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ABSTRACT Accurate subsurface sensing during directional drilling is critical in the mining and energy
extraction industries. One challenge is to measure the azimuth accurately. Azimuth measurements are
hindered by magnetic disturbances such as iron debris, especially when magnetometers are used. Moreover,
gyroscopes are susceptible to shocks during drilling surveys. To overcome these challenges, we developed a
supervised learning filter (SLF) using amulti-sensor configuration (MSC) to accurately estimate the azimuth.
The MSC consists of micro-electro-mechanical systems (MEMS) based magnetometers, gyroscopes, and
accelerometers into two set of sensors, and the groups are separated by a known distance D to acquire
additional rotational information using a dual acceleration difference (DAD) method. Also, D can reduce
the negative effect of magnetic disturbances. A Kalman filter (KF) with known a priori noise information
removes white noise; however, it is difficult to deal with unknown magnetic and shock disturbances.
To reduce the effect of unknown magnetic and shock disturbances, we use the SLF to estimate orientation
information. First, the SLF employs an adaptive neuro network fuzzy inference system (ANFIS) to build
error models of each sensor; then the SLF calculates the proper weights of the sensors using the error models.
Lab-scale experiments are performed on a test rig where the SLF is evaluated using one case with training
and verified using two cases without training. The results showed an improvement in azimuth estimation.

INDEX TERMS Supervised learning filter, directional drilling, mwd, anfis,magnetic disturbance robustness,
dual acceleration difference, shock disturbance robustness, subsurface sensing, multi-sensor configuration.

I. INTRODUCTION
Extracting mineral and energy deposits from the subsurface
requires accurate positioning information for geosteering and
wellbore placement. Directional drilling survey tools used
in the petroleum industry use subsurface sensing and are of
particular note due to the distances drilled and the exceptional
harsh operating environment. The sensors used in drilling
survey tools must provide proper three dimensional (3D)
positional information, i.e., inclination and azimuth, to steer
the drill bit to follow the desired well path [1]. The current
direction of subsurface sensing research focuses on integrated
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micro-electro-mechanical system (MEMS) inertial measure-
ment units (IMUs), because they have the advantages of being
small and light weight, manufactured at low cost, and require
less power [2]. Typical IMUs used in subsurface sensing usu-
ally contain accelerometers, gyroscopes, and magnetometers.

Each type of sensor has different limitations for subsurface
sensing; for example, magnetometers and gyroscopes suffer
from magnetic and shock disturbances, respectively. Sensor
fusion is a technique that automatically analyzes and inte-
grates information from different sensors. A multiple sensor
fusion system (MSFS) was recently developed to achieve
more accurate estimations than a single sensor or information
source alone could provide [3]–[5]. Information integration
technologies complement and optimize information from
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different sensors to achieve the most realistic output possible.
This approach minimizes the weaknesses of individual sen-
sors, which may otherwise produce poor readings because of
disturbances, noises, and other uncertainties [6].

Compared to a single sensor sensing system, an MSFS is
more complicated and is often more costly. However, these
disadvantages are minimal compared to the advantages [7].
An MSFS improves robustness since different sensor types
compensate for each another in harsh conditions. It also
yields performance improvements such as noise reduction
and improved accuracy. An MSFS, along with redundant
data, can provide more information to help obtain a clearer
result [8].

An IMU utilizes a self-contained navigation technique in
which measurements are provided by onboard-gyroscopes,
magnetometers, and accelerometers. The IMU utilizes these
three types of signals to estimate the orientations and posi-
tions of an object. Combined with other sensors, such as
global positioning systems (GPS), cameras, radar, laser, and
others, IMUs may be broadly applied in many applications
including dead reckoning, indoor navigation, and measure-
ment while drilling (MWD). MWD systems are typically
used to provide the real-time position and orientation of the
bottom hole assembly (BHA) during drilling [9]. Current
MWD systems are based on magnetic surveying technol-
ogy [10] where the magnetic surveying part of the MWD
system is a special non-magnetic drill collar housing with
accelerometers and magnetometers [11]. During MWD oper-
ations, two orientation angles are recorded: i) azimuth,
the angle on the horizontal plane away from magnetic north
and ii) inclination, the angle on the vertical plane away from
vertical.

Data from accelerometers and magnetometers are typi-
cally used to determine orientation angles. In some tools,
gyroscopes are employed to improve the low signal to noise
ratios (SNR) of accelerometers and magnetometers [12].
A hybrid multi-sensor system that combines a magnetometer
with a gyroscope may increase the accuracy of the azimuth
measurement since a gyroscope’s signal has low SNR and
is robust against magnetic disturbances. Combing these two
sensors with a Kalman filter (KF) removes the noise inher-
ent in magnetic signals and reduces the integration drift
caused by the direct current (DC) component of gyroscope
signals [13].

Gyroscope data can also update the headings. Therefore,
in the presence of magnetic disturbances, a gyroscope is
employed to correct the heading errors [14], [15]. However,
there are several problems associated with gyroscope com-
pensation. Unlike typical sensing activities at the surface,
such as indoor or outdoor vehicle movement detection,
motion in the subsurface is much slower – on the order of
meters per minute to meters per hour, which means a mag-
netometer may be exposed to ferromagnetic objects for an
extended period of time; therefore, the drift caused by the DC
component of gyroscope data may affect the accuracy of the
orientation estimation [16]. Also, shocks could cause large

drifts in the integral calculation of gyroscope data because
gyroscopes are significantly affected by shocks.

During MWD operations, the drill string may be stationary
(while not drilling) or rotating (while drilling). In addition
to drift in the integral calculation of gyroscopic data, gyro-
scopes’ application for rapidly rotating objects of large accel-
erations are challenging [17], [18] since each gyroscope is
designed for a particular maximum angular velocity, particu-
larly for MEMS gyroscopes [19]. MEMS gyroscopes used in
this study are strongly affected by large rotational velocities
(sometimes thousands of degrees/s) during the drilling pro-
cess because a typical MEMS gyroscope is limited to only
hundreds of degree/s [20], [21]. Also, MEMS gyroscopes
are subjected to various shock impacts [22]. Typical MWD
tools currently used in industry favor accelerometers [23],
but gyroscopes are often found in tools used for continuous
drilling survey applications [24]. Non-strapdown based gyro-
scopes that may be more robust to the downhole environment
are available (for example fiber-optic coils); however, current
technologies are not economically viable [25].

Therefore, using redundant accelerometers to obtain rota-
tion information is becoming popular [26], [27]. Without
the assistance of a gyroscope, the minimum number of
accelerometers required to extract 3D rotational informa-
tion is six [28]. Thus, by using two IMUs, each with three
accelerometers on the x, y, and z axes allows for rotational
information to be obtained with only accelerometers.

The objective of this research is to enhance the accu-
racy of continuous wellbore surveys by using two redundant
sets of IMUs to reduce the affect of magnetic and shock
disturbances. To achieve this objective, we first propose a
sensor configuration utilizing dual IMUs separated by a fixed
known distance, D to reduce influence of magnetic distur-
bances; when one magnetometer is affected by the magnetic
disturbances, the other magnetometer is unaffected since
the influence of the interference is reduced as an inverse
power function of D [40], [41]. This configuration also pro-
vides redundant azimuth angles using the dual accelerometer
difference (DAD) method for cases where gyroscopes are
absent. Based on the sensor configuration (hardware design),
we then developed a supervised learning filter (SLF) to
reduce the effect of magnetic and shock disturbances. For
the SLF, an adaptive neuro fuzzy inference system (ANFIS)
is employed to build the error models of different orienta-
tion angles obtained from accelerometers, gyroscopes, and
magnetometers. Weights are calculated using the outputs of
these error models for each sensor, and these weights show
the accuracy of each sensor in an applied environment.

II. EXPERIMENTAL SETUP
A. TEST RIG
The proposed sensor fusion method was tested using a lab-
scale test rig. The rig consisted of a two-axis turntable riding
on a single linear stage and three encoders located on three
DC drive motors, which were used to track the movements of
the system. This test system allowed for the dynamic testing
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FIGURE 1. Lab-scale test rig: this test system allows for the dynamic testing of sensor states such as inclination and azimuth.

of sensor states such as inclination and azimuth (Figure 1).
Rotational information of the various motors was recorded
by a set of encoders transmitted to a PC controller. Desired
motion paths and speedswere programed through the PC. The
orientation angles, such as pitch and azimuth, could be set,
and recorded data were saved as a time series.

B. SENSOR SETUP AND TRAJECTORY PLAN
The sensor setup contained dual IMUs, each of which had
triaxial gyroscopes (×3), accelerometers (×3), and magne-
tometers (×3) located on the x, y, and z axes, and data were
sampled at 205Hz. The IMUswere separated by 0.6m; IMUA
was located 0.4 m from the center of rotation and IMUB
was located at 1.0 m. They were assumed to be mounted
on a rigid body. The reference azimuth was obtained from
the encoders on the motors. Sensor noise was classified as
constant bias, calibration errors (scale factors, alignments
and linearities), white noise, and pink noise (1

/
f ) [29], [30].

Constant bias and calibration errors were removed by the
calibration methods [31]–[34].

Magnetometers also suffered from pink noise [35], [36],
but it was not quantified by the manufacturer. Noise levels
are shown in Table 1.

The test rig was hit three times, 0.4 seconds apart using
an impact hammer (PCB 208. A03) to simulate shocks.
Magnetic disturbances were imitated using a permanent mag-
net (4.2× 105 nT with a 50 mm distance) placed temporarily
near one of the IMUs. Planned trajectories were implemented
using the test rig. The coordinate frame was anchored at the
IMUs as shown in Figure 2. The experimental events time-
line is shown in Table 2. From 0 to 11 seconds is Rest1;
from 11 to 19 seconds is Rotation1; from 13 to 16 seconds
is the first magnetic disturbance; from 13.6 to 15 seconds is
the shock disturbance; from 19 to 40 seconds is Rest2; from
40 to 48 seconds is Rotation2; from 43 to 46 seconds is
the secondmagnetic disturbance; from 48 to 59 is the last rest.

III. METHODOLOGY
The orientation angles may be obtained using magnetome-
ters (azimuth), accelerometers (inclination and tool face),

7778 VOLUME 8, 2020



H. Liu et al.: Data Fusion by a Supervised Learning Method for Orientation Estimation Using MSC Under Conditions

TABLE 1. IMU noise specification [38].

FIGURE 2. Planned trajectories were implemented using the test rig.

and gyroscopes (all angles). However, an accurate azimuth
is relatively difficult to obtain due to magnetic and shock
disturbances. To reduce the effect of magnetic and shock
disturbances, the proposed SLF first collects azimuth angle
data sets from magnetometers, gyroscopes, and accelerom-
eters; next, SLF employs ANFIS to build error models of
each sensor; finally, SLF compares the errors from theANFIS
models to calculate the weights of the sensors. In this section,
we introduce how to obtain rotational information from the
DADmethod in section A; then, we explain the design details
of the SLF in section B.

A. AZIMUTH ANGLES OBTAINED FROM DUAL
ACCELERATION DIFFERENCE (DAD) METHOD
1) DAD AZIMUTH
Gyroscopes are good at obtaining angular velocities under
dynamic situations. However, the maximum angular speed

measurement limitation, which is caused by the internal struc-
ture of a gyroscope, reduces industry applications [20], [21].
Also, the detrimental effect of shock impacts on a gyroscope
is an other limitation [22]. Using dual tri-axis accelerometer
sets separated by a known distance to find the angular veloc-
ity estimations [37], we can increase redundant orientation
estimation. As shown in Figure 3, the acceleration magnitude
(ap) of a moving point is calculated as follows:

ap =
√
ẍ2 + ÿ2 + z̈2 =

√
a2N + a

2
T (1)

where ẍ, ÿ, z̈ are the particle accelerations on the x, y, and z
axes respectively, aN is normal acceleration, and aT is tan-
gential acceleration. The difference between the two normal
accelerations is determined as follows:

aNB − aNA = (ρ2 − ρ1)
(
θ̇2z + θ̇

2
y

)
= D

(
θ̇2z + θ̇

2
y

)
(2)
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TABLE 2. Experimental events time-line. From 0 to 11 seconds is Rest1; from 11 to 19 seconds is Rotation1; from 13 to 16 seconds is the first magnetic
disturbance; from 13.6 to 15 seconds is the shock disturbance; from 19 to 40 seconds is Rest2; from 40 to 48 seconds is Rotation2; from 43 to 46 seconds
is the second magnetic disturbance; from 48 to 59 is the last rest.

FIGURE 3. Spherical coordinates for two redundant accelerometers. These two accelerometers are mounted on a rigid body and separated by a constant
distance D.

The x axis of the IMU is oriented along the rotation radius
(normal direction, as shown in xs of sensor in Figure 3); the
y and z axes of the IMU are along the tangential direction of
the rotation (ys, zs axes in Figure 3); and the rotation center
of the IMU is set at (0,0,0); however, the rotation arm does
not rotate around the IMU xs axis due to our test rig design.

Based on the configuration of the sensor arrays, the nor-
mal components of the accelerations of Equation 2 may be

measured by the xs axes of the sensors. Therefore, the normal
accelerations aNA and aNB measured by IMUA and IMUB are
denoted as ẍsA and ẍsB , respectively. The difference between
these two normal elements of the acceleration can be used
to calculate the square root sum of the roation speeds of the
inclination and azimuth (Equation 3).

θ̇N =

√
θ̇2z + θ̇

2
y =

√∣∣ẍscB − ẍscA ∣∣ /D (3)
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The earth’s gravity is embedded in the two sets of mea-
surement from the IMUs (DC coupled), and the measure-
ments are subtracted (

∣∣ẍscB − ẍscA ∣∣). Therefore, no gravity
effect to the final calculation of the equation. However, the
accelerometer measurements ẍsA and ẍsB which still need to
be corrected [37], show that Equation (3) works well for
higher rotation rates (>140deg/s), but it does not work well
for lower rotation rates (<140deg/s) because the accelerom-
eters do not measure proper dynamic acceleration values
accurately. In this paper, we extend Equation (3) to include
lower rotations using a correction method, shown in next
section. Here, the s denotes the acceleration value from an
IMU, and sc means the value is corrected.

θ̇zDAD = ϑAzi ∗ θ̇N (4)

ϑAzi =
θ̇z√

θ̇2z + θ̇
2
y

(5)

As θ̇normal in Equation (3) includes the components of
inclination and azimuth angular velocities and is always
positive, it can not be used directly. As shown in
Equations (4) and (5), ratio factor ϑAzi identifies the proper
percentage of azimuth, and the factor provides corrected
rotation directions (positive and negative signs of the calcu-
lated rotational angular speeds). This ratio factor is obtained
from the integration of the tangential accelerations [37]
or derived from azimuth (magnetometer) and inclination
(gravity) angular values.

2) ACCELERATION CORRECTION
The maximum rotational speed of our test rig is lower than
140deg/s, and Equation (3) does not work properly when
rotation speeds are<140deg/s. Therefore, our accelerometers
do not accurately determine proper dynamic accelerations.

To deal with this problem, we use ANFIS to correct the
dynamic accelerations. As shown in Figure 2, two IMUs
rotate in the azimuth and inclination directions. During the
rotation, the two IMUs are located on the same side of the
rotation center. According to Equation (3), the difference
value of the normal accelerations is calculated as follows:∣∣ẍsB − ẍsA ∣∣ = D

(
θ̇2z + θ̇

2
y

)
(6)

where, D (0.6 m) is the distance between the two sets of
accelerometers, and θ̇y and θ̇z are rotational angular speeds,
obtained from other sensors such as gyroscopes or encoders
(through converting calculations). If the rotation is slow,
Equation (6) contains an error because the accelerometers
may not sense small dynamic accelerations. The error is
shown as follows:

Err ẍ1 =
∣∣ẍsB − ẍsA ∣∣− D (θ̇2y + θ̇2z ) (7)

Also, ∣∣ẍsB + ẍsA ∣∣ = (2RA + D) (θ̇2y + θ̇2z )
= (2RB − D)

(
θ̇2y + θ̇

2
z

)
(8)

FIGURE 4. Dynamic acceleration compensation using ANFIS. The inputs
are low rotation error (Errẍ1 ,Errẍ2 ,Errẍ3 ), accelerometer readings
(ẍsA , ẍsB ), and the outputs are two compensated centripetal
accelerations.

FIGURE 5. The top sub-plot shows the compensated centripetal
accelerations (ẍscA , ẍscB ); the bottom sub-plot shows the errors of the
two compensated accelerations.

Therefore,

Err ẍ2 =
∣∣ẍsB + ẍsA ∣∣− (2RA + D) (θ̇2sy + θ̇2sz) (9)

Err ẍ3 = |ẍSB + ẍSA| − (2RB − D)
(
θ̇2sy + θ̇

2
sz

)
(10)

Based on the errors Err ẍ1 , Err ẍ2 , and Err ẍ3 and the
accelerometer readings ẍsB , ẍsA , ANFIS is applied to correct
the normal accelerations as shown in Figure 4.

Figure 5 shows the corrected normal accelerations
A & B (top sub-plot), after the proposed ANFIS correc-
tion, the errors are small after the compensation as shown
in the bottom sub-plot. The AME values of the com-
pensated accelerations are around 0.00019m

/
s2 (A) and

0.00048m
/
s2 (B).

B. SLF FOR OBTAINING AZIMUTH INFORMATION
Identifying when measurements have low accuracy, as dur-
ing a shock event or while passing a magnetic distur-
bance, is paramount to effective sensor fusion. For example,
as one of the redundant IMUs passes a magnetic disturbance,
the magnetometer is adversely affected, but the gyroscope
remains unaffected.

By estimating the azimuth angle using the weighted infor-
mation obtained from different sensors and methods, we can
then find a weighted average of different azimuth angles,
which can provide an appropriate estimation of azimuth
despite magnetic disturbances. To determine the proper
weights of each azimuth angle, a fuzzy inference system (FIS)
is employed. In this paper, we propose a special process
of ANFIS to tune the membership functions and design the
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FIGURE 6. The structure of the ANFIS, after training by the teaching signal ANFIS is used to build error models of each sensor; then the outputs of ANFIS
are used to determine the weights of the sensors.

FIGURE 7. Shock forces measured from the shock test; 3 hits with a time
interval around 0.4 seconds. The force peak values of the 3 hits are
around 300N, 400N, and 500N.

precise fuzzy rules to improve final efficiency and to build
the error model of each sensor. Sensor values are used as the
inputs of the ANFIS model to output the error of each sensor.
Based on the magnitudes of these errors, the weight of each
sensor can be computed.

1) ERROR TEACHING SIGNAL
To obtain teaching signals for error model training, we first
computed various azimuth angles using measurements
obtained from magnetometers, gyroscopes, and the DAD
method (accelerometers); then, we compared the computed
angles with a reference angle to calculate the errors. For our

FIGURE 8. Azimuth angles of the two magnetometers from lab-scale
tests; magnetometerB is influenced twice by magnetic disturbances; both
magnetometers (A & B) suffer from shock impacts.

lab-scale evaluation, we used signals from the encoder of the
rotation motor as a reference.

2) SLF LOGIC
The first function of this design is to estimate the magnetome-
ter errors caused by the interferences to reduce the effect of
magnetic disturbances. We have two azimuth angles from the
magnetometers (Azimag1, Azimag2), two azimuth angles from
gyroscope signal integrations (Azigyro1, Azigyro2), and three
azimuth angles from the accelerometers (Azitangen, Azicentri1,
Azicentri2) using the DAD method. There are three clusters of
inputs identified with different color blocks (1: black; 2: red;
3: green). For each cluster, one kind of sensor is used as
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FIGURE 9. Gyroscope data from a shock impact: the shock impact causes drift (about 10 degrees) in
the angle integration (azimuth) as shown in the bottom subplot.

FIGURE 10. Data from the differential method of two accelerometers under a shock impact; the shock causes drift in the
azimuth angle integration.

a reference to which the other sensors are compared; The
errors are then used as inputs for ANFIS to build the
error models (black center: magnetometers; red center: gyro-
scopes; green center: dual accelerometers). For example,
as shown in the black block of Figure 6, each azimuth angle
from a magnetometer is compared with the azimuth angles
from the other magnetometer, gyroscopes, and accelerom-
eters. The relationship between these relative differences
and the sensor error can be built with ANFIS as shown
in Figure 4, which means the error model of each sensor can

be estimated using the relative differences between this sensor
and other sensors. After comparising the errors of all sensors,
the weights of these sensors are obtained.

For example, if IMUA is affected by a magnetic distur-
bance, but IMUB is not, the magnetometer in IMUA will not
agree with the measurements from IMUA, while all measure-
ments from IMUB will be in agreement. In the event of a
shock event, the gyroscopes in both IMUA and IMUB will
be affected, but disagreement between sensor measurements
can still be used to compute the errors in the signals because
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FIGURE 11. Sensor weights calculated by ANFIS; the blocked off parts show that, when subjected to magnetic disturbances and
shocks, the weights of the sensors are tuned automatically.
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FIGURE 12. The proposed ANFIS method compared with a traditional KF; the covariance matrices are
computed based on the standard deviation values of the first 1000 measurements from the gyroscope and
magnetometer.

FIGURE 13. The proposed ANFIS method compared with a traditional KF; the covariance matrix Q is
computed based on the assumption that the gyroscope disturbances from the shock are known.

the magnetometers are less affected by shocks, and therefore,
will have more accurate measurements [39]. Calculation of
the weights of WANFIS1 . . .WANFIS7 based on the different
azimuth error values is shown in Figure 6 (4: orange block);
the ratio of one error to the sum total error is the weight that
denotes how accurate the sensor is. After normalization, these
weights are used for the final azimuth output.

IV. LAB-SCALE EVALUATION AND RESULTS DISCUSSION
We present two case studies to evaluate the performance
of the proposed muti-sensor configuration and the fusion
method. For the first case study, we applied a magnetic
disturbance to one magnetometer. The other magnetome-
ter was unaffected because it was placed a distance D
away from the first magnetometer [40], [41].Additionally,
the gyroscopes and acceleroemters were subjected to shocks

FIGURE 14. The proposed ANFIS method; if all sensors are not accurate,
the performance of the ANFIS method is reduced.

since both IMUs were mounted on a single rigid body. For
the second case study, both magnetometers were affected
by the same level of magnetic disturbances simultaneously.
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FIGURE 15. Rotational plan of verification case 1.

Also, as in the first case study, all sensors were disturbed by
shocks.

Furthermore, we investigated the sensitivities of the
proposed SLF.

A. MAGNETIC INTERFERENCE AND SHOCK
IMPACT (CASE STUDY 1)
Figure 7 shows the shock forcesmeasured by a shock hammer
sensor during a shock test (3 direct impacts to the rotation arm
at 15 cm from IMUA and 45 cm from IMUB).
Figure 8 shows the data from the two magnetometers: the

azimuth angle from magnetometerA is blue, and the azimuth
angle from magnetometerB is black. MagnetometerB was
affected twice by the simulated magnetic interferences, while
magnetometerA remained unaffected by both interferences.
The lower subplot of Figure 8 shows the magnetometers
are slightly affected by the shocks (the noise data are mea-
sured from the shock experiment, Figure 7). The data from
magnetometerA clearly shows the effect of the shocks, but for
magnetometerB, the effect of the shocks is unclear because
magnetometerB suffered from both the shocks and the mag-
netic disturbance at the same time.

Figure 9 shows the output results of the impact of
the shocks on the gyroscopes. The disturbance data were
obtained from the same shock test. The bottom plot of
Figure 9 shows the integration of the gyroscope signal (angu-
lar velocity). The results show that the shock impact caused an
angle drift (around 10 degrees) during the integration process.

Figure 10 shows the angular speed from two accelerome-
ters (disturbances were obtained from the same experiment)
and their integrations (rotation angles). These results were
calculated from Equation (4) with different ratio factors
(a1&a2 show the ratio factor obtained from the tangential
accelerations; b1&b2 show the ratio factor calculated from
the magnetometer azimuth and gravity inclination of IMUB,
which is affected by the magnetic interferences; c1&c2 show

FIGURE 16. Shock force in verification case 1.

FIGURE 17. The magnetic disturbance in verification case 1.

the factor is from IMUA, which is not affected by the
magnetic interferences). DAD provides redundant azimuth
information, but as indicated in the final integrated results
(second column of Figure 10), the angles drift due to the
shock.

Figure 11 shows the weights calculated by SLF (the SLF
method structure is shown in Figure 6). There are seven
weights for the seven azimuth angles. They are classified by
sensor type with the same time-line. The SLF weights shown
in subplot 2 of Figure 11 are for the magnetometers (one
magnetometer was affected by magnetic disturbances and the
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FIGURE 18. SLF performance in verification case 1.

other one was not). As indicated by the purple block, during
the magnetic disturbances, the weight of magnetometerB was
tuned to zero automatically (red circle in subplot 2); the
weight of magnetometerA was tuned to almost maximum
(green circle in subplot 2) because magnetometerA was not
affected by the magnetic disturbances. Moreover, during the
shock, the weight of magnetometerA was reduced (subplot
2, dark red block) because the errors from the other sensors
were temporarily reduced by the shock. However, the shock
drifted the gyroscope angles about 10 degrees. Therefore,
the weights of the gyroscopes were tuned to almost zero (grey
blocks in subplot 4 of Figure 11). Finally, the weights of
the azimuth angles calculated from 3 different ratio factors
were tuned automatically as well (shown in subplot 6 of
Figure 11). After the shocks, the magnetometers shared large
weights as shown in subplot 2 because the other sensors
drifted. Also, the relationship between the two magnetometer
weights is inversely proportional: when one reduces, the other

one increases. The ratio of the training data and verification
data was 5:1.

Figure 12 shows the error between the SLF and a tradi-
tional KF (KF of IMUA with a red dashed line and KF of
IMUB with a black dashed line). We computed the covariance
matrices Q & R based on the standard deviation value of
the first 1000 measurements from IMUA and IMUB. The
calculated variance values of the covariance matrices Q & R
were constants during the computation process of the KFs.
The KFs drifted (Figure 12) because of the values of the Q &
R matrices; KFs determined that the gyroscopes were more
trustworthy than the magnetometers. Therefore, when the
gyroscopes drifted because of the shocks, the outputs of the
KFs drifted, too. To investigate the influence of the magnetic
disturbances, we assumed the gyroscope errors caused by the
shocks were known and put them into the Q matrix.
Figure 13 shows that the KF of IMUA is not affected

by the shocks because the magnetometer provides accurate
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FIGURE 19. Rotational plan of verification case2.

information (magnetometerA is not affected by magnetic
interferences). However, the KF of IMUB shows larger errors
than IMUA because the unknown magnetic interferences
affected IMUB (the errors caused by the unknown magnetic
interferences were not put into the R matrix). The black
dashed circles in Figure 13 are the errors in the magnetic
disturbance. The absolute maximum error (AME) of SLF is
0.98 degrees; the AME of KF is 11 degrees (Figure 12) and
47 degrees (Figure 13). With training, SLF reduced the effect
of magnetic and shock disturbances. The KF performed more
poorly compared to SLF.

B. MAGNETIC INTERFERENCE AND SHOCK
IMPACT (CASE STUDY 2)
Figure 14 shows the SLF results in the case where all sensors
are influenced. The response results of SLF to the distur-
bances are circled in the figure. If all sensors are influenced
by the disturbances, the sensors do not adequately compen-
sate for each other, and the performance of SLF is reduced.
To obtain accurate results using SLF, we assume that at
least one sensor does not suffer from the disturbances. The
gyroscopes and accelerometers cannot avoid the effects of
the shocks since they are mounted on a rigid body, but the
magnetometers are not sensitive to shocks [39]. Moreover,
the distrance D between the two magnetometers reduces the
effect of magnetic disturbances. Therefore, SLF performs
well if at least one magnetometer is not affected by the
disturbances. Also, the rotational information provided by the
DADmethod requires that both accelerometers are located on
the same side of the rotational center as shown in Figure 2.
However, the proposed SLF design is based on the supervised
learning method; therefore, to investigate the sensitivity of
SLF to the disturbances with the training signal, we con-
ducted a sensitivity analysis, presented below.

C. SENSITIVITY ANALYSIS
To determine the sensitivity of the proposed method to
different disturbances, we evaluated the method using two

FIGURE 20. Shock force in verification case 2.

additional sets of tests. The new applications were verified
without further training. In the case study and the 1st sensi-
tivity verification case, we trained the ANFIS error models
using a combined movement (inclination and azimuth move
simultaneously) and combined disturbances (magnetic and
shock disturbances occurred at the same time). Therefore,
we used two single movements to verify the performance
of the ANFIS filter. The two single movements include one
of inclination and one of azimuth (implemented at differ-
ent times). Also, the shock and magnetic disturbances were
added to the two single movements separately. For the first
verification case, the magnetic disturbance was added only
during the inclination movement; the shock disturbance was
added only during the azimuth movement. For the second
verification case, we reversed this and added the magnetic
disturbance during the azimuth movement and the shock
disturbance during the inclination movement.

1) SENSITIVITY TO DISTURBANCE VERIFICATION CASE 1
For the first verification case (as shown in Figure 15), there
were two movements: 90 degrees inclination (1st step) and
90 degrees azimuth (2nd step). First, the rotation arm was
rotated from 0 degrees (vertical to the ground) to 90 degrees
(horizontal) on the inclination plane. During this step, the
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FIGURE 21. SLF performance in verification case 2.

azimuth angles were kept constant and only the inclina-
tion angles changed. In this inclination rotation, a magnetic
disturbance was added to IMUB. The magnetic disturbance
(a magnet) was perpendicular to the inclination plane with a
distance 0.3m from IMUB. The magnetic disturbance caused
a 40 degree deviation (magnetometerB, Figure 17). The SLF
reduced the deviation from 40 to 1.5 degrees as shown in
subplot 1 of Figure 18.

After the first step finished, the rotation arm rotated
around the rotation center of the horizontal plane from
0 degrees to 90 degrees then rotated back from 90 degrees
to 0 degrees for the azimuth rotation. Also, a shock hammer
was used to simulate a shock impact 0.15 m from IMUA
during this rotation. The hit direction was horizontal to the
azimuth rotational plane and vertical to the rotational arm.
Figure 16 shows the shock force delivered by a shock hammer
(PCB 208. A03). The magnitude of the force was about
500N with only one impact. In verification case 1 without

training, the SLF performance degraded from 0.259 to 2.227
(RMS value), and the maximum value of the error was
14 degrees.

2) SENSITIVITY TO DISTURBANCE VERIFICATION CASE 2
For the second verification case (Figure 19), there are two
movements: 90 degrees inclination (1st step) and 90 degrees
azimuth (2nd step). First, the rotation arm was rotated from
0 degrees (vertical) to 90 degrees (horizontal) on the incli-
nation plane. During this step, the azimuth angles were kept
constant and only the inclination angles changed. In this
inclination rotation (1st step), a shock hammer was used to
deliver an impact 0.15 m from IMUA in the azimuth rota-
tion. The hit direction was parallel to the azimuth rotational
plane and perpendicular to the inclination plane. After the
first step finished, the rotation arm was only rotated around
the rotation center of the horizontal plane from 0 degrees
to 90 degrees (back and forth) for the azimuth rotation.
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Also, a magnetic disturbance (applied using a magnet) was
applied to IMUB. The magnet was on the azimuth plane 0.3 m
from IMUB.

Figure 21 shows the results of the SLF azimuth estimation
of verification case 2. The magnetic disturbance was imple-
mented in the azimuth rotation and caused an 80 degrees
deviation (magnetometerB). In verification case 2 with-
out training, the SLF performance degraded from 0.259 to
2.84 (RMS value) and the maximum value of the error
was 5 degrees. The proposed SLF method performs less well
in verification cases 2 compared to verification case 1, but
both performed poorly compared to when training cases are
used.

TABLE 3. The effect of the shock and magnetic disturbance in Case
Study 1 (with training), Verification Case 1 and Verification Case 2
(without training).

Table 3 illustrates the effect of shock and magnetic distur-
bances in case study 1 (with training) and verification case 1
and verification case 2 (without training). Symbol O repre-
sents the obtained results are not affected by disturbances,
whereas symbol × represents the results are affected by
the disturbances; and symbol 1 means the results obtained
from SLF without training is greatly affected by disturbances
compared to the SLF with training.

V. CONCLUSION AND FUTURE WORK
In this paper, we first used dual acceleration difference values
to increase the redundant azimuth rotation information, sim-
ilar to what gyroscopes provide, in cases that have no gyro-
scopes. However, direct applications of this set up cause large
errors because of accelerometer noise and low robustness to
shock impacts. To improve accuracy and robustness, we pro-
posed using an SLF. All azimuth angles frommagnetometers,
gyroscopes, and accelerometers were compared, and their
relative errors were put into the ANFIS to build error models.
The final weights of each sensor were calculated according
to the outputs of each error model.

The proposed method performs well under the assumed
conditions: 1) the reference angle can be obtained, 2) only one
magnetometer is affected by magnetic disturbances during a
specific time interval because of distance D, 3) two IMUs
rotate at one end of the rotation center, and 4) this method
is only applied under similar conditions in a training environ-
ment. The unknown magnetic and shock disturbances caused

angle errors that are corrected using the proposed fusion
method. However, under the worst conditions (all sensors are
not accurate), the error cannot be sufficiently reduced.

The proposed SLF was verified using two verification
cases. In unknown application environments, without further
training, the performance of SLF degraded from 0.259 (RMS
error value) to 2.227 (RMS error value of verification case 1)
and to 2.84 (RMS error value of verification case 2).

As future work, this research outcome can be extended
to industry field applications. For example, the outcome can
be combined with drilling survey data (used as a reference)
to increase continuous wellbore positioning accuracy. The
details of the drilling survey data obtained are shown in [1].
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