
shown below:
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FIGURE 9. Residuals of multi-faults.

The figures show that, during t = 0s ∼ 2s, because
the actual value is different from the estimated value, there
are short-term fluctuations of the residuals, which can be
ignored during the fault analysis. As can be seen from
Fig. 8, in terms of the timeliness of the fault detection, both
the conventional method and the proposed method detect
faults at about t = 8s. For the overall system, the observed
results of the two methods are close and both show good
timeliness.

In the process of isolating different faults, the defects of
the conventional method gradually appear due to coupling
between different faults. As shown in Fig. 9, when isolating
the fault fa1, it converged to zero during 18s 6 t 6 30s,
and the proposed method shows high accuracy. The con-
ventional method, however, still shows the fault occurring
within this period of time due to coupling with other faults,
which means that a false positive alarm is triggered. When
isolating the faults fa2 and fs1, because of the positive effect
of the sliding mode variable structure term, the joint sliding
mode observers can detect and isolate faults more quickly
and with better timeliness than the conventional method.
When isolating the fault fs2, due to the coupling with other
faults, the conventional method shows false alarms during

14s 6 t 6 20s, which reflects lower accuracy. In addition,
during several short time-intervals after t = 20s, when fault
fs2 occurs, the conventional method shows that the residual
converges to the zero domain, i.e., a false negative alarm is
triggered.

After successfully isolating the four faults above, the next
step is to estimate the faults. The estimation results are shown
in Fig. 10.

The verification result shows that, due to the equiva-
lent output-error injection, the estimation error of the above
four faults can converge to the zero domain in 2 seconds
and maintains sliding motion, which indicates high sen-
sitivity. In addition, due to the design of H∞, the fault
estimation results can be stabilized in the zero domain, with-
out significant chattering, which suggests a high estimation
accuracy.

The above analysis shows that the timeliness, fault identi-
fication capability, and fault separation capability of the joint
sliding mode observers are far superior to the conventional
method. During the fault estimation, the scheme, which is
introduced in this paper, weakens the effect of chattering
significantly, which is indicative of both high sensitivity and
high estimation accuracy.
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FIGURE 10. Estimation of multi-faults.

V. CONCLUSION
In this paper, we proposed a multi-fault diagnosis scheme
of the aero-engine control system using joint sliding mode
observers. Firstly, a mathematical multi-fault model was
established to describe the actuator and sensor faults accu-
rately and comprehensively. Then, we constructed the joint
slidingmode observers, using the slidingmode variable struc-
ture term, to weaken coupling between the different faults.
This enables the detection and isolation of each fault. After
isolating the faults, we designed observers to estimate the
fault characteristics. The design of H∞ can suppress the
impact of uncertain factors, and the equivalent output error
injection term produces a more accurate fault estimation.
Compared with the conventional method, the advantages of
the new method are: When multi-faults occur in the con-
trol system, the proposed scheme can effectively diagnose
actuator and sensor faults including jumping faults, gradual
faults and sinusoidal faults. During establishing multi-fault
model, sensor faults are translated into pseudo-actuator faults
through integral transformation, i.e., sensor faults have the
same form as actuator faults, which makes the description of
multi-faults more accurate and comprehensive, and simplifies
the fault diagnosis scheme design significantly. During the
FDI process, the proposed scheme showed high sensitivity,
fault identification capability, and separation capability, while
weakening the coupling effect. During the fault estimation,

the proposed pseudo-sliding form can reduce the chattering
problem and the H∞ design can suppress the impact of
interference. The benefits of reducing the effect of chattering,
higher sensitivity, and higher estimation accuracy are also
noticeable.

A future research direction is to extend the method to
different types of aero-engines, and to design observers for
different system features, which would enhance the capa-
bility of the method. We verified the multi-fault diagnosis
at the exact operating point, but the robustness at different
fan rotor speeds in the full flight envelope remains to be
studied. In addition, when designing the observers, the fault
diagnosis scheme can be further improved by combining
aero-engine component degradation and gas-path faults. This
would enhance the comprehensiveness of the method. Hence,
a more complete fault diagnosis scheme can be constructed,
which improves both aero-engine safety and stability effec-
tively, and extends the operating life of an aero-engine.
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