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ABSTRACT In this paper, the consensus and optimization of a multiagent system in a distributed optimiza-
tion problemwith bounded constraint is discussed under the general step-size, which is square nonsummable.
Firstly, a distributed projective subgradient algorithm is designed for time-varying directed communication
topologies under the event-triggered mechanism. Secondly, the consensus and optimization of the system
state and the ergodic average sequence are discussed. Finally, the effectiveness of the design algorithm and
the correctness of the theoretical results is verified by a simulation example.

INDEX TERMS Multiagent system, distributed optimization, event-triggered, general step-size,
time-varying switching digraph.

I. INTRODUCTION
With the emergence of complex systems and large-scale net-
works, distributed optimization problems have received great
attention in recent years, and some achievements in theory
and application have been obtained, like consensus prob-
lem [1]–[20], [38], [39], containment control problems, track-
ing control problem, optimization problems [16]–[37] and so
on. Meantime, the optimization problem is widely applied to
all aspects of life. In medical, disease diagnosis is based on a
large number of sample data to establish a corresponding opti-
mization model according to human special medical knowl-
edge, and then obtain the types of disease diagnosis. In the
natural world, collective behavior is pretty common, such as
bird migration, shoal effect, ant foraging, and bee nesting.
In the behavior of predation, individual action is often blind
and has high risk and low benefit. On the contrary, neighbor-
ing individuals can effectively avoid danger by transmitting
danger signals in collective behavior. Meanwhile, collective
behavior can maximize group benefits. Each individual in the
biological cluster can make independent decisions and can
be regarded as an agent. The system in which individuals
communicate with each other and coordinate to accomplish
tasks together is called the multiagent system.

For the consensus-based multiagent system distributed
optimization problems, agents by resource sharing,
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coordination control and distributed executing cooperatively
achieve consensus and optimization of states. Hence, the con-
sensus problem is the basic problem of optimization. The
consensus problem was earlier raised in [1]. Then the con-
sensus problem was discussed in practical engineering appli-
cation about self-driven in [2] and theoretical explanation
was given in [3]. Then distributed optimization problems
were studied systematically by [4], [5]. Later the consensus
was discussed in the perspective of hybrid systems [6] and
game theory [7], [8]. The bipartite consensus is discussed
in [9] which is based on the relationship of cooperation or
antagonistic in the networks.

A. GENERAL STEP-SIZE
It should be noted that the study of consensus and opti-
mization is normally discussed on the step-size which is
square summable. However, the algorithm with general
step-size which is square nonsummable makes the dis-
tributed optimization problem more challenging. Along with
the distributed subgradient algorithm of multiagent system
in [4], [5], the optimization problem with general step-size
was further discussed in [10]–[12]. Under time-varying
directed graphs, the relationship between the ergodic aver-
age sequence and optimization value was provided in [10]
with general step-size under unconstrained. The consensus
and optimization of the ergodic average sequence was inves-
tigated in [11] under digraph topology and unconstrained
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with general step-size. Furthermore, the discrete-time dis-
tributed optimization problems with general step-size are
discussed under unconstrained and bounded constrained
respectively in [12].

B. COMMUNICATION TOPOLOGY GRAPH
The information transfer between agents is established on
the communication topology. A bidirectional communication
topology is an undirected graph. If the channel is attacked
by the network, then the communication topology becomes
a one-way topology, i.e. digraph topology. In the mean-
time, the asymmetry of the adjacency matrix increases the
difficulties of the problems. When communication topol-
ogy is Markov stochastic, then the communication between
the agent and the neighbor depends on the agent’s current
state [13]. In practical communication topology, packet loss
and network attack lead to the re-transmission of informa-
tion and the asynchronous clock between agents, so the
communication delay will inevitably occur, which discussed
in [14], [15].

C. GENERAL CONSTRAINT
The feasible set in distributed convex optimization problem
can be divided into unconstrained problems [16], [17], [35]
and constrained problems [18]–[30]. And the constraint set
which contains bounded constraint, equality constraint, and
inequality constraint is normally called general constraint
set. The discrete-time distributed convex optimization with
general constraint is studied in [19]. Besides, the continuous-
time distributed convex optimization problems with general
constraint is considered in [20]–[22].Meanwhile, this method
can directly apply to neurodynamic networks [23], [24],
which regard each nerve as an agent. In addition, the con-
straint of the feasible set can be discussed on the game
problems [25]–[30], under the bounded constraint [25]–[28],
equality constraint [29], and general constraint [30].

D. EVENT-TRIGGER MECHANISM
The general time-triggered subgradient methods are stud-
ied in [4]–[30], however, they consume a great number of
resources for the agent needs to communicate with its neigh-
bors at every communication moment. In order to reduces
the burden of communication network, event-triggered con-
trol [31]–[34], [36]–[39] has be widely studied in recent
few years. The key to the event-triggered mechanism is
to reduce the unnecessary information transmission among
agents which can effectively improve the running speed and
reduce the communication burden. Event-based distributed
optimization of the multiagent system with general undi-
rected network and strong requirement of step-size be focused
on [32]. And the threshold function is assumed to be pro-
portional to the step-size in [32]. Then, the threshold func-
tion of the trigger condition is changed to independent with
the step-size [33]. The event-based distributed consensus of
the multiagent system with time-varying digraph network is

explored in [34], however, the constraint case and general
step-size are not considered.

Motivated by these researches [12] and [32]–[34],
a discrete-time distributed subgradient event-triggered
method with general step-size is proposed. It is verified
that the condition of general step-size, square summable,
is not necessary under the time-varying switching digraph.
Meanwhile, the system state and ergodic average sequence
can asymptotically converge to the minimizer of the global
objective function.

More precisely, the contribution of this paper mainly
includes the following three aspects.

1) A discrete-time distributed event-triggered subgradient
algorithm with more general step-size is explored, which
relaxes the requirement of step-size.

2) Under the event-triggered mechanism, the ergodic aver-
age sequence with general step-size is established and its con-
sensus and optimization under time-varying digraph network
are shown. Meanwhile, the convergence rate of O( ln(L+1)√

L
) is

obtained.
3) When the threshold function is large, the general

step-sizes of the update algorithm converge quickly, the con-
vergence precision is high, and the trigger times are few.

The rest of this paper is organized as follows.
Section 2 introduces some preliminaries, formulate the
distributed convex optimization problem, and give the
event-triggered subgradient projection algorithm. Then,
the main results of consensus and the convergence about
the system state and ergodic average sequence are obtained
in section 3. Furthermore, the simulation result is given in
section 4, and we conclude this paper in section 5.
Notations: Use N+, R, Rn, Rn×n as the set of positive inte-

ger numbers, the set of real numbers, the set of n-dimensional
Euclidean space, and the set of n×n-dimensional real matrix,
respectively. ‖ · ‖ represents the Euclidean vector norm.
IN ∈RN×N is a identity matrix. < x, y >= xT y.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. ALGEBRAIC GRAPH THEORY
A N th order digraph is denoted by G(V,E,A), which com-
poses of a vertex set V = {1, 2, . . . ,N }, an edge set E ⊆
V × V , and a weight adjacency matrix A = [aij]N×N ,
respectively. Let aij denotes the edge from vertex i to vertex j,
and aij > 0 means that there exist a path from vertex i to
vertex j. Supposing that there didn’t exist repeated edges or
self-loops, i.e., aii = 0, ∀i ∈ V . And the vertex (i, j) ∈ E
represents a directed edge from vertex i to vertex j. We denote
the in-neighbors and out-neighbors of vertex i by Nin(i) =
{j ∈ V|(j, i) ∈ E} and Nout (i) = {j ∈ V|(i, j) ∈ E},
respectively. The Laplacian matrix L = [uij]N×N of digraph
G(V,E,A) is defined by uij = −aij, i 6= j; uii =

∑N
j=1,j 6=i aij,

∀i, j ∈ V , which satisfies
∑N

j=1 uij = 0. The in-degree and
out-degree of agent i can be defined by the Laplacian matrix
L as din(i) = −

∑N
j=1,j 6=i uji and dout (i) = uii.
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Definition 1: A digraph G is balanced, if it satisfies
din(i) = dout (i), ∀i ∈ V .

B. CONVEX OPTIMIZATION
A set C ⊂ Rn is called convex if for all x, y ∈ C, it contains
all points ηx + (1 − η)y ∈ C,∀η ∈ (0, 1). A function f is
convex if and only if for all x and y in its domain and for all
0 ≤ η ≤ 1 we have f (ηx + (1− η)y) ≤ ηf (x)+ (1− η)f (y).
If the objective function f is a convex function and the con-
straint set is a convex set, then the optimization problem is a
convex optimization. A vector g(x) is said to be a subgradient
of f : Rn

→ R at x ∈ domf = {x ∈ Rn
|f (x) < ∞} if it

satisfies

f (z) ≥ f (x)+ gT (x)(z− x), z ∈ Rn. (1)

Denote PX [z] = argmin
x∈X
‖z−x‖, which signifies a projec-

tion operator of a vector z on a nonempty and closed convex
set X . The projection operator has the following property:

‖PX [u]− PX [v]‖ ≤ ‖u− v‖, ∀u, v ∈ Rn. (2)

‖PX [u]− v‖2 ≤ ‖u− v‖2 − ‖PX [u]− u‖2,

∀v ∈ X . (3)

< PX (u)− u, v− PX (u) > ≥ 0, u ∈ Rn, v ∈ X . (4)

C. PROBLEM FORMULATION
For a time-varying switching direct topology graph
G(V,E,A) that contains N agents, we regard each agent
as a node normally. The element of the weight adjacency
matrix A satisfied aij > 0 means that the information can
be transferred from agent i to agent j. In this subsection,
we consider the following distributed minimization problem
under the network G(V,E,A):

minimize f (x) =
N∑
i=1

fi(x),

subject to x ∈ X =
N⋂
i=1

Xi, (5)

where x is a global decision vector of a multiagent system.
The local objection function fi: Rn

→ R, i ∈ V , is only
known by the ith agent, and X ,Xi ∈ Rn, i ∈ V , is common
objection constraint and local objection constraint, respec-
tively. In general, the step-size is considered to satisfy the
condition of α(l) > 0, liml→∞ α(l) = 0,

∑
∞

l=0 α(l) = ∞,∑
∞

l=0 α
2(l) < ∞, which can effectively ensure the global

decision vector converges to the optimal point in [4], [5].
In this paper, we relax the demand of step-size to general step
size which is not square summable, i.e.,

∑
∞

l=0 α
2(l) = ∞.

And compare the effect of general step-size on convergence
rate.
Assumption 1: The step-size α(l) satisfies α(l) > 0,

liml→∞ α(l) = 0,
∑
∞

l=0 α(l) = ∞, and
∑
∞

l=0 α
2(l) = ∞.

Remark 1: In this paper, we consider the general step-size
with the form of α(l) = 1

√
l+1

, which satisfies positive,
vanishing, and not square summable in Assumption 1.

Assumption 2: The constraint set is nonempty, convex and
compact, i.e., for all x ∈ X there exists a positive constant Cx
such that ‖x‖ ≤ Cx .
Assumption 3: The problem (5) exists a nonempty

bounded optimal set X ∗.
Assumption 4: There exist an infinite sequence {l1, l2, . . .,

lm, . . .}, such that the union graph
⋃lm+1−1

l=lm G(l) is strongly
connected if 0 < lm+1 − lm ≤ B, B ∈ N+.

D. EVENT-TRIGGERED SUBGRADIENT
PROJECTION ALGORITHM
The event-triggered mechanism is studied in this paper,
in which each agent executes the update of states in the
way of distributed. Consider the event-triggered subgradi-
ent projection algorithm with the constraint on time-varying
switching digraph, the algorithm we discussed is inspired
by [32]–[34]. The square summable step-size in the algorithm
of [34] is modified to the general step-size under the bounded
constraint. The algorithm is shown as follows:

zi(l) = xi(l)+ h
N∑
j=1

aij(l)(̃xji(l)−x̃ij(l))−α(l)gi(l),

xi(l + 1) = PXi [zi(l)], (6)

where xi(l) ∈ Rn is the state of ith agent at time l; scalar h
is a positive control gain which play a role in converting
the weight adjacency matrix of digraph balanced to the dou-
bly stochastic matrix; vector gi(l) is a subgradient of local
objective function fi(x). The nonnegative scalar elements
aij(l) of weight adjacency matrix A(l) describes each agent
communication weight in time-varying digraph, and have an
upper bound M , i.e., M = supl∈N aij(l), in which M > 1
is permitted, ∀i, j ∈ V . The vector zi(l) is used to store an
intermediate value in a projection calculation. Triggered state
x̃ij(l) describes the state that jth agent receive form ith agent
at triggered time l, which is denoted as follows:

x̃ij(l) =
{

xi(l), if l ∈ κij, (7)

x̃ij(l − 1), otherwise. (8)

where κij = {l0ij, l
1
ij, . . . , l

n
ij, . . .}, n ∈ N+, is the triggered time

set, where nth triggered time of ith agent send information to
jth agent is denoted as lnij.
Remark 2: Based on the definition of x̃ij(l), it is worth to

notice that x̃ij(l) ∈ X . For x̃ij(l) = xi(l), if l ∈ κij; else
x̃ij(l) = x̃ij(l − 1) = x̃ij(l − 2) = · · · = x̃ij(l) = xi(l) ,
where l ∈ κij is the biggest triggered time of ith agent.
Assumption 5: The objective function fi(x) is continuous

and differentiable. The subgradient set of local objective
function fi(x) is bounded, i.e., for all x ∈ X , there exist a
positive constant Cg such that ‖gi(x)‖ ≤ Cg.
Assumption 6: For all i ∈ V, j ∈ Nout (i), the thresh-

old value 0 < Eij(l) ≤ E(l) satisfies positive, vanishing,
and square summable, i.e., E(l) > 0, liml→∞ E(l) = 0,∑
∞

l=0 E(l) = ∞ and
∑
∞

l=0 E
2(l) <∞.
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Remark 3: The threshold function with the form of
E(l) = c

l+1 is considered in this paper, where c is a positive
constant and satisfies Assumption 6.

Denote measurement error of triggered time as eij(l) ∈ Rn,
which satisfies

eij(l) = x̃ij(l)− xi(l). (9)

Next, we can denote the triggering function and
nth trigger-time as

Hij(l) = ‖eij(l)‖ − Eij(l), (10)

lnij = inf{l|l > ln−1ij ,Hij(l) ≥ 0}. (11)

Hence, the agent updates their state if the triggering func-
tion is nonnegative, and for each time, all agents satisfy the
following condition under the event-triggered mechanism at
time l.

‖eij(l)‖ ≤ Eij(l) < E(l). (12)

In the event-triggered mechanism, the communication fre-
quency is decided by each agent, i.e., when to communicate
with their neighbors under network link lie on the agent
threshold function Eij(l).
Let 8i(l) ∈ Rn be the perturbation term at time l caused

by the projection operator.

8i(l) = PX [zi(l)]− zi(l). (13)

By using the projection perturbation term 8i(l), we can
remove the projection operator and simplify the calculation.
Then, using the projection perturbation term 8i(l) and mea-
sure error eij(l), the event-triggered algorithm (6) can be
rewritten as

xi(l + 1) = zi(l)+8i(l)

= xi(l)+ h
N∑
j=1

aij(l)(xj(l)− xi(l))

+ h
N∑
j=1

aij(l)(eji(l)− eij(l))− α(l)gi(l)+8i(l)

= (1− huii(l))xi(l)− h
N∑

j=1,j 6=i

uij(l)xj(l)

+ êi − α(l)gi(l)+8i(l)

=

N∑
j=1

aij(l)xj(l)+ êi(l)− α(l)gi(l)+8i(l), (14)

where êi(l)=h
∑N

j=1 aij(l)(eji(l)−eij(l))≤ME(l),M=2hNM ,
aii(l)=1−huii(l), aij(l)= −huij(l). According to the definition
of balanced digraph graph, it is easy to see that

∑N
j=1 aij(l)=∑N

j=1 aji(l)=1. In order to ensure that the elements of the new
doubly stochastic weight adjacencymatrixA are nonnegative,
we require that the control gain h satisfies aii(l) = 1 −
huii(l) > 0, otherwise there may exist negative elements in
the weight adjacency matrix A.

Therefore, we obtain that

xi(l + 1) = vi(l)+ εi(l), (15)

where the weight average term of ith agent at time l is denoted
as vi(l) =

∑N
j=1 aij(l)xj(l), which playing a role in enabling

all agents to reach a consensus. And εi(l) = êi − α(l)gi(l)+
8i(l) is the consensus error term.

Denote y(l) = 1
N

∑N
i=1 xi(l) as the state average sequence.

By equality (14), it is easy to see that the state average
sequence satisfies

y(l + 1) = y(l)−
α(l)
N

N∑
i=1

gi(l)+
1
N

N∑
i=1

(̂ei(l)+8i(l)).

(16)

Besides, the ergodic average sequence is utilized to estab-
lish the convergence rate of event-triggered mechanism,
which defined as

x̂i(L) =

L∑
l=0
α(l)xi(l)

L∑
l=0
α(l)

, ŷ(L) =

L∑
l=0
α(l)y(l)

L∑
l=0
α(l)

, (17)

where x̂i(L) and ŷ(L) ∈ Rn.
Assumption 7: There exist a constant µ with 0 < µ < 1,
∀i, j ∈ V = {1, 2, . . . ,N }, ∀l ∈ N, such that the elements of
weight matrix A satisfies

(a) aii(l) > µ;

(b) aij(l) > µ, if aij(l) > µ.
Then the state transition matrix 9(l, s) is introduced as

follows:

9(l, s) = A(l)A(l − 1) · · ·A(s), ∀l, s ∈ N+, l ≥ s, (18)

where the state transition matrix 9(l, s) satisfies 9(l, l) =
A(l), 9(l, l + 1) = IN , ∀l ∈ N+. Mark the jth column
of the state transition matrix 9(l, s) and the element in ith
row and jth column of the state transition matrix 9(l, s)
as vector [9(l, s)]j and scalar [9(l, s)]ij, respectively. The
relevant property of the state transition matrix is given as the
following.
Lemma 1: (see [5]) Let Assumption 4, 7 hold in the bal-

anced digraph, then the element of the state transition matrix
[9(l, s)]ij converge to scalar 1

N , ∀i, j ∈ V , and

|[9(l, s)]ij −
1
N
| ≤ 2

1+ µ−B0

1− µB0
(1− µB0 )(l−s)/B0 , (19)

where µ is a lower bound of Assumption 7, N is the number
of agents, B0 = (N − 1)B, and B is the intercommunication
interval bound of Assumption 4.
Lemma 2: (see [5]) Let 0 < λ < 1 and let {γl} be a positive

scalar sequence. If lim
l→∞

γl = 0, then

lim
l→∞

l∑
r=0

λl−rγr = 0. (20)
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Besides, if
∞∑
l=0
γl <∞, then

∞∑
l=0

l∑
r=0

λl−rγr <∞. (21)

III. MAIN RESULTS
A. THE PROPERTY OF PROJECTION PERTURBATION
TERM AND CONSENSUS ERROR TERM
Lemma 3: Let Assumption 1, 5, 6 hold in the balanced

digraph, then projection perturbation term 8i(l) have

‖8i(l)‖ ≤ ME(l)+ Cgα(l), M = 2hMN . (22)

Proof:

Step 1: State that the vector vi(l) =
N∑
j=1

aij(l)xj(l) is belong

to the convex set X . According to the definition of convex
set X and xj(l) ∈ X , we have linear combinations vi(l) =
N∑
j=1

aij(l)xj(l) in the set X either.

Step 2: Find the relationship between the projection pertur-
bation term and the system variable. Based on the property (3)
of projection vector PX [·] and formula (14), we have

‖PX [zi(l)]−vi(l)‖2 ≤ ‖zi(l)− vi(l)‖2−‖8i(l)‖2

= ‖̂ei − α(l)gi(l))‖2−‖8i(l)‖2. (23)

Step 3: Scaling the inequality (23). Due to ‖PX [zi(l)] −
ζi(l)‖2 ≥ 0, the boundedness of aij(l), property (12) of the
measurement error eij(l) and Assumption 5, 6, we have

‖8i(l)‖2 ≤ ‖̂ei−α(l)gi(l)‖2

≤ (ME(l)+ Cgα(l))2, (24)

where M = 2hMN is a positive constant. Thus, Lemma 3 is
proved. �
Lemma 4: Let Assumption 1, 5, 6 hold in the balanced

digraph, then the consensus error term satisfies

lim
l→∞
‖εi(l)‖ = 0. (25)

Proof: Since εi(l) = êi−α(l)gi(l)+8i(l) is a consensus
error term, for all l > 0 and formula (24), then we have

‖εi(l)‖ ≤ ε(l), (26)

where ε(l) = 2(ME(l) + Cgα(l)), M = 2hMN . By Assump-
tion 1, 5 and 6, for inequality (26) we have lim

l→∞
‖εi(l)‖ = 0.

Thus, Lemma 4 is proved. �

B. THE CONSENSUS AND OPTIMIZATION
OF MULTIAGENT SYSTEM
Theorem 1 (Consensus): Let Assumption 1-7 hold in the

balanced digraph. Consider the sequence {xi(l)} obtained by
event-triggered subgradient projection algorithm (6), and for
all i ∈ V the state average vector y(l)= 1

N

∑N
i=1 xi(l) satisfies

lim
l→∞
‖xi(l)− y(l)‖ = 0. (27)

Proof: Step 1:Describe the state xi(l) by the state transi-
tion matrix 9(l, s). Based on the relationship in (15) and the
state transition matrix 9(l, s) in (18), ∀i ∈ V , l and s ∈ N+
with l > s, we can write

x(l + 1)

= (A(l)⊗ In)x(l)+ ε(l)

= [A(l)⊗ In][(A(l − 1)⊗ In)x(l − 1)+ ε(l − 1)]+ ε(l)

= · · ·

= [(A(l)A(l − 1) · · ·A(0))⊗ In]x(0)+ [(A(l)A(l − 1)

· · ·A(1))⊗ In]ε(0)+ · · · + (A(l)⊗ In)ε(l − 1)+ ε(l)

= (9(l, 0)⊗ In)x(0)+
l+1∑
r=1

(9(l, r)⊗ In)ε(r − 1), (28)

where x(l), ε(l) ∈ RNn and xi(l), εi(l) ∈ Rn. Therefore,
it yields that

xi(l+1)=
N∑
j=1

[9(l, 0)]ijxj(0)+
l+1∑
r=1

N∑
j=1

[9(l, r)]ijεj(r−1).

(29)

Step 2: Describe the state average vector y(l) =
1
N

∑N
i=1 xi(l) by the state of xi(l). According to weight adja-

cency matrix A(l) is doubly stochastic matrix, we have

y(l) =
1
N

N∑
i=1

N∑
j=1

[9(l−1, 0)]ijxj(0)

+
1
N

N∑
i=1

l∑
r=1

N∑
j=1

[9(l−1, r)]ijεj(r−1)

=
1
N

N∑
j=1

xj(0)+
1
N

l∑
r=1

N∑
j=1

εj(r − 1). (30)

Then, combining (29) with (30), yields

xi(l)− y(l) =
N∑
j=1

([9(l − 1, 0)]ij −
1
N
)xj(0)

+

l∑
r=1

N∑
j=1

([9(l − 1, r)]ij−
1
N
)εj(r − 1). (31)

Using (31), then we obtain

‖xi(l)− y(l)‖

≤ ‖

N∑
j=1

([9(l − 1, 0)]ij−
1
N
)xj(0)‖

+‖

l∑
r=1

N∑
j=1

([9(l−1, r)]ij−
1
N
)εj(r−1)‖

≤ N max
j∈V
|[9(l − 1, 0)]ij−

1
N
|max
j∈V
‖xj(0)‖

+

l∑
r=1

N max
j∈V
|[9(l−1, r)]ij−

1
N
|max
j∈V
‖εj(r−1)‖. (32)
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Step 3: Scaling the inequation (32). According to the
property of Lemma 1, we get

|[9(l, s)]ij −
1
N
| ≤ DXl−s, (33)

with D = 2 1+µ−B0
1−µB0

, X = (1 − µB0 )1/B0 , and 0 < X < 1.
Then, by the upper bound of x in Assumption 2, Lemma 4
and (33), yields that

N max
j∈V
|[9(l − 1, 0)]ij −

1
N
|max
j∈V
‖xj(0)‖

≤ NCxDXl−1, (34)
l∑

r=1

N max
j∈V
|[9(l − 1, r)]ij −

1
N
|max
j∈V
‖εj(r−1)‖

≤ ND
l∑

r=1

Xl−r−1ε(r−1). (35)

Combine (34) and (35), we have

0≤‖xi(l)−y(l)‖≤NCxDXl−1
+ND

l∑
r=1

Xl−r−1ε(r−1). (36)

Finally, according to Lemma 2 and Lemma 4, formula
lim
l→∞
‖xi(l) − y(l)‖ = 0 hold. Hence, the Theorem 1 is

proved. �
Theorem 2: (Consensus) Let Assumption 1-7 hold in the

balanced digraph. For all i ∈ V , considering the sequence
{̂xi(l)} obtained by (17), it satisfies

lim
L→∞

‖̂xi(L)− x̂j(L)‖ = 0, (37)

and the convergence rate is O( ln(L+1)√
L

).
Proof: Step 1: Find the relationship between the norm

‖xi(l)−y(l)‖ and the norm ‖̂xi(L)−̂y(L)‖. Since the convexity
of norm, we have

‖̂xi(L)−ŷ(L)‖≤

L∑
l=0
α(l)‖(xi(l)−y(l)‖

L∑
l=0
α(l)

. (38)

Step 2: Based on the size of norm ‖xi(l)−y(l)‖ to constrain
‖̂xi(L)−̂y(L)‖. Use the inequality (36) in Theorem 1 expansion
and contraction inequality (38), we yield to

‖̂xi(L)−ŷ(L)‖

≤ CxDN

L∑
l=0
α(l)Xl−1

L∑
l=0
α(l)

+DN

L∑
l=0

l∑
r=1
α(l)Xl−r−1ε(r−1)

L∑
l=0
α(l)

. (39)

Step 3: Scaling the inequality (39). With α(l) = 1
√
l+1
≤ 1 in

Assumption 1 and ε(r − 1) in Lemma 4, we obtain that

L∑
l=0

α(l) ≥
∫ L+2

1

1
√
x
dx=2(

√
L+2−1) ≥

√
L, (40)

L∑
l=0

α(l)Xl−1
≤

L∑
l=0

Xl−1
≤

1
1−X

, (41)

L∑
l=0

l∑
r=1

α(l)Xl−r−1ε(r−1)

=

L∑
l=0

l∑
r=1

α(l)Xl−r−1(2ME(r−1)+2Cgα(r−1)).

(42)

By the define of threshold value of E(l)=cα2(l) in Assump-
tion 6, we have

2M
L∑
l=0

l∑
r=1

α(l)Xl−r−1E(r−1)

≤ 2cMα(0)
L∑
l=0

l∑
r=1

Xl−r−1α(l)α(r−1). (43)

Scaling the second term of inequality (42), we have

2Cg
L∑
l=0

l∑
r=1

Xl−r−1α(l)α(r−1)

=
2Cg
X

L∑
l=0

l−1∑
s=0

Xl−s−1α(l)α(s)

=
2Cg
X

[1+
L∑
i=1

Xi−1(
L−i+1∑
j=1

1
√
j
√
j+i

)]

≤
2Cg
X

[1+
L∑
i=1

Xi−1
∫ L−i+1

0

1
√
x
√
x+i

dx]

≤
2Cg
X

[1+
L∑
i=1

Xi−1
· 2 ln(

√
L−i+1+

√
L+1)]

≤
2Cg
X

[1+
2

1−X
(ln 2+

ln(L+1)
2

)]

≤
2Cg
X
·

4
1−X

ln(L+1) =
8Cg ln(L+1)
X(1−X)

, (44)

which L ≥ 2. Hence, summing (43) and (44) up, for equality
(42) we have

L∑
l=0

l∑
r=1

α(l)Xl−r−1ε(r − 1) ≤
8(cMα(0)+ Cg) ln(L + 1)

X(1− X)
.

(45)

For inequation (39), we have

‖̂xi(L)− ŷ(L)‖

≤
CxDN
1− X

1
√
L
+

8(cMα(0)+ Cg)DN
X(1− X)

ln(L + 1)
√
L

. (46)

Taking the limit of both sides of (46), it is easy to know
that lim

L→∞
1
√
L
= 0 and lim

L→∞

ln(L+1)
√
L
= 0, i.e., the convergence

rate is ln(L+1)
√
L

. Hence, the Theorem 2 is proved. �
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Theorem 3 (Optimization): Let Assumption 1-7 hold in
the balanced digraph. For problem (5), if the agents state
sequence {xi(l)} established by event-triggered subgrident
projection algorithm (6), then for all i ∈ V there exist an
optimal solution x∗ ∈ X ∗, such that

lim
l→∞

xi(l) = x∗, (47)

and the convergence rate is O( ln(L+1)√
L

).
Proof: Step 1: Calculate the error between y(l + 1) and

x∗. Using equality (16), we have that

‖y(l + 1)−x∗‖2

= ‖(y(l)−x∗)−
α(l)
N

N∑
i=1

gi(l)+
1
N

N∑
i=1

(̂ei(l)+8i(l))‖2

= ‖y(l)− x∗‖2 +
α2(l)
N 2 ‖

N∑
i=1

gi(l)‖2 +
1
N 2 (

N∑
i=1

‖̂ei(l)

+8i(l)‖)2 −
2α(l)
N

N∑
i=1

gTi (l)(y(l)− x
∗)

+
2
N
(y(l)− x∗)T

N∑
i=1

(̂ei(l)+8i(l))

−
2α(l)
N 2

N∑
i=1

gTi (l)
N∑
i=1

(̂ei(l)+8i(l)). (48)

Step 2: Scaling the inequality (48). According to the
bounded of êi(l) and the property of 8i(l) in Lemma 3.
We yield that

1
N

N∑
i=1

‖̂ei(l)+8i(l)‖ ≤ 2ME(l)+ Cgα(l), (49)

1
N 2 [

N∑
i=1

‖̂ei(l)+8i(l)‖]2 ≤ (2ME(l)+ Cgα(l))2. (50)

And due to the bounded of constraint set, ‖x‖ ≤ Cx , ∀x ∈ X ,
in Assumption 2, we have

2
N

N∑
i=1

(y(l)− x∗)T êi(l) ≤ 4CxME(l). (51)

According to the lemma3 and inequality (4), respectively.
We have ‖8i(l)‖ ≤ ME(l) + Cgα(l) and < PX [zi(l)] −
x∗,PX [zi(l)]− zi(l) >≤ 0. Besides, in inequation (4),we set
u = zi(l), v = x∗, so

2
N

N∑
i=1

(y(l)− x∗)T8i(l)

=
2
N

N∑
i=1

(y(l)− PX [zi(l)])T (PX [zi(l)]− zi(l))

+
2
N

N∑
i=1

(PX [zi(l)]− x∗)T (PX [zi(l)]− zi(l))

≤
2
N

N∑
i=1

(y(l)− PX [zi(l)])T8i(l)

≤
2
N

N∑
i=1

‖y(l)− xi(l + 1)‖(ME(l)+ Cgα(l))

≤
2
N

N∑
i=1

‖y(l)− xi(l)‖(ME(l)+ Cgα(l))

+‖xi(l)− xi(l + 1)‖)(ME(l)+ Cgα(l)). (52)

According to the consensus of Theorem 1 and algorithm (6),
yield that liml→∞ x̃ij(l) = liml→∞ x̃ji(l), liml→∞ α(l) =
0, so liml→∞ zi(l) = xi(l), and liml→∞ xi(l + 1) =
liml→∞ xi(l) = x̄. Hence ∀ε1 > 0, ∃N1 ∈ N+, such that
if l > N1, then ‖xi(l + 1) − xi(l)‖ < ε1. Then, combine the
formula (51) and (52), if l > N1, we can get

2
N
(y(l)− x∗)T

N∑
i=1

(̂ei(l)+8i(l))

≤ 4CxME(l)+
2
N

N∑
i=1

‖y(l)− xi(l)‖(ME(l)+ Cgα(l))

+ 2(ME(l)+ Cgα(l))ε1. (53)

Since the bounded of subgradient ‖gi(l)‖ ≤ Cg, it yields that

−
2α(l)
N 2

N∑
i=1

gTi (l)
N∑
i=1

(̂ei(l)+8i(l))

≤ 2Cgα(l)(2ME(l)+ Cgα(l)), (54)

α2(l)
N 2 ‖

N∑
i=1

gi(l)‖2

≤ C2
gα

2(l), (55)

gTi (l)(y(l)− x
∗)

= gTi (l)(y(l)− xi(l))+ g
T
i (l)(xi(l)− x

∗)

≥ gTi (l)(y(l)− xi(l))+ (fi(xi(l))− fi(x∗))

≥ −Cg‖y(l)− xi(l)‖ + (fi(xi(l))− fi(y(l))

+ fi(y(l))− fi(x∗))

≥ −2Cg‖y(l)− xi(l)‖ + (fi(y(l))− fi(x∗)),
N∑
i=1

gTi (l)(y(l)− x
∗)

≥ −2CgN‖y(l)− xi(l)‖ +
N∑
i=1

(fi(y(l))− fi(x∗))

= −2CgN‖y(l)− xi(l)‖ + (f (y(l))− f (x∗)),

−
2α(l)
N

N∑
i=1

gTi (l)(y(l)− x
∗)

≤ 4Cgα(l)‖y(l)− xi(l)‖ −
2α(l)
N

(f (y(l))− f (x∗)). (56)
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Then, we sum the inequality (50), (53), (54), (55), (56) up,
for equality (48), if l > N1, we get

‖y(l + 1)− x∗‖2

≤ ‖y(l)− x∗‖2 + 4M
2
E2(l)+ 6C2

gα
2(l)

+ 8CgME(l)α(l)+ 2(2Cx + ε1)ME(l)

+ 2Cgε1α(l)−
2α(l)
N

(f (y(l))− f (x∗))

+
2
N

N∑
i=1

‖y(l)− xi(l)‖(ME(l)+ Cgα(l))

+ 4Cgα(l)‖y(l)− xi(l)‖. (57)

Next, according to the relation lim
l→∞
‖xi(l) − y(l)‖ = 0 in

Theorem 1, we have ∀ε2 > 0, ∃N2 ∈ N+, such that if l > N2,
then ‖xi(l)− y(l)‖ < ε2. If l ≥ max{N1,N2}, yields that

‖y(l + 1)− x∗‖2

≤ ‖y(l)− x∗‖2 + 4M
2
E2(l)+ 6C2

gα
2(l)

+ 8CgME(l)α(l)+ 2(2Cx + ε1)ME(l)

+ 2Cgε1α(l)−
2α(l)
N

(f (y(l))− f (x∗))

+ (2ME(l)+ 6Cgα(l))ε2. (58)

Step 3: Prove the formula limL→∞ f (̂y(L)) = f (x∗). Rear-
ranging the nonnegative term 2α(l)

N (f (y(l))−f (x∗)), yields that

2α(l)
N

(f (y(l))− f (x∗))

≤ (‖y(l)− x∗‖2 − ‖y(l + 1)− x∗‖2)

+ 4M
2
E2(l)+ 6C2

gα
2(l)+ 8CgME(l)α(l)

+ 2(2Cx + ε1 + ε2)ME(l)+ 2Cg(ε1 + 3ε2)α(l). (59)

Taking summation of the discrete-time from l = 0 to L,
we obtain

2
N

L∑
l=0

[α(l)(f (y(l))− f (x∗))]

≤ ‖y(0)− x∗‖2 + 4M
2

L∑
l=0

E2(l)+ 6C2
g

L∑
l=0

α2(l)

+ 8CgM
L∑
l=0

E(l)α(l)+ 2(2Cx + ε1 + ε2)M
L∑
l=0

E(l)

+ 2Cg(ε1 + 3ε2)
L∑
l=0

α(l). (60)

Dividing both sides of inequality (60) by positive term
2
N

L∑
l=0
α(l), we have

1
L∑
l=0
α(l)

L∑
l=0

[α(l)(f (y(l))− f (x∗))]

≤
N

2
L∑
l=0
α(l)

‖y(0)− x∗‖2 +
2M

2
N

L∑
l=0
α(l)

L∑
l=0

E2(l)

+
3C2

gN
L∑
l=0
α(l)

L∑
l=0

α2(l)+
4CgMN
L∑
l=0
α(l)

L∑
l=0

E(l)α(l)

+
(2Cx + ε1 + ε2)MN

L∑
l=0
α(l)

L∑
l=0

E(l)+ CgN (ε1 + 3ε2).

(61)

Then, according to the following inequations

L∑
l=0

α(l) ≥
∫ L+2

1

1
√
x
dx = 2(

√
L + 2− 1) ≥

√
L, (62)

L∑
l=0

α2(l) ≤ 1+ ln(L + 1) ≤ 2 ln(L + 1),L ≥ 2, (63)

L∑
l=0

E(l) =
L∑
l=0

c
l + 1

≤ 2c ln(L + 1),L ≥ 2, (64)

L∑
l=0

E2(l) =
L∑
l=0

c2

(l + 1)2
≤ c2(2−

1
L + 1

), (65)

L∑
l=0

α(l)E(l) =
L∑
l=0

c

(l + 1)
3
2

≤ r, (66)

where it is easy to know that if p > 1, then
∑L

l=0
1

(l+1)p con-
verge. Let the upper bound of inequality (66) is r . Combining
equalities (62)− (66) to inequality (61), if l ≥ max{N1,N2},
yields that

1
L∑
l=0
α(l)

L∑
l=0

[α(l)(f (y(l))− f (x∗))]

≤
2C2

xN
√
L
+

4c2M
2
N

√
L
−

2c2M
2
N

√
L(L + 1)

+ 6C2
gN

ln(L + 1)
√
L

+
4CgMNr
√
L
+ 2c(2Cx + ε1 + ε2)MN

ln(L + 1)
√
L

+CgN (ε1 + 3ε2). (67)

According to the definition of convex function f (x),
we have f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y), then we
obtain

f (̂y(L))− f (x∗) = f (
1

L∑
l=0
α(l)

L∑
l=0

(α(l)y(l)))− f (x∗)

≤
1

L∑
l=0
α(l)

L∑
l=0

[α(l)(f (y(l))− f (x∗))]. (68)
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Basing on inequality (67) and taking the limit of formula (68),
we get

0 ≤ lim
L→∞

f (̂y(L))− f (x∗)

≤ lim
L→∞

1
L∑
l=0
α(l)

L∑
l=0

[α(l)(f (y(l))− f (x∗))]

= 0. (69)

Hence, the convergence rate between f (̂y(L)) and f (x∗) is
ln(L+1)
√
L

.
Step 4: Prove equality lim

L→∞
‖̂y(L) − y(L)‖ = 0. We can get

that

‖̂y(L)− y(L)‖ ≤
1

L∑
l=0
α(l)

L∑
l=0

(α(l)‖y(l)− y(L)‖)

≤
α(0)
L∑
l=0
α(l)

L∑
l=0

‖y(l)− y(L)‖. (70)

According to the consensus of Theorem 1, we have
lim
l→∞

y(l) = lim
l→∞

xi(l) = x̄, then ε > 0 satisfy that if

l > N = max{N1,N2}, then ‖y(l)− x̄‖ ≤ ε
2(m−n) . Let2(s) =

s∑
l=1
‖y(l) − y(L)‖. Using Cauchy Convergence Criterion,

we obtain that ∀ε > 0, N ∈ N+, if n > N , m > N , m > n
and L > N , yield that

|2(m)−2(n)|

= |‖y(m)− y(L)‖ + · · · + ‖y(n+ 1)− y(L)‖|

≤ |(‖y(m)− x̄‖ + ‖x̄ − y(L)‖)+ · · ·

+ (‖y(n+ 1)− x̄‖ + ‖x̄ − y(L)‖)|

≤ (
ε

2(m−n)
+

ε

2(m−n)
)+· · · + (

ε

2(m−n)
+

ε

2(m−n)
)

= ε. (71)

Hence the series 2(s) converges, i.e. there exists θ , such
that lims→∞2(s) = θ . If l ≥ N , N = max{N1,N2}, from
formula (70) we have

0 ≤ lim
L→∞

‖̂y(L)− y(L)‖ ≤ lim
L→∞

2(L)
√
L
= 0. (72)

It is easy to know that limL→∞ ‖̂y(L) − y(L)‖ = 0, then
limL→∞ f (̂y(L)) = limL→∞ f (y(L)) = f (x∗). According
to the consensus of Theorem 1, we have liml→∞ f (xi(l)) =
f (x∗). Hence, the Theorem 3 is proved. �
Theorem 4: (Optimization) Let Assumption 1-7 hold in

the balanced digraph. For problem (5), if the ergodic average
sequence established by (17), then there exist an optimal
solution x∗ ∈ X ∗, such that

lim
L→∞

f (̂xi(L)) = f (x∗), (73)

and the convergence rate is O( ln(L+1)√
L

).

Proof: Step 1:According to formula (69) in the proof of
Theorem 3, we know that limL→∞ f (̂y(L))− f (x∗) = 0.
Step 2: Base on the consensus of the ergodic average
sequence in Theorem 2, we have lim

L→∞
‖̂xi(L) − ŷ(L)‖ = 0,

then

lim
L→∞

|f (̂xi(L))− f (x∗)|

≤ lim
L→∞

|f (̂xi(L))− f (̂y(L))| + |f (̂y(L))− f (x∗)|

= 0. (74)

Hence, the Theorem 4 is proved. �
Next, the following Algorithm 1 is given to show the

distributed event-triggered mechanism implementation.

Algorithm 1

1: Initialize: x0i (ith agent initial state, i ∈ V); x̃ij(0)(the
initial triggered state of ith agent to jth agent); aij(t)(the
element of weighted adjacent matrix); T = 1(discrete
sampling period); l = 0(initial time); L(total number of
iterations).

2: for l = 1 : T : L do
3: while in the time-varying switching topology graph Aj

do
4: if ‖xi(l)− x̃ij(l)‖ ≥ E(l) then
5: x̃ij(l) = xi(l)⇐Update triggered state;
6: end if

7: zi(l) = xi(l)+ h
N∑
j=1

aij(l)(̃xji(l)− x̃ij(l))− α(l)gi(l)

8: if zi(l) ∈ Xi then
9: xi(l + 1) = zi(l)
10: else
11: xi(l + 1) = PXi [zi(l)]
12: end if
13: j = j+ 1 (1 ≤ j ≤ 3)
14: end while
15: end for

Remark 4: According to Algorithm 1, we can notice that
the state update by distributed event-triggered subgradient
projection algorithm only use the triggered state rather than
the agent state of each moment, which can effectively reduce
the transmission of information. Hence this algorithm can
filter out the information that has little impact on the update.
That is to say, when the error between the last triggered state
and the current state is smaller than given threshold function,
which standing for that the distortion of state is within the
tolerance, then this current state do not be transfer under the
time-varying switching digraph topology.

IV. SIMULATION RESULT
In this section, the simulation examples are provided to
compare the difference convergence result between the gen-
eral step-size and the square summable step-size under the
event-triggered subgradient projection algorithm.
Example 1: Under the time-varying switching digraph

topology showed in Fig.1, consider the optimization problem
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TABLE 1. The triggered times of five agents under different step-size with a sample period T = 120s.

FIGURE 1. Time-varying switching digraph topology.

minx∈X
∑5

i=1 fi(x), where fi(x) = 0.5log10(1 + x2) + x2,
i ∈ V = {1, 2, 3, 4, 5}. The constraint set is X = {x|x ∈
R5, ‖x‖ ≤ 3}. Choose the weight adjacency matrix of
time-varying switching digraph topology as

A(t) =


A1, if t = 3l,

A2, if t = 3l + 1,

A3, if t = 3l + 2.

(75)

whereA1=


0 1.2 0 0 0
1.2 0 0 0.5 0
0 0 0 0 0.6
0 0.5 0 0 0
0 0 0.6 0 0

,A2=

0 1.5 0.5 0 0
0 0 0 1.5 0
2 0 0 0 0
0 0 0 0 1.5
0 0 1.5 0 0

,

A3 =


0 0 0.8 0 0
0 0 0 0 0
0.8 0 0 0 0
0 0 0 0 0.9
0 0 0 0.9 0

. Set control gain h = 0.5,

which satisfies aii(l) = 1 − huii(l) > 0. This condition
ensures that the elements of the new doubly stochastic
weight adjacency matrix A are nonnegative. The initial values
of agents state are x01 = [5, 0.6, 0.2, 0.5, 1.8]T , x02 =
[3, 0.6, 0.2, 0.5, 1.8]T , x03 = [2.5, 1.5,−0.2,−0.5, 0.4]T ,
x04 = [1.2, 0.5, 1.7,−0.3, 0.5]T , x05 = [−1.5,−1.2, 0.5, 0.7,
−0.7]T .

Table 1 shows that the general step-size has lesser infor-
mation transmission compared with the square summable
step-size under the event-triggered mechanism when sam-
pling is conducted every second and the overall sampling
period is 120 seconds. It can effectively reduce the update
times of the actuator, save communication resources and
reduce the load of communication flow.

The rest of the simulation graphs show the effect of dif-
ferent step-size for convergence. When the update time is
60 seconds, the convergence situation under the different

FIGURE 2. State convergence condition of agent xi .

step-size is revealed in Fig.2. From the simulation graph
in Fig.2(a), we can know that the general step-size takes a
larger time in the progress of the state update. And when the
threshold function is small (c=1), which mean that the error
between the state at the triggered time and the current state is
small.

Therefore, choosing the larger iterative step makes the
algorithm much fluctuation in the process of update. And
when a state near to the optimal value, the general step-size
may across the optimal value lead to an extension of the
convergence time.

FIGURE 3. Trigger time of each agent in different step-sizes.

The trigger time of each agent in different step-size is
revealed in Fig.3. Since the algorithm is distributed and
parallel, that is the updates of each agent do not interfere
with each other and are carried out asynchronously. In the
meantime, we know that the information transfer times are
lesser under the general step-size from Table 1. The reason
why the time-triggered mechanism consumes a great number
of resources is that the agent needs to communicate with its
neighbors at every moment. That is to say, the triggered times
is 120 times in time-triggered mechanism for every agent.

From the Fig.4-Fig.6, it yields that when the threshold
function is small(c = 1), the square summable step-size
can be selected to acquire better convergence results (Fig.4).
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FIGURE 4. Convergence comparison for E(l ) =
1

l+1 .

FIGURE 5. Convergence comparison for E(l ) =
6

l+1 .

FIGURE 6. Convergence comparison for E(l ) =
15

l+1 .

And as threshold function increasing (c=6), the convergence
case of two types of step-size is the same after 20 seconds
(Fig.5). Besides if the threshold function is larger(c = 15),
the general step-size can be selected to acquire a more effec-
tive result which demonstrated in Fig.6.
Example 2: Under the time-varying switching digraph

topology showed in Fig.7, consider the optimization problem
minx∈X

∑5
i=1 fi(x) with different objective functions, where

f1(x) = 0.5log10(1 + x2) + x2, f2(x) = 2f1(x),f3(x) =
x2,f4(x) = x,f5(x) = 3x− 2. Set the same initial value and
constraint set like the Example 1, and select the time-varying

FIGURE 7. Time-varying switching digraph topology.

FIGURE 8. Convergence comparison for E(l ) =
300
l+1 .

commutative directed graph topology as (75), where A1 =
0 0.5 0 0.5 0
0 0 0 0.5 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 0

, A3 =

0 0 0 0 0
0 0 0 0.8 0
0 0 0 0 0
0 0 0 0 0.8
0 0.8 0 0 0

, and A2 is the

same as in Example 1. The general step-size can converge
to the optimal solution for different objective functions under
the time-varying switching digraph showed in Fig.8.

V. CONCLUSION
The discrete-time event-triggered subgradient projection
algorithm is considered for constrained convex optimization
with general step-size in this paper. It shows that the states of
all agents can asymptotically converge to the optimal solution
by the proposed algorithm under the time-varying switching
digraph network. In the meantime, the convergence rate of
the ergodic average sequence is given. Besides, it yields that
when the threshold function is large, the general step-size
can acquire better convergence results. The subsequent work
intents to improve the event-trigger mechanism in this paper
into the dynamic event-trigger mechanism.
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