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ABSTRACT Traditional truth inference algorithms take multiple source labels as input and infer true labels
for objects. Besides source labels, object features have been introduced in inference algorithms to achieve
superior performance. A typical algorithm such as learning from crowds learns a classification model with
the guide of inferred true labels where true labels are inferred from source labels. However, the main
shortcoming exists in current algorithms and limits their inference performance: label noise. Since source
labels from real-world data are noisy, a classifier is likely to be misguided to learn an imprecise decision
boundary. In this paper, we propose a deep clustering-based aggregation model (DCAM) to overcome the
shortcoming. DCAM introduces clustering for object features to form fine-grained clusters, where objects in
the same cluster are supposed to have similar labels. DCAM exploits a cluster label distribution to represent
the labeling information of all objects in the corresponding cluster to overcome the problem of label noise.
To implement the idea of clustering-based truth inference, DCAM integrates source label generation and
deep clustering in a unified framework by utilizing maximum a posteriori (MAP) estimation. Therefore,
the proposed model is a novel approach for truth inference with object features. Experimental results on
eight real-world inference tasks show that DCAM has a significant improvement of inference accuracy over
the state-of-the-art truth inference algorithms. We further discuss the effect of cluster numbers, the quality
of clustering, and illustrate the learned embeddings to support the effectiveness of DCAM.

INDEX TERMS Crowdsourcing, truth inference, clustering methods, neural networks, unsupervised learn-
ing, machine learning.

I. INTRODUCTION
Truth inference aims at inferring true labels or objective
opinions from different sources, which is also known as
truth discovery or label aggregation for crowdsourcing tasks
[25], [49]. A simple algorithm, majority voting infers the
most voted label as the true label and is widely used in
many voting scenarios [4]. As a key technology to solve the
problems of massive instance labeling and information explo-
sion, truth inference attracts increasing attention in machine
learning.

Supervised machine learning tasks usually need a large
number of labeled training instances to yield a desirable
model, especially for deep learning models containing mil-
lions of parameters to optimize [21]. A common way to
obtain labeled instances is from domain experts, but the
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cost of labeling is usually high and it is time-consuming
to collect sufficient labels. An alternative is to distribute
labeling tasks to online users where each user labels a certain
part of the whole task. Crowdsourcing platforms such as
AmazonMechanical Turk [17] and CrowdFlower [9] provide
promising approaches to labeling by the crowds. Crowd-
sourced labeling has the advantages of efficiency and low
cost, but labels from ordinary online users are commonly less
accurate than from experts. To reduce the noise, aggregating
multiple labels is necessary for many crowdsourced labeling
tasks [36]. On the other hand, information publication and
propagation have become convenient and efficient today.
Everyone can be regarded as an information source. When
searching for information, we confront descriptions, discus-
sions, and opinions from various sources. Even for the same
object or event, the information from various sources may be
different or conflicting with each other. Finding true or valu-
able information (truth) is one of the essential topics in the
era of information explosion [25].
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Truth inference is usually considered in the domain of
unsupervised learning since labeling tasks do not provide
ground truth [25]. Traditionally, an inference algorithm
takes multiple labels from various users or sources as input
and infers true labels for objects. During the past decade,
researchers have developed sophisticated inference algo-
rithms by modeling the relationships between true labels and
labels provided by sources, where the capability of a source
to provide correct labels is considered as the most important
factor. In the literature, weighted majority voting [4], [24],
trust propagation [14], [29], [46], and generative models
[5], [30], [35], [36], [38], [41], [42] are extensively resear-
ched. Recently proposed label-aware autoencoders bridging
label aggregation and neural networks, provide more flexible
modeling approaches for truth inference [45].

When object features are available, we can improve the
performance of an inference algorithm by introducing object
features in the model to utilize the additional information
from those features. Such an algorithm not only models the
relationship between true labels and source labels but also
models the relationship between true labels and object fea-
tures [1], [3], [11], [30]–[33], [44]. Figure 1 gives a workflow
of truth inference with object features. Learning from crowds
is a typical framework to infer true labels by using object
features [31]. Without ground-truth labels, the original paper
considers a supervised learning problem to train a classifier
with imperfect source labels. The proposed label inference
model is also suitable for truth inference in an unsupervised
manner. For example, a classifier is learned with the guide of
inferred true labels where true labels are inferred from source
labels [31].

FIGURE 1. A workflow of truth inference by using object features. In the
example, the image is used as object features, which is denoted by a
dashed arrow. On the other hand, a traditional inference algorithm only
uses source labels as input. In this paper, we focus our scope on
inference algorithms.

Though inference accuracy is improved comparing with
algorithms without using object features, there exists a main
shortcoming in currently proposed methods which limits
their performance: label noise. Most algorithms adopt the
learning-from-crowds framework and use inferred true labels
to guide the training of the classifier [1], [11], [31], [33], [44].
The framework is inspired by supervised learning where a
classifier is guided by ground-truth labels. However, source

labels from real-world data are noisy, which may also lead
to noisy inferred labels. As a result, a noisy label may mis-
guide the classifier to learn an imprecise decision boundary.
Figure 2 gives an intuitive example. The problem of label
noise is severe with sparse source labels where an object
receives labels from only a tiny number of sources. Those
labels are insufficient to infer reliable true labels. From our
point of view, object features provide additional information
than source labels and are supposed to bring objects with
similar features together to reduce the noise from source
labels. Unfortunately, previous methods consider each object
in isolation and do not provide explicit solutions to using
object features to overcome label noise.

We propose a deep clustering-based aggregation model
(DCAM) to make full use of object features and overcome
the problem of label noise. DCAM introduces deep clustering
for object features to form clusters. The number of clusters is
usually set larger than label categories, to obtain fine-grained
clusters which reflect underlying unambiguous patterns of
objects. Similar objects in the same cluster are then supposed
to have similar labels, therefore inferring a true label for a
single object benefits from source labels of other objects in
the same cluster. With enriched labels, a cluster may infer
a more accurate label than using a single object. Thus label
noise is substantially alleviated. Figure 2c gives an intuitive
example to illustrate utilizing clustering to reduce label noise.
In DCAM, we introduce cluster labels as a model parameter
to represent the aggregated information of source labels of all
objects in the corresponding clusters.

Specifically, DCAM develops a deep clustering method to
obtain fine-grained clusters in the embedding feature space
from object features, and a generative process to generate
source labels by utilizing cluster labels. DCAM exploits
maximum a posteriori (MAP) estimation to integrate deep
clustering and label generation in a unified framework. In the
framework, label generation is regarded as a likelihood of
generating source labels from model parameters, and deep
clustering is regarded as a prior for model parameters given
object features. After model optimization, cluster labels are
used to infer reliable true labels. To the best of our knowledge,
DCAM is a pioneering algorithm to introduce clustering for
truth inference and to bridge label inference and deep clus-
tering in a unified framework. The performance of DCAM is
compared with the state-of-the-art truth inference algorithms.
The experimental results show a significant inference accu-
racy improvement of DCAM over compared algorithms. The
effect of cluster numbers is further discussed and learned
embeddings are illustrated to support the effectiveness of
DCAM.

II. RELATED WORK
The original purpose of truth inference is to extract diagno-
sis data from multiple doctors. In 1979, Dawid and Skene
proposed a classical aggregation model that evaluates the
credibility of doctors and is optimized by the expectation-
maximization algorithm [8]. Recently, the topic of truth

VOLUME 8, 2020 16663



L. Yin et al.: Truth Inference With a Deep Clustering-Based Aggregation Model

FIGURE 2. An intuitive example to illustrate how noisy labels misguide the classifier to learn an imprecise decision boundary (b)
and how clustering is utilized to reduce label noise (c). We consider binary labels and use circles to denote category 1 and triangles
to denote category 2. As a simple example, we assume each object infers a true label by majority voting from source labels and
lo1 = 1 indicates the majority voting result is category 1 for object o1. Object features are represented by the relative position of an
object in the figure. We use a dashed line to represent the learned decision boundary. (a) A noise-free case. In the ideal case,
source labels are noise-free and majority voting results are correct. Then the learned decision boundary with the guide of majority
voting results is precise. (b) A case with noisy labels. Source labels of object o3 are noisy and lead to a noisy majority voting label
lo3 = 2, where the correct true label should be 1. With the noisy label, a classifier may mistake o3 as it is from category 2 and learn
an imprecise decision boundary. (c) Clustering is utilized to reduce label noise. Close objects form clusters. In the simple example,
we apply majority voting on inferred labels of objects in the same cluster and obtain a cluster label. Cluster labels (lc1 and lc2 ) are
more likely to be correct by considering all objects in the same cluster rather than a single object, that guides a model to learn a
correct decision boundary.

inference is also researched as truth discovery or aggregating
crowd wisdom, which is regarded as a promising approach
to alleviate the noise from multiple sources [25], [46], [49].
The rapid development of online crowdsourcing platforms
such as Amazon Mechanical Turk [17] and CrowdFlower [9]
support the research and application of crowdsourced label-
ing. The research on distributing crowdsourcing tasks
[23], [34] and aggregating labels [25], [39] is becoming
popular.

Traditional truth inference algorithms focus on exploiting
labels from online users or sources. Among them, weighted
majority voting, trust propagation, and generative models
attract the most attention and are extensively researched. As a
direct extension from traditional majority voting, weighted
majority voting estimates a weight for each source [4], [24].
This kind of method has advantages for understanding, illus-
tration, and implementation. However, since the model is
relatively simple, the inference accuracy is mediocre. Trust
propagation algorithms explicitly assign trustworthiness for
each source and reliability for each label. A typical algorithm
iteratively propagates source trustworthiness and label relia-
bility to reach convergence [46]. The underlying assumption
is that labels from trustworthy sources are more reliable and
sources with reliable labels are more trustworthy. The gen-
erative framework is utilized by more recent work for truth
inference [5], [26], [30], [35], [38], [41], [42]. A probabilis-
tic model is usually constructed to generate observed labels
from the interaction of underlying (unknown) true labels and
source credibility. Optimization methods such as maximum
a posteriori (MAP) or Bayesian estimation are adopted for
model inference. With the flexibility of probabilistic models,
factors besides source credibility are introduced by various
models, such as object difficulty [5], [42], latent space [41],
and confusion matrix [26], [35].

Recently proposed label-aware autoencoders build a
bridge between truth inference and neural networks [45].

Analogizing to variational autoencoders [20], label-aware
autoencoders infer true labels by simultaneously learning
a classifier and a reconstructor, which are parameterized
by neural networks respectively. Introducing neural net-
works makes truth inference modeling more flexible. Other
interesting work about truth inference algorithms includes
max-margin majority voting [36], truth existence model-
ing [50], minimax conditional entropy [51], [52], rank aggre-
gating [15], [28], crowd clustering [16], etc. Truth inference
techniques are also exploited for multi-label inference in
recent work [37], [48].

Besides labels from sources, features of objects are utilized
to achieve higher inference accuracy. There are mainly two
modeling frameworks: classifying and generative methods.
The classifying framework is also known as learning from
crowds, which is conventionally researched in the domain
of supervised learning to train classifiers from imperfect
source labels. Classifying methods generate source labels
from a true label and the true label is obtained from the
corresponding object features through a classifier [30], [31].
Yan et al. further model source credibility affected by fea-
tures of the labeling object based on the classifying frame-
work [44]. Besides linear classifiers, deep neural networks are
also exploited to enhance the learning capacity of the classi-
fier [1], [11], [33]. The generative framework assumes object
features and source labels are both generated from a true
label of the corresponding object [12], [13]. Atarashi et al.
recently proposed a model for semi-supervised learning by
using labels from crowds under the generative framework [3].
To make model inference easier, the proposed model utilizes
the technology of variational autoencoders (VAE) [19]. Some
algorithms design a specific structure for specific data types.
For example, combining latent Dirichlet allocation (LDA) in
the model for textual data [32] and utilizing convolutional
neural networks for image data [1], [7]. Proposed DCAM is
a general approach that does not assume a specific data type.
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A recent work utilizes traditional clustering methods for truth
inference [47]. The method succeeds on small datasets with
well-formed clusters, but this may not be the case of large
and sparse datasets where a few clusters corresponding to
the label categories cannot separate the dataset well (e.g. our
experimental datasets). DCAM utilizes fine-grained cluster-
ing to overcome the problem.

Deep clustering is a recently proposed research topic to
combine deep learning and clustering. The idea is to exploit
a deep model (usually a deep neural network) to learn latent
embedding of object features, and to conduct clustering in
the embedding feature space. Since the embedding feature
space represents objects more clearly, deep clustering meth-
ods achieve superior performance than clustering in the orig-
inal feature space [2]. Most deep clustering methods use an
autoencoder to learn latent embedding and exploit a self-
paced objective function for model optimization. Such an
objective function pulls a latent embedding close to the cor-
responding cluster centroid and pushes the embedding away
from other centroids [22], [43]. Other deep clustering meth-
ods adopt deep Gaussian mixture models and construct deep
clustering as a generative process: First generate a cluster
index from a specific distribution; Then generate underlying
embedding from the cluster; Finally generate object features
from the embedding [10], [18]. These models benefit from
VAE by simplifying model inference. Though truth inference
and deep clustering are respectively researched, to the best of
our knowledge, there is no pioneering work combining both
of them in a unified framework, which utilizes clusters to infer
true labels.

FIGURE 3. An example of constructing label vector lllm by collecting all
labels received by object m. There are are 5 sources in total and labels
are in binary categories. For object m, source 1, 4, and 5 contribute their
labels respectively while source 2 and 3 do not. A label vector lllm is
one-hot encoded for each source block. Zeros are filled for unlabeled
source blocks.

III. PRELIMINARIES
A. PROBLEM DEFINITION
A label set {lmn} contains labels forM objects fromN sources.
lmn denotes a label object m received from source n, m ∈
{1, . . . ,M} and n ∈ {1, . . . ,N }. We consider categorical
labels, whichmeans lmn ∈ {1, . . . ,K }, whereK is the number
of label categories. For the convenience of representation
and easiness of use in neural networks, we follow label
vectorization in label-aware autoencoders and arrange all
labels belonging to object m in a label vector lllm [45]. lllm
has N source blocks corresponding to N sources and thus
contains all labeling information of the object (see Figure 3).
Traditional truth inference aims to infer a true label t̃m for

each object m given the label vector. In this paper, object
feature xxxm of each object is supposed to be available to make
high-quality inference.xxxm ∈ RI where I is the dimensionality
of a feature vector.

B. LEARNING FROM CROWDS
We introduce (deep) learning from crowds [31], [33] for truth
inference, which is used as a baseline in this paper. The
introduction is also helpful to show the difference between the
learning-from-crowds framework which directly generates a
true label through a classifier and proposed DCAM which
generates a true label from clusters. Though learning from
crowds is originally proposed for training a classifier from
imperfect source labels in supervised learning, the framework
is quite suitable for truth inference with object features in an
unsupervised manner.

A learning-from-crowdsmodel aims tomaximize the prob-
ability of generating source labels from a true label

p({lllm};2) =
M∏
m=1

K∑
ym=1

p(lllm|ym;2)p(ym;2), (1)

where ym represents an inferred true label for objectm. Model
parameters are denoted by2. Each label vector lllm is assumed
to be independent and identically distributed given a true
label ym and model parameters 2. Since label vector lllm
is a combination of N source blocks, we have a label lmn
for each source n generated from a categorical distribution
independently.

p(lllm|ym;2) =
N∏
n=1

p(lmn|ym;2)

p(lmn|ym;2) = Cat
(
πππn(ym)

)
. (2)

Cat(·) denotes a categorical distribution. Distribution param-
eter πππn(ym) for each source n is output by using ym as
input, via a neural network with weight matrix wwwn. ym is
one-hot encoded as the input in the neural network. The
neural network output should be a valid distribution, therefore
softmax is exploited as the activation function of the out-
put layer. To make a simpler representation and convenient
implementation, we join all N small neural networks with
weightwwwn into a big neural network parameterized bywww. The
big neural network computes labels for all source blocks from
ym simultaneously and results in label vector lllm. The neural
network implementation is an extended weighted majority
voting [45] which is comparable to theK -coinmodel in learn-
ing from crowds [31]. Authors of deep learning from crowds
call this neural network a crowd layer [33]. By the treatment,
learning from crowds and deep learning from crowds have the
same representation of generating source labels from a true
label.
When object features are available, p(ym;2) becomes

a prior distribution which directly generates ym from a clas-
sifier given object feature xxxm as input

p(ym;2) = p(ym|xxxm;δδδ). (3)
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FIGURE 4. Plate notation for learning from crowds, deep learning from crowds, and DCAM. Shaded circles denote observed data (label
vectors and object features). A single solid arrow denotes a generative distribution; Paired solid arrows denote a distribution or function
parameterized by a multiple-layer neural network. (a) A learning-from-crowds model directly generates a true label through a linear
classifier. (b) A deep-learning-from-crowds model generates a true label through a deep neural network. (c) DCAM generates an inferred
label from clusters. The framework contains a probabilistic model for label generation and a deep neural network for the clustering
regularizer. A single dashed arrow denotes a function to compute πππz from hhh and µµµc . In the figure, some prior distributions on model
parameters are omitted for simplicity.

δδδ denotes the parameter of the classifier. A learning-from-
crowds model exploits a linear classifier, which can be con-
structed by a fully connected neural network with only input
and an output layer. The activation function of the output layer
is softmax to make the output a valid distribution. A deep-
learning-from-crowds model replaces the linear classifier
with a deep classifier which is constructed by amultiple-layer
neural network to enrich the learning capacity [33]. Model
parameters of both learning from crowds and deep learning
from crowds are optimized by using Expectation-Maximizing
methods to maximize Eqn. (1). Figure 4a and 4b illustrate the
structures of those models.

IV. DEEP CLUSTERING-BASED AGGREGATION MODEL
A. MAP ESTIMATION AND LABEL GENERATION
We propose a deep clustering-based aggregation model
(DCAM) which utilizes object features to improve inference
quality for truth inference tasks. Given label set {lllm} and
object feature set {xxxm}, DCAM supposes source labels are
generated from model parameters 2 while model parame-
ters depend on the object feature set. Specifically, DCAM
optimizes model parameters 2 via maximum a posteriori
(MAP) estimation. The MAP estimation is further written
into a likelihood term and a prior term.

2∗ = argmax
2

p(2|{lllm}, {xxxm})

= argmax
2

p({lllm}|2)p(2|{xxxm})

= argmax
2

M∑
m=1

log p(lllm|2)+ log p(2|{xxxm}). (4)

The equation assumes each object has a label vector indepen-
dent with other objects givenmodel parameters. The first term
in the right-hand is the log-likelihood of generating source

labels frommodel parameters, and the second term is the log-
prior on model parameters. In DCAM, we treat the log-prior
term as a regularizer to constrain model parameters to allow
flexible model construction.

DCAM introduces clusters for true label inference. For
the label generation part, DCAM supposes source labels are
generated from cluster labels which are associated with cor-
responding clusters. The probability of belonging to a spe-
cific cluster is computed by measuring distances between the
latent embedding of features of the object and all cluster cen-
troids. For the regularizer part, DCAM develops a deep clus-
tering method to produce and constrain latent embeddings
and cluster centroids based on the object feature set. In this
manner, DCAMbridges label inference and deep clustering in
a unified framework, as a novel approach for truth inference
tasks with available object features. Figure 4c illustrates the
framework of DCAM. Note that DCAM usually exploits
many more fine-grained clusters than label categories.
Benefiting from a sufficient number of clusters, the assump-
tion that objects in the same clusters have similar labels
is easy to satisfy so that DCAM achieves a desirable
performance.

In this subsection, we focus on the label generation part.
A generative process is constructed to generate source labels
from clusters. Suppose there are C clusters. For each object,
we draw a cluster index z ∈ {1, . . . ,C} first. Then we draw
an inferred label y for the object from the chosen cluster z.
Finally, we draw label vector lll from y. Note that here we use
a brief notation that omits the subscriptm for a specific object.
Formally, the generative process is described as follows.

For each object:
1. Draw cluster index z with

p(z) = Cat(πππ z). (5)
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Cat(πππ z) is a categorical distribution which uses πππ z as the
probability of each cluster being chosen.1 πππ z is a vector of C
dimension where the c-th element is computed from a normal
distribution with the distance between latent embedding hhh
and cluster centroid µµµc. The result is then normalized by
computing the distributions between the latent embedding
and all cluster centroids.

πππ z|c =
e−||hhh−µµµ

c
||
2/2∑C

c′=1 e
−||hhh−µµµc′ ||2/2

. (6)

We use vvv|c to denote the c-th element in vector vvv. A normal
distribution assigns a large probability for close clusters and
a tiny probability for distant clusters. In practice, the distri-
bution is effective to distinguish several close clusters from
many distant clusters when the number of clusters in DCAM
is usually more than 100. Latent embedding hhh and cluster
centroids {µµµc} are produced and constrained from a deep clus-
tering regularizer which is described in the next subsection.

2. Draw inferred label y given cluster index z with

p(y|z = c) = Cat(πππcy). (7)

y ∈ {1, . . . ,K } andπππcy has dimensionality ofK whereK is the
number of label categories. Each cluster c has its own cluster
label distribution πππcy. The distribution is regarded as a model
parameter to optimize.

3. Draw label vector lll from y with

p(lll|y) =
N∏
n=1

p(ln|y)

p(ln|y) = Cat
(
πππnl (y)

)
. (8)

We use ln to denote the label received from source n of the
object. Here we utilize the same neural network representa-
tion as in the description for Eqn. (2), where each small neural
network for source n is denoted aswwwnπl , and the joint big neural
network is denoted as wwwπl .
By exploiting the generative process, we have the joint

distribution over lll, y, and z.

p(lll, y, z) = p(lll|y)p(y|z)p(z). (9)

By using the definitions of corresponding distributions
(5), (7), and (8), the likelihood of generating lll from model
parameters in Eqn. (4) is derived as

p(lll) =
K∑
y=1

C∑
z=1

p(lll|y)p(y|z)p(z)

=

K∑
k=1

C∑
c=1

( N∏
n=1

K∏
k ′=1

(
πππnl (k)|k ′

)1(ln=k ′))πππcy|k πππ z|c, (10)

where 1(ln = k ′) is an indicator. It is 1 if the expression
(ln = k ′) is true, otherwise 1(ln = k ′) = 0.

1Subscript z in πππ z indicates the probability is used to generate variable z.
It is only a name which does not change with the variable.

B. REGULARIZER AND DEEP CLUSTERING
We treat the log-prior term in Eqn. (4) of DCAM as a regu-
larizer, which may not strictly follow traditional probabilistic
distributions but offers a more flexible approach to constrain-
ing model parameters. From Eqn. (6), (7), and (8), we have
model parameters in DCAM as

2 =
{
ψψψ, {µµµc}, {πππcy},wwwπl

}
, (11)

where c ∈ {1, . . . ,C}.ψψψ is themodel parameter of a mapping
function fψψψ (·) to compute embedding hhh from input feature
vector xxx

hhh = fψψψ (xxx). (12)

Generally, the mapping function can be chosen from various
models. In this work, we use a multiple-layer fully connected
neural network as f and ψψψ denotes model parameters in the
neural network.

We develop a deep clustering regularizer to constrainψψψ and
{µµµc}. In other words, we utilize deep clustering to cluster sim-
ilar objects in the embedding feature space, instead of directly
clustering objects in the input object feature space. A latent
embedding hhh thus has the same dimensionality as cluster
centroids, and a hyperparameter J denotes the dimensionality
of the embedding feature space. A clustering regularizer aims
to learn effective embedding by balancing two forces. One
force is to pull the embedding vector of an object close
to the cluster centroid which the object belongs to and to
push the embedding vector away from other cluster centroids.
The other force is to maintain essential information of input
object features in the corresponding embedding vectors to
avoid trivial solutions. We exploit a clustering loss and a
reconstruction loss to represent these two forces respectively.
Formally, the proposed deep clustering regularizer has the
following objective function

Lcr (ψψψ, {µµµc}; {xxxm})=Lc(ψψψ, {µµµc}; {xxxm})+Lr (ψψψ; {xxxm}), (13)

where Lc denotes the clustering loss and Lr denotes the
reconstruction loss.

The clustering loss is constructed via a self-paced learning
manner, to encourage the current clustering distribution qqq to
approach a self-paced target distribution sss, which is imple-
mented by the cross entropy between these two distributions

Lc(ψψψ, {µµµc}; {xxxm}) = Lc({µµµc}, {hhhm})

= −

M∑
m=1

C∑
c=1

sssm|c logqqqm|c , (14)

where hhhm = fψψψ (xxxm). Current clustering distribution qqq is a
vector of C dimension, which is obtained from the Euclidean
distance between hhhm and µµµc via a t-distribution. The c-th
element in the vector is

qqqm|c =
(1+ ||hhhm −µµµc||2/ν)−

ν+1
2∑C

c′=1(1+ ||hhhm −µµµc
′
||2/ν)−

ν+1
2

, (15)

where ν is the number of degrees of freedom in t-distribution.
In this paper, we set ν = 1 to encourage the change of clusters
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during model learning. A self-paced target distribution sss is a
sharper version of qqq

sssm|c =
(qqqm|c)α∑C
c′=1(qqqm|c′ )α

. (16)

In this paper, we set α → +∞ to reduce noise when the
number of clusters is usually more than 100 in DCAM. That
results in a smoothed one-hot vector

sssm|c =

{
1− (C − 1)ε, if qqqm|c is the largest in qqqm,
ε, otherwise.

(17)

ε is a small value to avoid zeros in sss, since zeros may lead
to overfitting by learning the distance between hhh and µµµc to
be infinite. By exploiting the self-paced target sssm, the cross
entropy in Eqn. (14) pulls the embedding vector hhhm close
to the cluster centroid µµµc since sssm|c > qqqm|c, if qqqm|c is
the largest element in the distribution vector, and pushes the
embedding vector away from other cluster centroids since
sssm|c′ < qqqm|c′ , c′ 6= c. The introduction of smoothed one-
hot target distribution is the main difference from other deep
clustering methods [2], which is effective to distinguish one
cluster from other clusters for an object when the number of
clusters is large.

A reconstruction loss measures the similarity between
input object feature vectors and reconstructed vectors, which
is defined by the logarithm probability of generating input
vector xxxm from reconstructed vector x̃xxm

Lr (ψψψ; {xxxm}) = −
M∑
m=1

log p(xxxm|x̃xxm), (18)

where a reconstructed vector

x̃xx = g
ψ̃ψψ
(hhh) = g

ψ̃ψψ

(
fψψψ (xxx)

)
. (19)

Here we omit the subscript m for simplicity. g
ψ̃ψψ
(·) is a map-

ping function to compute x̃xx fromhhh, which usually has a mirror
structure as fψψψ (·). We use two multiple-layer neural networks
to model fψψψ (·) and g

ψ̃ψψ
(·) respectively, which results in an

autoencoder to reconstruct x̃xx from xxx, through embedding hhh.
If xxx is assumed from a multivariate Bernoulli distribution

p(xxx|x̃xx) = Ber(x̃xx), (20)

then

log p(xxx|x̃xx) =
I∑
i=1

(
xxx|i log x̃xx|i + (1− xxx|i) log(1− x̃xx|i)

)
, (21)

where I is the dimensionality of object feature vector xxx. When
using a multivariate Bernoulli distribution, we exploit sig-
moid as the activation function for the reconstruction layer to
ensure each element in a reconstructed vector x̃xx|i ∈ {0, 1}, i ∈
{1, . . . , I }. If xxx is assumed from a multivariate normal distri-
bution, the result is equivalent to the minus square distance
between xxx and x̃xx. When using a multivariate normal distribu-
tion, there is no need to exploit a specific activation function.

Besides the deep clustering regularizer in Eqn. (13) con-
strains model parameters ψψψ and {µµµc}, we also assign prior

distributions for model parameters ψψψ , {µµµc}, {πππcy}, and wwwπl
respectively to prevent them from overfitting. Each element
in the model parameters is supposed to follow a normal
distribution N (0, 1). And the corresponding log-prior is

log p(2)=−
1
2

(
||ψψψ ||2+||wwwπl ||

2
+

C∑
c=1

(||πππcy||
2
+ ||µµµc||2)

)
.

(22)

We rearrange all weight elements as a vector, when calculat-
ing the Euclidean norm of weights in a neural network.

C. MODEL TRANING AND TRUE LABEL INFERENCE
An overall objective function of DCAM is derived by substi-
tuting Eqn. (10), (13), and (22) into the MAP estimation (4)

2∗ = argmax
2

M∑
m=1

log p(lllm|2)− Lcr (ψψψ, {µµµc}; {xxxm})

+ log p(2). (23)

Since we introduce a self-paced learning manner in the deep
clustering regularizer, in each training epoch, we first calcu-
late the self-paced learning target sss based on current model
parameters, then update all model parameters given sss via gra-
dient ascent. Algorithm 1 illustrates a brief training process
of DCAM.

Algorithm 1 DCAM
Input:
{lllm}, set of source labels
{xxxm}, set of object features
C , number of clusters
J , ν, hyperparameters

Output:
2 =

{
ψψψ, {µµµc}, {πππcy},wwwπl

}
, model parameters{

t̃m
}
, set of inferred true labels

1: Initialize embedding {hhhm} by constructing an autoen-
coder to minimize Eqn. (18)

2: Initialize cluster centroids {µµµc} by K-means on {hhhm}
3: while not convergent do
4: Calculate self-paced learning target {sssm} given {hhhm}

and {µµµc} via Eqn. (17)
5: Update 2 based on current {sssm} via Eqn. (23)
6: end while
7: for m = 1 to M do
8: Infer t̃m as the category of maximum probability in

p(ym|lllm;2) via Eqn. (24)
9: end for

After model training and model parameters are optimized,
a true label of an object is inferred by using the poster
probability given lll.

p(y|lll;2) =

∑
z p(lll, y, z;2)∑

y′,z′ p(lll, y′, z′;2)

=

∑C
z=1 p(lll|y)p(y|z)p(z)∑K

y′=1
∑C

z′=1 p(lll|y′)p(y′|z′)p(z′)
. (24)
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An inferred true label of the object is then chosen by the
category which achieves the maximum probability. From the
equation, we can explain the effectiveness of clustering-based
truth inference. Besides generating source labels through
p(lll|y), a true label is inferred by collecting cluster label
distributions p(y|z) with the probability p(z) of belonging
to the corresponding clusters. A cluster label distribution
contains labeling information of all objects belonging to the
cluster, therefore it is effective to alleviate the problem of
label sparsity and label noise.

D. COMPUTATIONAL COMPLEXITY
We briefly analyze the computational complexity of DCAM.
DCAM is mainly constructed and implemented with neu-
ral networks. By using back-propagation, the computational
complexity of training a neural network is proportional to
the number of objects, the size of the network, and training
epochs. Denote the number of objects as M , the maximum
training epochs as T . The size of a neural network can be
represented by the number of weights in the network. For
the label generation part, we haveO(NK 2) for p(lll|y),O(CK )
for p(y|z), O(CJ ) for p(z), and O(CK ) for p(lll), according to
Eqn. (8), (7), (5), (10) respectively. Here N is the number of
sources; K is the number of label categories; C is the number
of clusters; And J is the dimensionality of the embedding
feature space. Then the computational cost for the label gen-
eration part isO(NK 2

+CK+CJ ) for each object in one train-
ing epoch. The computational complexity of the clustering
regularizer has two parts: clustering and reconstruction. The
cost of clustering is O(CJ ) according to Eqn. (14). The cost
of reconstruction depends on the scale of the reconstruction
multiple-layer neural network. Here we suppose the scale of
the network is O(IJL), which maps an input feature vector
of dimension I to a latent embedding vector of dimension J ,
through L layers. Putting the cost of label generation and clus-
ter regularizer together, we have the overall computational
complexity of DCAM as O

(
TM (NK 2

+ CK + CJ + IJL)
)
.

Considering the number of label categories has an upper
bound for most tasks (e.g. K ≤ 10), the computing time of
DCAM is therefore linear with the increasing of the number
of objects, sources, or clusters. Computational complexity
analysis theoretically shows that DCAM is practical for large
inference tasks.

V. EXPERIMENTS
A. INFERENCE TASKS
We conduct truth inference experiments on eight real-world
multiple-labeling tasks with available object features. Table 1
summaries task statistics.

Reuters-21578 contains a document categorization task.
1,786 documents with labels from online users are from
8 categories. 38 users contribute labels giving an average
of approximate 3 answers per document [32]. We apply
latent Dirichlet allocation to bag-of-words feature vectors to
obtain 200 topics as object features [6].

TABLE 1. Task statistics.

CUB-200-2010 dataset contains several tasks to label
binary local characteristics for 6,033 bird images [40].
Seven labeling tasks are used in the experiment, namely
bill (bill shape is all-purpose or not), head (head pattern is
plain or not), shape (shape is perching-like or not), forehead
(forehead is black or not), throat (throat is black or not),
underpart (underpart is yellow or not), and breast (breast
pattern is solid or not). For each task, about 500 users con-
tribute labels and each image receives 5 labels. These tasks
are challenging since source labels are sparse and often dis-
agree with each other. We collect ground truth from what-
bird.com and other bird websites for evaluation. Extracting
high-level features from image pixels through a deep con-
volutional neural network is difficult on the dataset since
the number of images is not large enough to train useful
high-level features from complex image contents which often
contain several other objects besides a bird. Alternatively,
we use 287 local attributes as object features of an image.
Local attributes are collected from online users.

B. IMPLEMENTATION DETAILS
We train DCAM on inference tasks by using Algorithm 1.
A common approach is used to search for hyperparameters.
We first split the dataset into a training set and a validation
set. The model is trained on the training set and we observe
the value of the objective function on the validation set
(i.e. calculate the MAP estimation on the validation set).
Hyperparameters are chosen which achieves the largest value
on the validation set.We then use the hyperparameters to train
the model on the whole dataset. In the experiment, hyperpa-
rameters are set as J = 40 and ν = 1. The inference accuracy
of DCAM is mainly affected by the number of clusters.
We will illustrate the effect via experiments. The autoencoder
constructed in deep clustering has a multiple-layer structure,
with node numbers {I , I/2, 100, J , 100, I/2, I } from the bot-
tom up. I is the number of nodes in the input layer, and J is the
number of nodes in the embedding layer. The reconstruction
loss is chosen according to the distribution of input object
features. We adopt a multivariate Bernoulli distribution as
in Eqn. (21) for all tasks. We use gradient ascent to train
DCAM. The learning rate is set at 0.001 for the underpart
task, and 0.0001 for the other tasks. We implement DCAM
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TABLE 2. Inference accuracy comparison.

by Tensorflow which supports automatic differentiation and
GPU acceleration.2

We train DCAM on one GTX TITANXGPU. The training
process takes 500 epochs for all tasks. The document catego-
rization task takes 50 seconds to complete, with an average
of 0.1s per epoch. The other tasks in the CUB-200-2010
dataset take about 40 seconds respectively, with an average
of 0.08s per epoch. The running time empirically shows
DCAM is practical for truth inference tasks.

C. INFERENCE ACCURACY COMPARISON
We compare inference accuracy among representative truth
inference algorithms. Inference accuracy is the ratio of the
number of objects with correct inferred true labels to the
overall number of objects. Compared algorithms are:

• MV: Majority voting.
• TF: TruthFinder is a typical trust propagation algorithm
by propagating source trustworthiness and label reliabil-
ity when learning a model [46].

• DS: Dawid & Skene’s model is a classical truth infer-
ence algorithm which uses a confusion matrix to model
source credibility [8].

• DARE:A generative algorithmmodels both source cred-
ibility and object difficulty [5].

• LAA: Label-aware autoencoders exploit the framework
of VAE and utilize a neural network to model source
credibility [45].

• MomResp: A Bayesian model combines a feature gen-
eration component with source label generation [12].

• LC: A learning-from-crowds model generates source
labels from a true label and exploits a linear classifier to
generate the true label from input object features [31].

• DLC: A deep-learning-from-crowds model replaces the
linear classifier in LC with a deep neural network to
enhance learning capacity [33].

• ML: A multiple-labelers algorithm models source cred-
ibility affected by features of the labeling object based
on LC [44].

2Demo code is available at https://github.com/coverdark/dcam_
demo_code

• DCAM: The proposed model in this paper integrates
label inference and deep clustering in a unified frame-
work and introduces clusters for truth inference.

Among compared algorithms, MV, TF, DS, DARE, and LAA
only use source labels as input. Besides source labels, Mom-
Resp, LC, DLC, ML, and DCAM utilize object features for
truth inference. We exploit a K -coin model to model source
credibility [31] for algorithms utilizing object features where
K is the number of label categories, to fairly compare with
DLC and DCAM. The capacity of the neural network used
in DLC and DCAM to generate source labels from a true
label is equivalent to a K -coin model. Note that we propose
DCAM as a general algorithm for truth inference tasks and
do not specify data types. Some algorithms specifying data
types are not directly compared [1], [7], [32]. As a pioneering
approach introducing clustering for truth inference, in this
paper, we use a general fully-connected network structure
for the clustering part in DCAM to illustrate the effective-
ness of clustering rather than using specific structures to
deal with data type.3 We consider data specific structures as
further work. Since DCAM has randomness in the clustering
part, we run the algorithm 20 times and report the average
result. Table 2 illustrates inference accuracy for all compared
algorithms.

From Table 2, we can first observe that algorithms utilizing
object features usually achieve superior performance than tra-
ditional truth inference algorithms using only source labels.
Since object features bring additional information, this result
seems obvious and encourages researchers to model object
features for truth inference if object features are available.
TF, DS, DARE, and LAA show only a slight or no advantage
compared with MV, which indicates that it is difficult to learn
accurate source credibility from sparse and conflicting source
labels. In algorithmsmodeling object features,MomResp and
LC have comparable performances onmost tasks, which indi-
cates the generative method (e.g. MomResp) and the classify-
ing method (e.g. LC) are both feasible modeling frameworks
to utilize object features and source labels. DLC achieves
higher inference accuracy than LC on some tasks, which

3For fair comparison on all tasks, we use a similar fully-connected network
structure for DLC instead of CNN in the original paper.
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FIGURE 5. Learning curves of DCAM on truth inference tasks.

FIGURE 6. Inference accuracy varies with different numbers of clusters.

shows the effectiveness of exploiting deep neural networks.
However, on the other tasks, DLC does not show superiority
because of label noise. A deep classifier enhances learning
capability but may increase the risk of being affected by label
noise in unsupervised learning. ML has relatively high infer-
ence accuracy on CUB-200-2010 tasks but fails on the docu-
ment task. It is because modeling source credibility affected
by object features may not work when features are noisy.
Among compared algorithms, DCAM achieves the highest
inference accuracy. The result is significant by conducting
a t-test between DCAM and the other algorithm achieving
the highest accuracy (see Table 3), with a null hypothesis of
DCAM and the other algorithm having the same accuracy.
p-values on all tasks are smaller than 0.005. This result shows
DCAMmakes full use of object features and is more effective
than the state-of-the-art truth inference algorithms.

Figure 5 illustrates the corresponding learning curves of
DCAM on all tasks. The algorithm shows stable performance
after the model converges.

TABLE 3. Significance test.

D. EFFECT OF CLUSTER NUMBER
The number of clusters represents the core idea of the
clustering-based aggregation model, which is the key hyper-
parameter affecting the inference accuracy of DCAM.
Figure 6 illustrates the inference accuracy along with differ-
ent numbers of clusters on truth inference tasks. The inference
accuracy increases when the cluster number increases from a
small value and usually achieves the highest when the number
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FIGURE 7. Cluster purity varies with different numbers of clusters.

FIGURE 8. The clustering result of DCAM on the bill task. Cluster number is set as C = 200. 40 bird categories are illustrated with
different colors in the figure and the corresponding bird categories are shown in the box below.

ranges from 100 to 300. The accuracy then decreases when
the cluster number is too large from an appropriate value.
We explain the effect of the cluster number as follows: When
the cluster number is too small, each cluster contains too
many objects even they are not very similar. That confuses
clusters and results in inaccurate cluster labels. When the
cluster number is too large, a cluster contains too few objects,
which is insufficient to infer a reliable cluster label. In the
extreme case when the number of clusters equals the number
of objects, each object is regarded as a cluster and the advan-
tage of DCAM of bringing similar objects together to enrich
the information of cluster labels is eliminated.

E. QUALITY OF CLUSTERING
To further illustrate the quality of clustering, we calculate
the purity of learned clusters with different cluster numbers

in Figure 7. Purity measures the consistency of clusters,
i.e. whether objects in the same cluster have the same gold
label or not. After DCAM is learned, we assign each object to
cluster cwith themaximum probabilityπππ z|c in Eqn. (6). Then
we collect gold labels in each cluster and choose the most
frequent label as the gold label of the cluster. Purity is cal-
culated by the ratio of the total number of objects agree with
their cluster labels to the number of all objects.4 Note that in
DCAM there are many more clusters than label categories,
that make it easier to form fine-grained clusters to group
similar objects in a short distance in the embedding feature
space. Therefore purity is more likely to achieve a high value
when the number of clusters increases. In the extreme case,

4Gold labels are only used for illustration and evaluation.
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FIGURE 9. DCAM is robust with different settings of embedding size on experiment tasks.

purity reaches 1 if the number of clusters equals the number
of objects.

Purity intuitively illustrates the quality of clustering. A low
purity indicates inferior clustering quality and inference accu-
racy that objects in one cluster are not similar or have the
same label. This case usually happens when the number of
clusters is small. When the number of clusters increases from
a small value, purity increases rapidly to achieve a desirable
value, and then the increase becomes mild when the number
of clusters is sufficient. More clusters may hurt the overall
inference accuracy since a cluster does not have enough
objects (and source labels) to support reliable results, even
the purity score is higher.

F. A CASE STUDY OF EMBEDDINGS AND CLUSTERS
From Figure 6, we can observe that DCAM achieves the
highest inference accuracy when the number of clusters is
200 on most tasks from the CUB-200-2010 dataset. Interest-
ingly, the CUB-200-2010 dataset contains bird images from
200 real-world bird categories. By comparing clusters learned
from DCAM and real-world bird categories, we can show the
effectiveness of learned clusters. To see this, we show the
clustering result on the bill task in Figure 8 when the cluster
number is set at 200. For a clear view, we exploit t-SNE [27]
to map the learned embeddings into 2-dimension, and plot
40 bird categories with one color for each category. From
the figure, we can observe most points in a cluster have the
same color, which shows the corresponding objects or images
are from the same real-world category. The observation intu-
itively indicates the learned embeddings from DCAM form
fine-grained clusters which roughly agree with real-world
bird categories. Images of the same bird category usually
share the same characteristics, the corresponding cluster label
is therefore relatively accurate and supports the superior per-
formance of DCAM.

G. EFFECT OF EMBEDDING SIZE
Embedding size is one of the hyperparameters to define the
structure of deep clustering in DCAM. In the experiment,

we find DCAM is robust with different settings of embedding
size. We set the dimensionality of latent embedding hhh ranging
from 10 to 200 for DCAM and illustrate the inference accu-
racy on inference tasks in Figure 9. The results are stable with
different embedding sizes when J ≥ 20 for most tasks. This
result indicates embedding size J = 20 is sufficient for stor-
ing useful information of input object features for experiment
tasks. A large embedding size may bring noise or slightly
decrease accuracy on the document task, but the decreasing
is not observed on the other tasks through the experiment.

VI. CONCLUSION AND FUTURE WORK
We point out the main problem that limits the perfor-
mance of truth inference algorithms utilizing object features:
label noise. We propose a deep clustering-based aggregation
model (DCAM) to overcome the problem. DCAM exploits
clustering to form fine-grained clusters to help true label
inference. With fine-grained clusters, objects in the same
cluster are supposed to have similar labels and they all con-
tribute to the corresponding cluster label distribution to over-
come the problem of label noise. DCAM integrates source
label generation and deep clustering in a unified framework,
which contributes a novel approach for truth inference with
object features. Experimental results show that DCAM has
a significant improvement of inference accuracy compar-
ing with the state-of-the-art inference algorithms on real-
world truth inference tasks. The effect of different numbers
of clusters in DCAM is discussed to further support the
idea of clustering-based truth inference. The experiment also
shows the robustness of DCAM with different embedding
sizes.

In this paper, we propose DCAM as a general approach
for different data types. As future work, we will extend
DCAM to specific data types to figure out whether combin-
ing clustering-based inference model with specific structures
(e.g. CNN for image data) will further improve the inference
accuracy. Another extension is to fit DCAM in the supervised
learning setting as used in learning from crowds. It needs
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a modification of the true label inference since there are
usually only object features available on the test dataset.
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