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ABSTRACT This paper is focused on the design of a mobile robot whose objective is to apply thermal
insulation spray in underfloor voids, to improve the energy efficiency of buildings. Solving robustly the
mapping and localization problems is crucial to achieve a high degree of autonomy during the development
of this task. Nevertheless, underfloor voids constitute specially challenging environments mainly owing to
the extreme unevenness of the terrain and the changes the environment experiences as the insulation process
is carried out. Taking these issues into account, this work presents the implementation of the localization
module of the robot, which is equipped with a laser scanner and an RGB (Red, Green and Blue) camera.
The data captured by both sensors is combined to build point clouds that describe the appearance of the
environment. While the robot traverses the a priori unknown environment, several point clouds are built and
an alignment between each pair of consecutive clouds is carried out. From this information, the current
position of the robot is estimated with respect to the previous one. The method has been tested with
several datasets captured in real underfloor environments (building crawl spaces) and under real operating
conditions.

INDEX TERMS Building crawls, global appearance descriptors, localization, point clouds, registration.

I. INTRODUCTION
Along the past few years, the use of mobile robots has
extended to a wide range of applications thanks mainly to
the improvement of their perception and processing abilities.
Numerous examples can be found in the literature, such as
in search and rescue applications [1], [2], social assistive
robots [3], mobile manipulation [4], navigation in densely
crowded environments [5] and material handling in manufac-
turing systems [6].

The present work is part of a wider project whose objective
is improving the energy efficiency of those buildings which
have voids between floor and foundations, which are rela-
tively common in many areas in Europe and around the world
due to building methods [7]. The energy efficiency of such
buildings can be improved through under-floor insulation.
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However, gaining access to such voids is quite difficult or
even impossible for people and thus, traditional methods to
perform the insulation are very disruptive for the occupants
of the building because they require removing floorboards,
applying rigid panels or rolls of insulation and putting every-
thing back together. Considering this, Holloway et al. [8]
developed a small mobile robotic platform which is designed
to make the insulation process quicker and less disruptive.
The present work is based on the autonomous surveying robot
architecture presented in this reference, and it is specifically
developed to adapt to the particularities of this vehicle. The
robot is equipped with all the necessary actuators to move and
spray foam insulation in the underfloor voids. Initially, this
task can be performed successfully in a tele-operated way,
driven by an expert operator who recognizes the environment,
supervises the task and makes decisions about the trajec-
tory of the robot and the ejection of foam insulation [9].
Notwithstanding that, increasing the degree of autonomy of
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the robot would improve the performance and speed while
reducing cost. This is the main motivation of the work.

Mapping and localization are two key abilities that a
mobile robot must have to carry out the task it has been
designed for in a truly autonomous way. The map must be
both complete and compact to make it possible that the robot
performs its task accurately and with a reasonable computa-
tional time. This way, when the robot starts moving through
one a priori unknown environment, it should create a model
of this environment and estimate its position making use of
this model. This is a classical problem in robotics known as
SLAM (Simultaneous Localization And Mapping). It is con-
sidered a fundamental challenge in the robotics field because
estimating the position of the robot requires having an accu-
rate model of the environment and building a model requires
knowing accurately the position of the robot. Therefore, both
the robot trajectory and the model need to be estimated and
updated simultaneously. A variety of SLAM algorithms [10]
have been proposed in the literature, using different kinds
of sensors, either range sensors (such as laser-range scan-
ners [11]), vision sensors (such as monocular cameras [12],
stereo cameras [13] or omnidirectional cameras [14], [15]),
or even a fusion of both kinds [16].

As far as vision based SLAM is concerned, in order to build
a 3D map of the surrounding environment, relevant infor-
mation must be extracted from images. Therefore, methods
based on local appearance, such as FAST, Harris corners,
SIFT or SURF [17], are widely used to detect and/or describe
the visual information. These local features or landmarks are
detected in each frame and then matched along a sequence of
consecutive frames considering their visual descriptors. If this
process is not robust or many outliers are present while the
features are matched, the SLAM algorithm may fail and not
converge to a correct map. This is a problem that typically
arises in unstructured and changing environments, and those
which are prone to present visual aliasing.

More recently, RGB-D (Red, Green, Blue and Depth)
sensors, such as Microsoft Kinect, have received much atten-
tion in a number of works related to mapping, segmentation
and recognition [3], [18]. These sensors provide the robot
with both color and depth information from the environment
and they present a relatively low cost and weight. In this
project, an RGB-D acquisition system is used and a novel
approach has been implemented to solve the localization
problem, using the data captured by this system, when the
robot moves within complex environments which are espe-
cially challenging. This kind of sensor permits combining
and exploiting the synergies of both the metric information
provided by the 3D depth measurements and the complete
and varied information provided by the images.

As pointed out before, this work has been motivated by
the need of estimating the position of the robot in real indoor
environments, such as underfloor voids, where human access
is difficult or even impossible. Consequently, mobile robots
constitute a powerful solution to carry out this kind of task
autonomously. Such environments present some difficulties

that make the localization especially challenging when tradi-
tional state-of-the-art methods are used [19], [20].

Among these complexities, four can be highlighted. First,
underfloor voids tend to be very unstructured and the lack of
recognizable objects in the scene hinders the feature extrac-
tion and matching processes. Second, the terrain tends to be
extremely uneven due to the presence of construction remains
and debris which can even change their position as the robot
moves, modifying the geometry of the environment. Third,
the lack of light makes it difficult to extract robust features
from the scenes and the installation of artificial light sources
may produce severe shadows. Fourth, since the robot ejects
foam insulation onto the bottom of the floor, the appearance
of the environment significantly changes while it moves.
Taking these issues into account, the combination of visual
and depth data may be especially interesting to extract robust
information from the environment and it is the basis of the
approach proposed in this work. As the robot moves through
the initially unknown environment, some point clouds
(or local maps) that contain both kinds of information are
captured and an alignment between them is calculated to
estimate the position of the robot in the environment.

In the present work, the mobile robot is equipped with
an RGB-D sensor that captures data while the robot follows
a trajectory that covers the environment to model, which
is initially unknown, and a novel framework is proposed
to estimate this trajectory. The trajectory is defined as a
set of adjacent poses traversed consecutively by the robot,
and from each pose the robot captures a set of points
(depth information) and a set of images that cover a field of
view of 360 degrees around the robot. In the present work,
the distance between consecutive poses is relatively high,
so the pose estimation algorithm must work well considering
this additional constraint. This is mainly due to the fact
that the data acquisition process is quite time consuming,
as Julia et al. [9] show. We propose an algorithm which
estimates each new poseQwith respect to the previous one P
using a registration approach. However, considering that the
target environments to model in this work are especially
challenging, as pointed out in the previous section, and the
distance between consecutive poses is expected to be rela-
tively high, the preliminary experiments presented a large
number of incorrect matches, what leaded to high localization
errors.

To try to overcome these problems, the visual information
is used initially to achieve robust matches. Firstly, every
image of the first pose is paired up with the most sim-
ilar image in the second pose using a global-appearance
approach. Secondly, SURF features are detected [21], [22],
and matches are searched within the previously paired-up
images. Finally, the matched keypoints are identified into
the two point clouds data, and the transformation matrix
is calculated using only these previously selected points.
An SVD-based estimation of the transformation is carried out
to align these selected points. Therefore, using this transfor-
mation matrix, the second pose of the robot can be estimated
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with respect to the first one. The previous selection of visual
information is expected to provide robust points to match
during the registration process.

The remainder of this paper is organized as follows.
The second sectionmakes a brief review of the state-of-the-art
techniques. After that, the third section presents a detailed
description of the acquisition system. Next, the mapping and
localization algorithms are described in depth in the fourth
section and their results are discussed. Finally, the conclusion
and future research lines are outlined.

II. RELATED WORK
Building a map of an unknown environment autonomously
is a problem which has received a great deal of attention
from the computer vision and robotics research communi-
ties. In this field, the SLAM problem is considered a core
question and many algorithms have been proposed to address
it [23], [24].

When visual information is used to extract the necessary
information from the environment, choosing the optimal
features’ extraction and description algorithms is one of the
most important issues that have an impact upon the conver-
gence of the algorithm [25]. A number of algorithms on this
topic can be found in the literature, such as the work presented
by Gil et al. [22], who performed a comparative evaluation of
different local features detectors and descriptors considering
a variety of circumstances such as changes in the scale, point
of view and lighting conditions. Their experiments concluded
that SURF presents some characteristics that make it a good
choice to solve mapping and localization tasks. Nevertheless,
most of such comparisons and improvements are significantly
relevant to specific data or environment types in such a way
that a specific description method may perform successfully
in some cases but not as properly as expected under different
conditions. Therefore, these conclusions must be taken as
specific suggestions that may not be applicable to solve any
general case.

Due to the emergence of new 3D sensors such as RGB-D
cameras or 3D laser scanners, new possibilities have appeared
in 3D mapping. RGB-D sensors directly provide depth
information and color images and the combination of both
kinds of information permits building point clouds that
describe the environment around the robot in great detail.
Considering these representations of the environment, many
modern approaches apply the ICP (Iterative Closest Point)
algorithm in their works on mapping and localization, such
as those developed by Rusinkiewicz and Levoy [26] or
Segal et al. [27]. In these works, the robot goes through the
environment to map (either using any exploration algorithm
or in a tele-operated way) and captures some sets of point
clouds from several positions. If the initial position is known,
the position of the robot when each new observation is cap-
tured can be estimated by means of an alignment between the
current and the previous point cloud. Once these positions are
known, all the observations or local maps can be combined
to obtain a global map of the environment. Tiar et al. [28]

also present a method based on ICP for local mapping, with
the objective of solving the problem of SLAM. They use the
data provided by a laser system to recognize the environment.
Cho et al. [29] propose the use of ICP matching methods
based on line features and compare it with the classical ICP
method using feature-point based SLAM, achieving better
results.

The ICP algorithm was first proposed in 1990 [30], and
since then, a great number of variants that try to improve
the performance of the algorithm have been published, such
as GICP (Generalized-ICP) [27], 3D-NDT [31] and AICP
(Adaptive ICP) [32], which are widely used in the splicing
and registration processes. On the one hand, the inputs of
ICP are two point clouds captured from two poses (position
and orientation). The 3D position of the points in the clouds
is known (it can be calculated using the depth values of
the RGB-D camera). On the other hand, the output of ICP
is a transformation matrix that defines the relative rota-
tion and translation of the robot between the two poses.
Pomerleau et al. [33], [34], present a comparison between
ICP variants, considering a broad range of input data.
However, when this kind of standard ICP variants are used
in the target environments (building crawls), in which small
overlapping may exist between different areas, the results are
not successful.

Therefore, traditional ICP algorithms tend to perform well
and provide effective alignments when the two point clouds to
compare are relatively similar. However, when significant dif-
ferences between the clouds exist, a good initial estimation is
needed so that the ICP algorithm converges to a proper trans-
formationmatrix. If no estimation is available, traditional ICP
algorithms are prone to fail under these circumstances and
some of the robot poses may not be estimated with enough
accuracy. As a result, the robot is expected to have many
difficulties in creating the map and estimating consecutively
each new position Q with respect to the previous one P.
More recent works try to cope with such difficulties including
some additional constraints in the algorithm. For example,
Feng et al. [35] present an algorithm to detect multiple planes
in 3D point clouds. They construct a graph of planes in
the point cloud, whose nodes and edges represent a group
of points in the plane and their neighbourhood relations,
respectively. Such graph can be used to refine the registration
process. Also, Grant et al. [36] first extract planes from
the point clouds and second point features are detected and
matched within pairs of corresponding planes.

Some research works propose using visual features to com-
plement the data. Khoshelham et al. [37] present an epipolar
search method for accurate transformation of the keypoints
from 2D to the 3D space, achieving more accurate 3D corre-
spondences. Also, Yousif et al. [38] present a framework that
concatenates the estimated camera transformation between
sequential frames obtaining a global camera pose estimated
with respect to a fixed reference frame in environments which
are dark and with poor illumination. Some authors, such as
Kim et al. [39], identify geometric correspondences among
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a series of scans to extract an initial alignment. After that,
they compute the final alignment using the overlapped area,
through a standard ICP algorithm. These methods are tested
in outdoor construction environments, inwhich the visual fea-
tures are much more distinctive that those obtained from the
building crawls. Also, Xin et al. [40] present a SLAM system
for indoor office environments, from a point cloud acquired
with a Kinect sensor. First, depth images and RGB images are
captured by the sensor. Then, feature detection and matching
are carried out, using the ORB algorithm.With these matched
points, and considering the depth information, a PROSAC
(PROgressive Sample Consensus) algorithm is used to get
more accurate inlier matching points in motion transforma-
tion estimation. Our proposal follows a similar philosophy,
but adapting it to the complexities of the target environments,
where better results have been achieved by using SURF fea-
tures, selecting only the most robust matches, and obtaining
their depth information to obtain the final point clouds that
are used to carry out registration. Pandey et al. [41] present
an automatic registration of 3D point clouds using visual
features and depth information. They employ visual features
to establish an initial correspondence between the two poses
(seed transformation). This initial estimation is subsequently
refined by means of the ICP framework, using all the points
of the original point clouds. In the present work, only the
points obtained after matching visual features are used to
obtain the final point clouds, and the registration process is
carried out with the clouds composed by these points, once
the depth information has been included. The present work
presents an additional complexity because a conventional
camera mounted on a rotating turret is used to acquire the
visual information, so it is necessary to perform a previous
pairing-up between the images obtained from both poses,
as the next section describes.

Therefore, in the present paper, we develop a method
to solve the registration problem in building crawl spaces
robustly. The method tries to overcome both issues: (a) the
complexities of underfloor voids and (b) the large distance
between consecutive poses. The main contribution of this
paper is the development of a novel framework to improve
the performance of the registration algorithm, specifically
developed considering the characteristics of the robot [8]
and the acquisition system and acquisition process [9]. The
method performs a drastic reduction of the number of points
in the original clouds, by means of a visual algorithm that
only selects points that lead to robust matches in a set
of images which have been previously paired-up through
their global-appearance. The registration is subsequently per-
formed with these clouds that contain a reduced number of
points.

III. DESCRIPTION OF THE DATA ACQUISITION SYSTEM
The system is composed of a small mobile robotic platform
with a 3D scanner mounted on it. This scanner is constituted
by a monocular camera and a 2D-laser scanner whose beams
are contained in a vertical plane. The camera and the vertical

FIGURE 1. Top and side view of the robotic platform with the 3D-scanner
mounted on its top. It is composed of a monocular camera and a vertical
laser mounted on a turret. The robot frame of reference is depicted.

laser are mounted on a turret, which can rotate 360◦ around
the x-axis of the robot reference system. Fig. 1 shows the
robotic platform with the two sensors, and the robot frame
of reference used along the work.

To acquire complete visual and range information from the
surroundings of the robot, the turret spins a whole revolution
while both sensors capture data. During this process the robot
is motionless at a position P. After that, the depth and color
data captured by the two sensors are assembled into a 3D
textured point cloud MP. The next subsections give more
details about this operation.

A. 3D SCANNER SYSTEM
The turret rotates by means of a stepper motor which has
N even steps, what implies having a resolution equal to
360/N degrees. The vertical laser provides a set of M
range readings, ρi, i = 1, . . . ,M , from a set of angles
θi, i = 1, . . . ,M , measured in the laser reference frame,
which cover a complete field of view of 120◦. These readings
can be expressed as 3D points in the laser reference frame
p[L]i = [ρi cos θi, ρi sin θi, 0]T ∈ R3, i = 1, . . . ,M , where
the superscript [L] indicates that the coordinates of this point
are expressed with respect to the laser reference system. The
maximum number of points that can be captured during a
complete rotation of the turret is equal to M × N . They
constitute a point cloud of distance readings that can be
expressed in the robot frame of reference [R] using eq. 1.

p[R]i,j =R(8j)Tlaserp
[L]
i,j ; i = 1, . . . ,M; j = 1, . . . ,N (1)

where Tlaser is the transformation matrix from the laser frame
of reference to the robot frame of reference (obtained after
a calibration process) and R(8j) is the rotation matrix that
expresses that the turret has rotated an angle 8j around the
x-axis of the robot frame. In this work, the number of steps
of the stepper motor that rotates the turret is N = 2400 steps
per revolution and the number of range readings provided by
the laser sensor isM = 334 range readings per step.
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FIGURE 2. From each position P , Q of the robot, the image acquisition
system provides 37 images captured from a set of evenly distributed
orientations that cover the full circumference.

Simultaneously to the acquisition of the laser data, 37 RGB
images are acquired by the camera while the turret rotates
a complete revolution, with orientations evenly distributed
around the x-axis of the robot frame. The number of 37 RGB
images per pose is chosen to produce an overlapping at
low capture distances of, at least, two thirds of the image
between consecutive captures. A significant overlapping
is necessary so that the pairing-up algorithm described
in section IV-A works correctly despite the shadows pro-
duced by the artificial light sources. These images are
KP = {KP,0,KP,1, . . . ,KP,36} = {KP,l}, l = 0, . . . , 36,
where P refers to the position where the robot is while the
turret rotates (fig. 2). The orientation of the first capture and
the direction in which the turret spins may change between
two different capture positions P and Q. The resolution of
each image is Nx × Ny = 1448 × 1928 pixels. The system
is fully calibrated, in such a way that an RGB value can
be associated to the majority of the points that compose the
point cloud [9]. To carry out this task, first, every point in the
cloud is projected onto the images and subsequently, using
a subpixel mapping process, the color value of the point
is estimated from the information contained in the set of
acquired images. It is important to highlight the fact that after
this process, some of these 3D points of the cloud may not
have any color value associated. This happens when they fall
out of the field of view of the images.

A 3D point p[R]i,j expressed in the robot frame can be pro-
jected to image coordinates u ∈ � ⊂ R2 using eq. 2. To do
that, it is necessary to consider the angle8l that the turret has
rotated when the image KP,l is acquired.

u{i,j},l = π
(
CT−1c RT8l

p[R]i,j

)
(2)

where R8l is the rotation matrix corresponding to the angle
8l the turret has when the image KP,l is acquired, T−1c is
the transformation matrix that defines the calibrated camera
pose with respect to the robot frame of reference, C is the
calibrated camera matrix, and u = π (x) is a function that
performs the dehomogenisation of x ∈ R = (x, y, z) in order
to obtain the image coordinates. The same point p[R]i,j can be
projected onto different image coordinates depending on the
angle 8l .

Additionally, as a part of the localization method, it has
been necessary to implement an algorithm to estimate the
depth of an image pixel. This is a relevant part of our imple-
mentation that constitutes a crucial part of the alignment
algorithm, as described in the next section. Using the method
described in the previous paragraphs, when evaluating the
pixels of a particular image KP,l , there is no directly available
depth information for all of them, since the angular resolution
of the camera is higher than the laser’s. Considering this,
the next steps are proposed to estimate the depth associated
to a specific pixel in the image KP,l :
1) Projecting every point of the cloudMP onto the images

KP,l, l = 0, . . . , 36. Equation 2 can be used to project
all the points and obtain image coordinates. All points
which lie outside the limits of the images or which
are projected from behind the scene are discarded. The
rest of the points are saved on an array with the tuples
{un,l, dn,l}, where dn,l is the z coordinate of the point n
in camera coordinates for image KP,l .

2) Searching for adjacent pixels within a specific radius.
A kd-tree structure is used with this aim.

3) Interpolating depths. The depth value of the target pixel
is calculated bymeans of an interpolation using a Gaus-
sian filter with the neighbouring pixels’ depth.

In this way it is possible to estimate the depth of the pixels
of a specific image. This feature is necessary in the method
proposed in the next section to carry out the alignment.

After this process, the result is a local map of the envi-
ronment, captured from the position P. This map contains
the point cloud MP which includes RGB information and
the set of images KP,l, l = 0, . . . , 36 that include depth
information.

IV. VISUAL ALIGNMENT
In this work, the localization process is addressed as a prob-
lem to align the information captured from two consecu-
tive poses P and Q. This section describes the method we
propose to select robust points from the point clouds MP
and MQ acquired from two consecutive poses P and Q as
the robot goes through the underfloor environment. Previous
research works have presented some proposals that make use
of the Iterative Closest Point (ICP) algorithm to calculate such
alignments [42]. In this work, a novel alternative is proposed,
which estimates this alignment using mainly the information
provided by the images.

Therefore, the objective of this section is to estimate the
transformation matrix TPQ between the poses P and Q. If the
pose P is known, then, once TPQ has been calculated, the
pose Q can be estimated and integrated into the model, along
with the point cloud captured from it.

One possibility to estimate the visual alignment is to find
the transformation TPQ ∈ SE3 that minimizes the error
function:

E(TPQ) =
NPQ∑
m=1

(
(TPQ ·MP(m)−MQ(m)) · EnMP

)2 (3)
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whereMP(m) andMQ(m) represent the m-th corresponding
point of the clouds MP and MQ after ICP. Also, NPQ is the
number of correspondences between both point clouds, and
EnMP is the normal vector to point. This minimization is car-
ried out through an iterative linearisation process [43]. In this
method, the speed and convergence of the algorithm strongly
depend on the reliability of the initial estimation for the
transformation matrix and the robustness of the correspon-
dences. Also the number of points included in the point cloud
has a great influence upon the final result (transformation
matrix TPQ).
Considering the difficulties of building crawl spaces,

as presented in previous sections, we propose introducing
some changes to the general ICP method in this paper.
Preliminary experiments have confirmed the negative impact
of these complexities upon the estimation of the transfor-
mation matrix. Additionally, the large distance between two
consecutive poses P and Q which typically exists in the
trajectories produces many mistakes if all the 3D points are
considered. It leads to excessive errors in the alignment and
high computing time. As an example, fig. 3 shows the result of
aligning two point clouds using the traditional ICP algorithm.
The two clouds were acquired from two consecutive poses in
a real operating environment,MP in green color andMQ in
red color. The alignment is clearly unsuccessful and these are
the typical results obtained when using raw ICP in underfloor
voids and with large distances between consecutive poses.
Taking these facts into account, the proposal we present
tries to obtain a more robust set of matches. This reduced
set of matched points will be used subsequently to estimate
the alignment matrix between both point clouds. The visual
information acquired by the camera is used to obtain robust
matches. Considering this, the method proposed in this paper
to estimate TPQ consists of the following steps:

1) Pairing up the images in the set KP,l with the images
in the set KQ,m, l,m = 0, . . . , 36. For each image
in the first set, the most similar image in the second
set is calculated and paired up with the first image.
It is necessary to take it into account that the turret
performs a uniform and constant rotation of 360◦ while
the images of each set are captured.

2) Matching of visual features. For each of the pairs of
images resulting from the previous step, visual fea-
tures are extracted and described, and correspondences
between these features are established. As a result,
each pair of images provides us with a list of visual
correspondences.

3) Performing the alignment through depth information.
The depth of each corresponding point is calculated
using themethod presented in subsection ‘‘Depth infor-
mation extraction and alignment’’. As a result, two new
point clouds with a significantly reduced number of
points are generated. These point clouds are expected
to provide a robust alignment because they are built
using only points that have proved to have a reliable

FIGURE 3. Sample results of the alignment of two point clouds acquired
from a real operating environment, using raw ICP. The points in the cloud
MP are shown in green color and the points in MQ are shown in red.
(a) Bird’s eye view and (b) lateral view.

correspondence. This step finishes with the estimation
of the transformation matrix TPQ.

The complete algorithm is represented in fig. 4. Also, each
of the three steps is detailed in the following subsections.

A. MATCHING IMAGES THROUGH GLOBAL APPEARANCE
The objective of the first step consists in pairing up the
images captured from the first position P with the images
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FIGURE 4. Schematic overview of the alignment algorithm. Initially, the images of both sets are paired up.
After that, visual features are extracted and matched considering each pair of images. Finally, 3D points are
generated from the matches and the transformation TPQ is obtained.

captured from the second position Q. Once the robot has
moved from P to Q, it is not possible to know with accuracy
which orientation the robot has when the acquisition process
starts from Q. This is due to the fact that the odometry of
the robot is not reliable in this kind of underfloor environ-
ments, since it tends to accumulate large errors. The reason
is that, very often, these environments contain debris on the
floor, which may cause that the robot sleeps or even that
the floor changes as these little objects may be moved. As a
consequence, it is necessary to implement an algorithm that
makes use of the visual information to find out which image

in the set KQ,m is most similar to each image in the set
KP,l, l,m = 0, . . . , 36. To determine this correspondence,
global appearance descriptors have been used to extract
the most relevant information from the images [44]–[46],
to compare them pairwise and to make the pairing process.
In particular, the Fourier Signature (FS), proposed initially
by Menegatti et al. [47] has been used.

Starting from an image with Nx rows and Ny columns,
the Fourier Signature consists in obtaining the
one-dimensional Discrete Fourier Transform (1D-DFT) of
each row. This way, each row x of the original image
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rx = {rx,0, rx,1, rx,2, ..., rx,Ny−1}, x = 0, . . . ,Nx−1 is
transformed into the sequence of complex numbers Fx =
{Fx,0,Fx,1,Fx,2, ...,Fx,Ny−1}, x = 0, . . . ,Nx−1 using
eq. 4 [48]:

Fx,k =
Ny−1∑
n=0

rx,n · e−j(2π/Ny)kn,

k = 0, . . . ,Ny − 1, x = 0, . . . ,Nx − 1 (4)

After transforming the whole image, the result is a complex
matrix F(v, y), where v is the frequency variable, expressed
in cycles/pixel. In this matrix, the most relevant information
is concentrated on the low frequency components. Therefore,
a compression effect is achieved if a reduced number of such
components is retained. Also, the high frequency components
tend to be more corrupted by the possible presence of noise
in the scenes. This way, the last columns of the matrix can be
discarded and only the first Nk columns might be retained,
resulting the matrix F(v, y) ∈ CNx×Nk , which is named
Fourier Signature. F(v, y) can be decomposed into a magni-
tudes matrix A(v, y) and an arguments one. A(v, y) ∈ RNx×Nk

contains non localized information on the global appearance
of the scene, so it can be considered as a global descriptor of
the appearance of the original image. Taking these facts into
account, all the images in the sets KP,l and KQ,m are individu-
ally transformed to obtain their global appearance descriptors
(i.e. the magnitudes matrix of their Fourier Signature),
leading to the sets of matrices AP,l and AQ,m respectively.
Once the descriptors of all the images are available, we can

pair up each image in the set KP,l with one image in the
set KQ,m. To do it, the Euclidean distance between each
descriptor AP,l and all the descriptors in the second set AQ,m
is calculated, and the one which presents a minimum distance
is paired up with AP,l . According to this process, it is possible
that the same image in the set KQ,m is assigned to several
images in the set KP,l . When the match-ups between each
descriptor in the first set and all the descriptors of the second
set is calculated, a sparse 37 × 37 matrix MPQ is obtained.
Fig. 5(a), makes a depiction of a sample pairings matrixMPQ.
In this figure, the horizontal axis represents the number of
image m in the second set KQ,m and the vertical axis rep-
resents the number of image l in the first set KP,l . In this
matrix, the components that indicate a match-up are assigned
unit value.
In the sample case shown in this figure, the image

KP,33 is paired up with the image KQ,0 (since this is the
image in the set KQ,m whose descriptor presents a min-
imum Euclidean distance to the descriptor of the image
KP,33). However, the image KP,36 is paired up with the
image KQ,0 too. Considering the image acquisition system
described in the section III-A, there must be only some offset
in the order or acquisition of the images from both poses.
Also, the direction in which the turret spins can be different.
Therefore, the correct association between two images:

KP,l → KQ,m (5)

FIGURE 5. Matrix of pairings. Figure 5(a) MPQ shows the initial matrix of
pairings between the images in the sets KP,l and KQ,m. Figure 5(b) M′

PQ
shows the final matrix of pairings used to establish the actual pairings.

depends on two variables (s, t). The first one, s = ±1,
indicates the spinning direction (clockwise or counterclock-
wise) and t represents the relative offset between the first
image of each set. This way, it is necessary to estimate these
two values s and t from MPQ. To perform this estimation
in a robust way, once MPQ has been built we compare it
with all the 2 · 37 possible matrices of pairings, considering
s = [−1, 1] and t = [0, 1, . . . , 36]. The algorithm compares
MPQ with all the possible solutions and selects the most
similar one (using the Hadamard product as the criterion to
obtain the degree of similitude between matrices), which is
named M ′PQ. Fig. 5(b) shows the matrix of parings which
is the most similar MPQ (fig. 5(a)) among all the possible
solutions. This method has proved to be a robust and accurate
way to estimate s and t in all the experiments developed. Once
these values are known, the images of both sets are paired up
according to the final matrix of match-upsM ′PQ.

Mathematically, once t and s are known, the pairings can
be calculated through the next expression. The image KP,l is
paired up with the image KQ,m, where:

m =

{
(l + s · t) mod 37, if s = 1
(37− l − s · t) mod 37, if s = −1

(6)

B. MATCHING OF VISUAL FEATURES
Once the images in the sets KP,l and KQ,m have been paired-
up, the next step consists in carrying out the detection,
description and matching of features considering each pair
of images. OpenCV is used with these aims [49].

First of all, the visual features of each image are
detected and described by means of the Speeded Up Robust
Features (SURF) algorithm [17] because the preliminary
experiments proved its robustness in the target environ-
ments. To tune the SURF detector, a constant value on the
Hessian matrix has been employed. During the extraction,
a self-adjusting threshold is used which tries to keep the
number of detected keypoints roughly constant, because a
high number of features may lead to too many false positives
during the matching process.

Finally, once the visual features have been obtained and
described, a matching process is performed. For each pair of
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images resulting from the previous step (subsection IV-A),
the SURF visual features are matched. This process is not
very demanding even when artificial lights produce shadows
in the images, because this search for potential matches is
carried out between the images that have been previously
paired-up. As a result, a set of matched visual features is
obtained, for each pair of images. Two sample images cap-
tured from two consecutive poses are shown in fig. 6. These
figures have been previously paired-up using the algorithm of
subsection IV-A and the matched keypoints are also shown.

FIGURE 6. SURF keypoints extraction and matching between two
previously paired-up images.

Considering that the images acquired from each robot pose
have a high degree of overlapping among them, to create
a robust and non-overlapping point cloud from each pose,
the process described in this subsection is carried out using
just 6 pairs of equally spaced images (KP,l·i,KQ,m·i) with
i = 1...6. This way, we avoid adding redundant information
(see fig. 4).

C. DEPTH INFORMATION EXTRACTION AND ALIGNMENT
Once the matches between the visual features (keypoints) of
each pair of images have been obtained, in the third step,
the 3D information of each keypoint is recovered. To do it,
both the image in which the keypoint is present and the initial
point cloud are considered. Once the 3D coordinates of all
the matched keypoints are available, two new point clouds
are created, one corresponding to the pose P and the other
to the pose Q. These two point clouds are further processed
to remove from them these points that belong to the ceiling
and to the floor. It is important to highlight the fact that the
ceiling may undergo some changes as the robot is ejecting
foam isolation during the operation. Also, some changes may
happen on the floor, due to the movement of existing debris
while the robot moves on it. Therefore, the points in these two
planes are expected to contain some inconsistencies and this
is the reason to remove them. The final point clouds of the
poses P and Q are named M′

P and M′
Q respectively. These

point clouds have a significantly lower number of points
compared to the original cloudsMP andMQ.
Using the Point Cloud Library (PCL) [30] with the two

new point clouds M′
P, M

′
Q, the transformation matrix that

represents the alignment TPQ (relative rotation and transla-
tion of the pose Q with respect to P) can be obtained. This
algorithm iteratively examines some possible transformations
to minimize the distance from the target point cloud M′

Q to

the reference one M′
P, dealing with the possible presence of

outliers, until it finds an optimal result. As the number of
points in each cloud is relatively small, the necessary time
to reach a solution is reduced.

The benefit of the proposed method is twofold. First, since
the keypoints have been previously selected from similar
images, the process ensures that the subsequent correspon-
dences are more robust and reliable. This feature is specially
relevant in challenging environments, such as building crawl
spaces, which are the target environments in this work.
Second, the number of correspondences used to estimate the
alignment matrix is substantially lower, what improves the
calculation time. The next section presents the experimental
evaluation that we have carried out to prove that the proposed
algorithm is robust and relatively quick, comparing to some
benchmark methods.

V. EVALUATION
This section presents the results of the alignment framework
described in the previous sections. Three different real envi-
ronments have been used to evaluate the performance of the
algorithm. All the experiments have been carried out on
a 2 × 2.66 GHz Dual-Core Intel Xeon CPU with 10 GB of
memory. The acquisition of these three data-sets has been
made with the data acquisition system detailed in
section III-A, whichwasmounted on the four wheeled robotic
platform designed by Holloway et al, as described in [8].

All the data have been captured within the three environ-
ments under real operating conditions. All of them are under-
floor voids and they must be modeled to make it possible
a subsequent foam insulation process. They present some
features which are representative of the type of environments
in which this robot has to move. On the one hand, the environ-
ment 1 is especially challenging because of the poor lighting
conditions and the lack of objects in the scenes, what makes
it especially prone to visual aliasing and complicates the
detection and correct matching of visual features. Within this
environment, 9 locations are considered and data are captured
from these locations. As a result, 9 point clouds and 333 RGB
images are available tomodel the environment (37 images per
position). On the other hand, the environments 2 and 3 cover
a wider area, whose approximate size is 2.5 × 2.5 meters.
Environment 2 contains 703 RGB images and 19 point clouds
acquired from 19 different poses and environment 3 contains
777 RGB images and 21 point clouds acquired from 21
different poses.

This section is structured in two subsections. The algorithm
to pair-up images using their global appearance is tested in
the first subsection and the performance of the alignment
algorithm is assessed in the second subsection.

A. EVALUATION OF THE ALGORITHM TO PAIR-UP THE
IMAGES USING GLOBAL APPEARANCE
To start with, every pair of consecutive locations in each
data set are considered as poses P and Q and the visual
alignment algorithm is run for every case, in such a way that
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TABLE 1. Results of the image pairing-up process.

the coordinates of the position Q in the ground plane are
estimated with respect to the coordinates of the position P.
First, the results of the algorithm to pair-up the images cap-
tured from each pose are shown. Table 1 shows the values
of the variables t and s, obtained after running the algorithm
presented in section IV-A.
Let’s suppose that the image KP,l1 has been matched up

with the image KQ,m1 . Taking the acquisition process into
account, the results are considered valid if the orientation
of the turret when the image KP,l1 was acquired is included
between the orientations of the imagesKQ,m1−1 andKQ,m1+1.

Considering this criterion, all the pairings provided by
the algorithm turn out to be correct, despite the challenging
properties of the three environments. An example of this
pairing-up process can be seen in fig. 7 for the environment 2,
positions P = 9, Q = 10. The result of the image pairing
process is t = 36, s = 1. For example, this means that
the image KP,l1 = K9,18 is matched-up with the image
KQ,m1 = K10,17 where m1 = (l1 + s · t) mod 37 (eq. 6).
Fig. 7(a) shows the image K9,18, and the images K10,16,
K10,17 and K10,18 are show on figures 7(b), 7(c) and 7(d)
respectively. These figures show that the pairing provided by

FIGURE 7. Results of an image pairing-up process. Figure 7(a) is the image 18 acquired from location (pose) P = 9 (named image K9,18).
Figures 7(b), 7(c) and 7(d) are the images 16, 17 and 18 acquired from pose Q = 10 (named, respectively, K10,16, K10,17 and K10,18).
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FIGURE 8. Results of the proposed alignment method in environment 1. The position of the robot obtained
with the proposed algorithm and the ground truth are shown, separately, in the horizontal (yz) plane and in
the vertical (xy) plane.

FIGURE 9. Results of the proposed alignment method in environment 2. The position of the robot obtained with the proposed algorithm and
the ground truth are shown, separately, in the horizontal (yz) plane and in the vertical (xy) plane.

the algorithm is successful, since the orientation of the image
K9,18 is between the orientations of images K10,16 and K10,18.
The experiments have shown that the average necessary

time to pair up the images of pose P with the images of pose Q
is equal to 90 milliseconds.

B. EVALUATION OF THE ALIGNMENT ALGORITHM
This subsection assesses the performance of the alignment
algorithm presented in subsection IV-C. For every pair of con-
secutive locationsP,Q, the second pose can be estimatedwith
respect to the first one by using the transformation matrix

calculated with the proposed alignment algorithm TPQ.
After considering each par of consecutive locations and
the three experimental environments, the results are shown
in figures 8, 9 and 10. In these figures, both the position of
the robot calculated with the algorithm and the ground truth
are represented. For clarity purposes, the position of the robot
in the horizontal (yz) plane and in the vertical (xy) plane is
shown separately.

Fig. 11 represents the localization error at each position
of the robot (millimeters), considering each environment
separately. The environments 1 shows relatively accurate
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FIGURE 10. Results of the proposed alignment method in environment 3. The position of the robot obtained with the
proposed algorithm and the ground truth are shown, separately, in the horizontal (yz) plane and in the vertical (xy) plane.

results with error values below 4.5 mm, comparing to the
ground truth (fig. 11(a)). As far as the environment 2 is
concerned, it presents slightly less accurate results, com-
pared to environment 1, with a maximum global error around
25 mm in the pose 12 (fig. 11(b)). Finally, the results in
environment 3 show that the algorithm produces good results
(global error lower than 20 mm), except for the two last
poses (19 and 20), where the method fails (figures 11(c)
and 11(d)). Globally, considering all the results, the method
provides relatively accurate position estimations, and it is not
successful only in two cases.

The results confirm that even in these especially challeng-
ing underfloor environments, the proposed approach presents
a relatively accurate behaviour to estimate the alignment
between two consecutive poses and thus estimate the location
of the robot from an initial pose.

Finally, table 2 shows some relevant pieces of informa-
tion about each environment (Env1, Env2 and Env3). The
parameter #Features specifies the total number of visual
keypoints matched between images. The second parameter,
#Correspondences, indicates the number of points used by
the system to do the alignment and estimate the transfor-
mation matrix once outliers have been removed. Finally,
%Correspondences is the ratio between the two previous
parameters.

In case of obtaining an unsuccessful alignment, it would
be very important to have any indicator of this circumstance,
as it would permit running an additional algorithm to try
to recalculate the unsuccessfully aligned pose. The results
show that the parameter %Correspondences permits knowing
if the alignment is correct or not. Table 2 shows that the
estimation of pose 19 with respect to pose 18 in environment
3 presents 20% correspondences, which is the lowest value
of all the experiments. This is the pose where the algorithm
starts to fail. In all the other cases, this percentage is 42% or
higher.

The experiments show that a threshold can be set
around 40%, in such a way that if this indicator is over this
threshold, the result can be considered correct. Otherwise,
the alignmentmust be considered unsuccessful and thematrix
TPQ must not be used to estimate the second pose of the
robot. This way, subsequent poses should not be aligned with
respect to this unsuccessful one to avoid spreading this error.

This part of the process (searching the correspondences,
obtaining the depth of these correspondences and aligning
two point clouds) has an average computing time of 760 mil-
liseconds. Considering it together with the necessary time to
pair-up the images, the average total time to obtain the trans-
formation matrix between two consecutive poses is equal to
850 milliseconds.
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FIGURE 11. Error obtained along every axis for every pose in each environment and total error, expressed in mm. Fig. 11(a):
environment 1; fig. 11(b): environment 2 and fig. 11(c): environment 3. Fig. 11(d) shows again the results obtained in environment
3 but removing the two last poses (which have proved to be unsuccessfully estimated).

To conclude the experimental section, we have run some
benchmark methods, with the purpose of completing the
experiments, for comparative purposes, and to prove the
validity of the proposed algorithm in underfloor voids.
We use three algorithms in this section: traditional ICP, CPD

(Coherent Drift Point) [50] and NDT (Normal-Distributions
Transform) [51]. On the one hand, CPD is a probabilistic reg-
istration algorithm designed for estimation of non-linear and
non-rigid transformations. It is a global registration method
that can be used to obtain an initial transformation estimate.
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TABLE 2. Results of the alignment using the previously selected 3D points.

FIGURE 12. Results of the benchmark experiment 1. Total error obtained for every pose in each environment, expressed in mm. Fig. 12(a):
environment 1; fig. 12(b): environment 2 and fig. 12(c): environment 3.

On the other hand, NDT is a laser scan matching algorithm
that does not rely on specific correspondences between points
so it is expected to be robust in presence of outliers and

missing points. It is a local registration method that relies
on an initial estimation of the transformation matrix. Since
traditional ICP is also a local registration approach that relies
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FIGURE 13. Results of the benchmark experiment 2. Total error obtained for every pose in each environment, expressed in mm. Fig. 13(a):
environment 1; fig. 13(b): environment 2 and fig. 13(c): environment 3.

on an initial transform estimate, the benchmark experiments
have been structured as follows:

1) Benchmark experiment 1. A traditional ICP method
is run, considering different minimization metrics,
downsampling and removal of some planes, to try to
optimize the performance. Specifically, four methods
are tested:

a) Method 1: Traditional ICP, with minimization
metric ’point to point’. All the points in the orig-
inal clouds are considered.

b) Method 2: Traditional ICP, with minimization
metric ’point to plane’. All the points in the orig-
inal clouds are considered.

c) Method 3: The point clouds are previously down-
sampled, and 80% of points are retained. After
that, traditional ICP is run, with minimization
metric ’point to point’.

d) Method 4: The point clouds are previously down-
sampled, retaining 80% of points. Subsequently,
the points that belong to the ceiling and floor
planes are removed (only the points belonging to

the walls are kept, which are expected to lead to
the most robust matches). After that, the result-
ing clouds are aligned using traditional ICP, with
minimization metric ’point to point’.

The results of the benchmark experiment 1 are shown
in fig. 12. This figure represents the total localiza-
tion error at each position of the robot (millimeters),
considering each environment separately. In general
terms, the method 4 tends to present relatively good
results, comparing to the other three methods. In the
environment 1, the error of the method 1 is around
10 mm. until pose 6, in which the error takes its maxi-
mum value, around 85 mm. In environments 2 and 3,
the method 4 also presents relatively good results
until the pose 11, from which the error substantially
increases. In this benchmark experiment, the average
time to complete the calculation of each pose is equal
to 2.5 sec.

2) Benchmark experiment 2. This experiment consists in
using, first, the CPD algorithm to obtain an initial
estimate of the transformation between consecutive
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FIGURE 14. Results of the benchmark experiment 3. Total error obtained for every pose in each environment, expressed in mm. Fig. 14(a):
environment 1; fig. 14(b): environment 2 and fig. 14(c): environment 3.

poses and, second, the ICP algorithm to obtain the final
estimate. ICP is configured according to method 4 in
benchmark experiment 1, since it presented the best
results. Several configurations are tested when using
CPD to try to optimize the performance. Specifically,
four methods are tested:

a) Method 1: The point clouds are previously down-
sampled, retaining 80% of the points.

b) Method 2: The point clouds are previously down-
sampled, retaining 80% of the points and the
clouds are subsequently voxelized.

c) Method 3: It consists of the same steps than
method 2 but, additionally, the clouds are
denoised to remove outliers.

d) Method 4: It consists of the same steps than
method 3 but, additionally, the points that belong
to the ceiling and floor planes are removed (only
the points belonging to the walls are kept).

The results of the benchmark experiment 2 are shown
in fig. 13. In general terms, the results present the
same tendencies than the benchmark experiment 1.

Using CPT to obtain an initial estimate of the trans-
formation between consecutive poses does not improve
substantially the results comparing to the use of only
ICP. Only slight improvements can be appreciated in
environments 1 and 3. In this benchmark experiment,
the average time to complete the calculation of each
pose is equal to 7.6 sec.

3) Benchmark experiment 3. This experiment consists in
using, first, the CPD algorithm to obtain an initial esti-
mate of the transformation between consecutive poses
and, second, the NDT algorithm to obtain the final
estimate. To try to optimize the performance of the
algorithm, the same configurations than in benchmark
experiment 2 are tested.
The results of the benchmark experiment 3 are shown
in fig. 14. Again, in general terms, the results present
the same tendencies than the previous benchmark
experiments. Using NDT to refine the estimate of the
transformation matrix is not advantageous in this kind
of building crawl spaces. In this benchmark experi-
ment, the average time to complete the calculation of
each pose is equal to 7.1 sec.
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Studying together the results of the proposed method
(fig. 11) and the results of the benchmark methods
(figs. 12, 13 and 14), the proposed method clearly improves
the results of the benchmark methods and is able to cope with
the complexities of building crawl spaces.

VI. CONCLUSIONS
In this paper, a novel approach has been presented to solve the
localization problem of a mobile robot which moves through
underfloor voids. To solve this problem, the robot is equipped
with an RGB-D sensor. Our approach extracts visual key-
points from sets of color images and matches them. The point
clouds to align are built using only these matches, which con-
stitute robust points because they have a reliable correspon-
dence. Taking these point clouds as input, we use the PCL
library to robustly estimate the transformations between two
consecutive poses of the mobile robot. Finally, the approach
is evaluated quantitatively using different RGB-D datasets
acquired in real underfloor environments. The experiments
in these environments show that the framework presents
successful results in position estimation, comparing to some
benchmark methods based on ICP, CPD and NDT.

During the evaluation of our system, considering globally
all the experiments, two poses have not been properly aligned
mainly owing to the long distance between the capture posi-
tions and the challenging properties of the operating environ-
ments. Since we have proved that it is possible to detect when
such unsuccessful alignments occur, as a future research line,
it would be interesting to implement an algorithm to recover
these locations, for example by comparing them with other
poses correctly located, either previously or subsequently.
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