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ABSTRACT Histopathological image analysis is an important technique for early diagnosis and detection
of breast cancer in clinical practice. However, it has limited efficiency and thus the detection of breast
cancer is still an open issue in medical image analysis. To improve the early diagnostic accuracy of breast
cancer and reduce the workload of doctors, we devise a classification framework based on histology images
by combining deep learning with machine learning methodologies in this paper. Specifically, we devise a
multi-network feature extraction model by using pre-trained deep convolution neural networks (DCNNs),
develop an effective feature dimension reduction method and train an ensemble support vector machine
(E-SVM). First, we preprocess the histological images via scale transformation and color enhancement
methods. Second, themulti-network features are extracted by using four pre-trainedDCNNs (e.g., DenseNet-
121, ResNet-50, multi-level InceptionV3, and multi-level VGG-16). Third, a feature selection method via
dual-network orthogonal low-rank learning (DOLL) is further developed for performance boosting and
overfitting alleviation. Finally, an E-SVM is trained via fused features and voting strategy to perform the
classification task, which classifies the images into four classes (i.e., benign, in situ carcinomas, invasive
carcinomas, and normal). We evaluate the proposed method on the public ICIAR 2018 Challenge dataset of
histology images of breast cancer and achieve a high classification accuracy of 97.70%. Experimental results
show that our method can achieve quite promising performance and outperform state-of-the-art methods.

INDEX TERMS Breast cancer image classification, deep convolutional neural network, multi-network
features, low-rank learning, ensemble support vector machine.

I. INTRODUCTION
Breast cancer is one of the most common types of cancer
and the main leading cause of cancer death among women
worldwide [1]. The cornerstone of breast cancer control is
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early diagnosis, which helps to increase the survival rate of
breast cancer. Currently, the early diagnosis of breast cancer
is usually performed by biopsy. In clinical practice, biopsy
has three main steps. First, the biopsy materials of breast
cancer are obtained by drill-biopsy. Second, histopathology
images are stained by hematoxylin and eosin (H&E) staining.
Third, pathologists perform early diagnosis of breast cancer
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by observing the histology images. However, the diagnostic
performance relies on the doctors’ professional skills and
experience, which is typically subjective and maybe incon-
sistent across different pathologists. To reduce these adverse
effects improve early diagnostic efficiency, and alleviate the
workload burden, the computer-aided diagnosis (CAD) sys-
tems are developed [2]–[5] utilizing image analysis methods.

With the latest development of machine learning and deep
learning techniques [6]–[8], the CAD systems can potentially
offer more reliable classification methods for the histology
images of breast cancer [9]–[15]. These methods are mainly
learnt models to classify the histology images of breast cancer
into two classes (e.g., carcinomas and non-carcinomas) or
four classes (e.g., benign, in situ carcinomas, invasive car-
cinomas, and normal, Fig. 1). As seen from Fig. 1, these
histology images have very large size, uneven H&E staining,
and the great differences between pathological images from
different patients, which have high the intra-class differences
and low the inter-class differences [16]. Therefore, the image
preprocessing [12] is desirable by utilizing scale transforma-
tion and color enhancement [17], where scale transformation
(e.g., downscale and randomly cropped image) is used to
solve the problem of very large image size and color enhance-
ment is used to address the problem of uneven H&E staining.
The image preprocessing helps to narrow the intra-class dif-
ferences and increase the inter-class differences.

FIGURE 1. Examples of microscopic breast cancer histological images:
(a) benign, (b) in situ carcinoma, (c) invasive carcinoma, (d) normal.

It is known that deep convolution neural networks
(DCNNs) have been widely used in many image classifi-
cation tasks with great successes [18]–[21]. The successes
are mainly attributed to the powerful learning ability of
DCNN, which can obtain more important feature informa-
tion. However, they usually only employ single-network fea-
tures, which can hardly get comprehensive image features
and have poor generalization ability. Therefore, the multi-
network features are obtained by using different DCNNs
and different convolution layers, respectively, which can
improve performance and enhance generalization ability. As a
result, we design a multi-network feature model by using
four classical DCNNs (e.g., VGG-16 [18], InceptionV3 [22],

ResNet-50 [21], and DenseNet-121 [23]). Accordingly, dif-
ferent networks have unique advantages in their network
structures, which allows effective capturing of complemented
features.

The VGG-16 network uses a smaller convolution kernel
and piecewise convolution to extract the detailed local fea-
ture information. In the InceptionV3 network, the mixed
modules decompose two-dimensional convolution into two
one-dimensional convolutions, which increases the nonlin-
earity and thewidth of the network to eliminate representation
bottleneck. The ResNet-50 network has a deeper network
structure and the residual module [21], which may solve the
degradation problem in the optimization process and enhance
learning ability. In the DenseNet-121 network, an innovative
dense module [23] is proposed, which connects each layer
to every other layer in a feed-forward fashion. It relieves the
gradient vanishing problem, reinforces feature propagation,
encourages feature reuse and substantially cuts down the
number of parameters.

To further boost the classification performance, this paper
adopts the multi-level InceptionV3 (ML-InceptionV3) net-
work and the multi-level VGG-16 (ML-VGG-16) [12] net-
work by extracting the feature maps of the intermediate layer
of InceptionV3 and VGG-16 networks, which are combined
with DenseNet-121 and ResNet-50 to obtain multi-network
features. Afterward, the features from the preprocessing of
scale transformation and color enhancement are encoded via
3-norm pooling [24] and average encoding methods.

For the medical image data with small samples, it is
well-known that the DCNN models of end-to-end archi-
tectures are prone to overfitting. Additionally, the multi-
network features have high feature dimensions, which leads
to higher computational costs. To address these issues, feature
selection methods are effective ways. However, the exist-
ing methods [25]–[27] have limitations since they mainly
consider the relation between the features from the same
source and the response variables, which fail to consider
the relations among response variables and the complemen-
tary relations among the features of two different DCNNs
(dual-network). Therefore, we propose a dimension reduction
method called dual-network orthogonal low-rank learning
(DOLL) inspired by the previous work [28]. Our proposed
method utilizes joint low-rank learning and orthogonal rota-
tion among dual-network features, which can consider three
relations (e.g., the relation among the features and the
response variables, the relation among response variables,
and the complementary relation between dual-network fea-
tures). It can effectively remove redundant features and
select important feature information. Also, the softmax
layer in DCNN is replaced by ensemble support vector
machine (E-SVM) classifiers for classification performance
boosting.

In summary, we propose a new classification framework to
classify breast cancer histological images, which uses multi-
network features, DOLL method and E-SVM classifier. The
main contributions of this paper are as below.
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1) We devise a multi-network feature extraction model to
obtain more comprehensive feature representations of breast
cancer histological images.

2) We develop a DOLL feature selection method, which
considers three relationships to remove the redundant features
and obtain complementary features.

3) We train an E-SVM classifier with fused features and
voting strategy to improve the classification performance.

The rest of this paper is organized as follows. In Section II,
we briefly review related work of the early diagnosis of breast
cancer. In Section III, we describe our proposed method in
details. The experiments and comparison results are given in
Section IV followed by discussions in Section V. Finally, our
conclusions are presented in Section VI.

II. RELATED WORK
In this section, we briefly review the development of the
early diagnosis of breast cancer using CAD technologies.
Currently, in breast cancer early screening, the CAD systems
are based on breast mammography [2], [5]. In the clini-
cal diagnosis of breast cancer, the puncture biopsy is still
the mainstream method. However, the performance relies
on the doctors’ professional skills and experience, which is
typically subjective. So the diagnostic accuracy is usually
unsatisfactory due to many challenges [16] of the breast
cancer histology image analysis. Therefore, researchers tried
to propose reliable methods to address these drawbacks
to improve the efficiency of early diagnosis of breast
cancer.

At present, the traditional machine learning methods have
been widely used in the image analysis tasks of breast can-
cer. For instance,Wang et al. [15] proposed a double-strategy
splitting model with adaptive mathematical morphology
and curvature scale space corner detection, which utilized
shape and textural features to achieve the classification of
cell nuclei in pathological images of breast cancer. This
approach could only perform the classification of normal and
malignant without further differentiation of specific types
of breast cancer. He et al. [29] proposed a fusion strategy
of heterogeneous features from stacked sparse auto-encoder
to boost the accuracy of histopathological image analysis.
Their method focused on the rank-level fusion of local
and holistic features to assist image-guided diagnosis of
breast cancer. Recently, Zheng et al. [30] proposed a classi-
fication framework of whole slide images of breast cancer.
It shares the advantages of both histopathological image
classification and content-based histopathological image
retrieval. The framework could recognize the malignant
regions using a probability map. Sudharshan et al. [31] pro-
posed a weakly supervised learning framework of multiple
instance learning, without the need to label all the instances.
Although these traditional machine learning methods have
achieved good results, the diagnosis performance is still
unsatisfactory.

To further improve the diagnosis performance, deep learn-
ing [7], especially DCNNs, also has been widely used

in many medical image analysis tasks [32]. Therefore,
many researchers also have studied the classification
of breast cancer using deep learning methods [33]–[38].
For example, Han et al. [14] proposed a structured
deep learning model for automatic multi-classification of
breast cancer from histopathological images, and achieved
remarkable performance on a large-scale dataset. Similarly,
Gandomkar et al. [35] carried out the multi-classification of
breast cancer using deep residual learning. They implemented
classification for benign or cancer, and then categorized can-
cer and benign cases into four different subtypes. However,
these deep learning methods often suffer from overfitting due
to the limited training samples.

Unfortunately, unlike the case of natural image classifica-
tion tasks, there are less labeled images available for effec-
tive training of a deep learning network for early diagnose
of breast cancer. Therefore, in recent studies, researchers
have combined deep learning with traditional machine
learning to exploit their individual merits. For instance,
Araújo et al. [13] extracted the features by the DCNN and
used these features to train an SVM classifier to categorize
pathological images of breast cancer. Vo et al. [11] proposed
an incremental boosting DCNN that was strengthened by a
stepwise combination of weak and strong classifiers to extract
more effective features than traditional machine learning
approaches. They achieved superior results in the classifica-
tion of breast cancer image than using traditional machine
learning or deep learning methods alone. Nevertheless, they
only used the image features of the single network instead
of the multi-network features, which leads to the inability to
obtain informative feature representation and reduces clas-
sification performance. Hence, we propose a multi-network
feature model based on four different DCNNs to extract more
comprehensive image features.

It is worth noting that the high-dimensional features will
cause the classifier to over fit, high computational costs
and affect classification accuracy. To solve these problems,
many researchers focused on the research of efficient feature
selection algorithm [25], [26], [28]. Commonly used classical
feature selection methods include principal component anal-
ysis (PCA) [26] and locally linear embedding (LLE) [27].
In addition, Tomioka and Sugiyama [39] developed a
dual-augmented Lagrangian method (DALM) to achieve fea-
ture selection. Zhu et al. [40] proposed a multi-relational reg-
ularization (MRR) feature dimensionality reduction method.
The MRR method considers three relationships to select
the most representative feature information. Nie et al. [25]
proposed an unsupervised feature selection algorithm. This
method performs both feature selection and local structure
learning. Moreover, the similarity matrix is constrained to
contain more accurate data structure information so that it
can select valuable features. However, these methods focus
on the features from the same source without considering
the complementary relation among dual-network features.
For this reason, we propose the DOLL method to reduce the
feature dimension.
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FIGURE 2. Breast cancer pathological image classification framework. (a) Input images; (b) Feature extraction using DenseNet-121, ResNet-50,
ML-InceptionV3, and ML-VGG-16; (c) Feature selection via the DOLL method; (d) E-SVM classifier.

III. METHODOLOGY
In this paper, we perform the classification of the breast
cancer histopathological images by using multi-network fea-
tures, the DOLL feature selection method, and E-SVM
classifier. Fig. 2 shows the architecture of our proposed clas-
sification model, which comprises three steps: feature extrac-
tion, feature selection, and classification. In the first step,
we first perform image preprocessing by random cropping
and color enhancement. Then, we use pre-trained ResNet-50,
DenseNet-121, ML-InceptionV3, and ML-VGG16 as feature
extractors to obtain multi-network features. These features
from different image crops or different color-enhanced
images are encoded via utilizing 3-norm pooling and average
encoding, respectively. This helps to reduce the effect of very
large image size and uneven H&E staining on classification
performance. In the second step, we apply the DOLL method
to perform feature reduction, which has fast training speed,
low computational cost and alleviates classifier overfitting.
In the last step, breast cancer pathological images are distin-
guished using E-SVM classifier. We use dual-network fused
features and voting strategy between different dual-network
to train E-SVM classifiers, which can effectively improve the
classification performance.

A. NOTATIONS
In this paper, uppercase boldface letters represent matrices,
lowercase boldface letters represent vectors, and ordinary
italics represent scalars. For the matrix X =

[
xi,j
]
, its

i-th row and j-th column are denoted as xi and xj. The
Frobenius norms `1, `2, `2,1, and `F -norm of a matrix X are

denoted as ‖X‖1 =
∑

i

∣∣xi∣∣, ∥∥xi∥∥2 = √∑
j x

2
i,j, ‖X‖2,1 =∑

i

∥∥xi∥∥2 = ∑
i

√∑
j x

2
i,j, and ‖X‖F =

√∑
i

∥∥xi∥∥22 =√∑
j

∥∥xj∥∥22, respectively. Moreover, XT , Tr(X), rank(X), and
X−1 denoted as the transpose, trace, rank, and inverse opera-
tors of X, respectively.

B. FEATURE EXTRACTION MODEL
In this section, we briefly introduce the image preprocessing
and describe how to extract the multi-network features using
the four pre-trained DCNNs, and perform the feature encod-
ing, as shown in Fig. 2 (b) and Fig. 3.

FIGURE 3. Feature extraction models of the ML-InceptionV3 and
ML-VGG-16.

1) IMAGE PREPROCESSING
In this study, we first downscale the original images
(2048×1536 pixels) by a factor of two, and perform color
space conversion [17]. By changing the weight of the RGB
color component of the image, many color enhanced images
of each original input images are obtained. And encod-
ing the features of color enhanced images can correct the
uneven H&E staining, and narrow the intra-class differences.
In the next step, the image crops of different sizes are ran-
domly extracted, which can help to obtain local details and
global feature information and reduce computation costs.
In our experiments, the cropped image sizes are preset to
be 400 × 400 pixels or 700 × 700 pixels, the number of
images to be cropped is 20, and the number of color-enhanced
images is 50.
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2) MULTI-NETWORK FEATURE EXTRACTION
The accuracy and robustness of the deep learning meth-
ods rely on a large number of training samples. However,
the availability of large collections of annotated medical
images is rare and a small dataset is insufficient to train a
deep learning model with high precision and strong robust-
ness. The over-sized and limited training images may lead to
over-fitting of the end-to-end DCNNs. To solve these prob-
lems, we use four DCNNs (e.g., DenseNet-121, ResNet-50,
ML-InceptionV3, andML-VGG-16) to extractmulti-network
features. In this paper, these DCNNs are initialized with
ImageNet pre-trained weights [41] to fit our learning task.
After that, we feed the cropped images into these pre-trained
DCNNs while remove the fully connected layer and softmax
layers and use global average pooling to encode the feature
map of the channels. For DenseNet-121, we convert the last
convolutional layer consisting of 1024 channels via global
average pooling into a one-dimensional feature vector with
a length of 1024. For ResNet-50, we convert the last convo-
lutional layer consisting of 2048 channels via global average
pooling into a one-dimensional feature vector with a length
of 2048.

Based on InceptionV3 and VGG-16, we design
ML-InceptionV3 network and ML-VGG-16 network to
extract image features, and their networks are shown in
Fig. 3. For ML-InceptionV3, we apply the global average
pooling operation to feature maps of the connection layer
in the internal mixed modules of InceptionV3, and then
concatenate them into one vector, as shown in Fig. 3 (a). For
ML-VGG-16, we apply the global average pooling operation
to the four convolutional modules of VGG-16, and concate-
nate them into a single vector, as shown in Fig. 3 (b). Namely,
the motivation of our design is that DenseNet-121 and
ResNet-50 are endowed with a deep network structure that
utilizes dense and residual modules to obtain the abstract
semantic features. ML-InceptionV3 and ML-VGG-16 can
extract more superficial local detailed feature information
(e.g., shape, texture, color and others). The features of
four DCNNs are combined in pairs to obtain the features
of six dual-networks; DenseNet-121 and ResNet-50 (D-R),
DenseNet-121 and ML-InceptionV3 (D-MI), DenseNet-121
and ML-VGG-16 (D-MV), ResNet-50 and ML-InceptionV3
(R-MI), ResNet-50 and ML-VGG-16 (R-MV), and
ML-InceptionV3 and ML-VGG-16 (MI-MV). In the next
step, the dimension of dual-network features is reduced by
using the DOLL method.

3) FEATURE ENCODING
The features of color-enhanced images and cropped images
obtained by each DCNN are encoded by performing 3-norm
pooling [24] and average encoding, respectively. Let E =[
e1; e2; . . . . . . ;es

]
∈ Rs×d be the feature matrix of image

crops, where s is the number of image crops, d is the fea-
ture dimension. Let V =

[
v1; v2; . . . . . .; vl

]
∈ Rl×d be

the feature matrix of color-enhanced images, where l is the

number of color-enhanced images.We define 3-norm pooling
method as

vj =
(
1
s

∑s

i=1

(
ei
)p) 1

p

, (1)

where (ei)p is defined as (epi,1, e
p
i,2, . . . e

p
i,j . . . e

p
i,d ), p is the

hyper-parameter, and it is set to 3 as suggested in [24].
Average encoding is performed by calculating the mean

value of feature vectors of l color-enhanced images. Denote
X =

[
x1; x2; . . . . . .; xn

]
∈ Rn×d as a feature matrix of input

image containing n samples. Average encoding is defined as

xk =
1
l

∑l

j
vj. (2)

These two methods not only can effectively combine
local texture, boundary, and color information of the original
image feature information, but also dramatically alleviate the
uneven staining issue of pathological images.

C. DOLL FEATURE SELECTION METHOD
Full features are extracted by utilizing different DCNNs and
different convolutional layers in the same DCNN. However,
these features can cause information redundancy and overfit-
ting and reduce the classification accuracy of breast cancer
histological images. Therefore, we propose a DOLL feature
selection method.

1) LOW-RANK REGRESSION
Let X =

[
x1; x2; . . . . . .; xn

]
∈ Rn×d be the feature matrix,

and Y= [y1; y2;· · · · · · ;yn] ∈ Rn×c be the label matrix,
where n is the total number of samples, d is the feature
dimension, and c is the number of breast cancer classes.
We denote the vector yi =

{
yi,1, yi,2, · · · · · · ,yi,c

}
∈ {0, 1}c

as a representation of the class label of the i-th sample xi.
In this way, when xi belongs to the j-th class, the j-th element
in yi is set to one (e.g., yi,j = 1), and other elements are set
to zero.

The low-rank regression [42], [43] of the measurements
between the response variables and the feature variables for-
mula is defined as

Y = XW+ ab, (3)

whereW ∈ Rd×c represents the coefficient matrix, b ∈R1×c

represents the bias term, and a ∈Rn×1 is the column vector of
all elements set to ones. Then, we can obtain the solution of
W via least squares method, which is given as

W =
(
XTX

)−1
XT (Y− ab) . (4)

However, Eq. (4) only considers the relation between the
feature variables and the response variables, while the rela-
tion among the response variables is ignored. To address
this issue, we impose a representation on the rank of
W(i.e., rank (W) ≤ min(d, c), and suppose rank (W) = r).
In general, the low-rank representation (LRR) [44] of the data
matrix D can be represented as a linear combination of the
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dictionary matrix A and the regression parameter matrix Z.
It aims at finding the lowest-rank representation between all
the linear combinations, which is formulated as

min
Z
‖Z‖∗ , s.t.D = AZ, (5)

where ‖·‖∗ is the nuclear norm of the matrix, which is the
sum of the singular values of the matrix. Therefore, LRR on
W is represented as

W = AZ, (6)

where A ∈Rd×r ,Z ∈Rr×c. When r is fixed, we replace W
via AZ in Eq. (3). Thus, the LRR is redefined as

min
A,Z,b
‖Y− XAZ− ab‖2F . (7)

Based on Eq. (7), we can project the feature matrix X into
an r-dimensional space. In other words, the low-rank regres-
sion is viewed as the subspace learning on X. Therefore,
when r ≤ d , LRR is an effective way to achieve dimen-
sion reduction. Ultimately, the low-rank regression not only
considers the relationship between the feature variables and
the response variables, but also the relationship among the
response variables. However, the deficiency is that the com-
plementarity relation of the features among the dual-network
is not considered.

2) DOLL FEATURE SELECTION
To consider a complementary relationship, we develop a
dual-network low-rank learning (DLL). In general, feature
dimensions of different DCNNs are unequal. Therefore,
the PCA method is first used to reduce feature dimension
(d = min(d1, d2)), where d1 and d2 represent feature dimen-
sions of the dual-network. Let X1 ∈ Rn×d , X2 ∈ Rn×d

be two feature matrices of the dual-network. W1 ∈ Rd×c,
W2 ∈ Rd×c are two coefficient matrices, which are replaced
by LRR in Eq. (6). Therefore, we define DLL as

min
A1,Z1,b1,A2,Z2,b2,

‖Y−X1A1Z1−ab1‖2F+‖Y−X2A2Z2−ab2‖2F,

(8)

where A1 ∈ Rd×r and A2 ∈ Rd×r represent two low-rank
dictionary matrices, Z1 ∈ Rr×c and Z2 ∈ Rr×c represent
two regression parameter matrices, b2 ∈ R1×c and b1 ∈
R1×c represent two bias terms, respectively. Hence, the DLL
considers three relationships, simultaneously.

The DLL can linearly represent the relation among the
response variables utilizing r latent factors obtained from d
feature variables of X1 and X2. However, the multi-network
features contain a large number of redundant features. These
redundant features may not be useful in prediction and affect
the calculation of r latent factors. In this way, when X1
and X2 are mapped into a low-dimensional space, we per-
form subspace learning and explain response variables for
these features to achieve the feature dimension reduction.
To this end, we utilize two `2,1-norm items of the dual-
network, respectively. Since the feature matrices mapped to

low-dimension space can change the distribution of original
feature in high-dimension space, we add the orthogonal con-
straints and Eq. (8) is reformulated as

min
A1,Z1,b1,A2,Z2,b2

‖Y−X1A1Z1−ab1‖2F + α1 ‖A1‖2,1

+‖Y−X2A2Z2−ab2‖2F + α2 ‖A2‖2,1 ,

s.t., Z1ZT1 = Ir ,Z2ZT2 = Ir , (9)

where Ir ∈ Rr×r , α1 and α2 are two tuning parameters. The
`2,1-norm items on A1 and A2 penalize the coefficients of
A1 and A2 in a row-wise manner for joint selection or un-
selection of the features in predicting the response variables.
It is worth noting that, the column-wise low-rank represen-
tations and the row-wise `2,1-norm on A1 and A2 have the
effects of conducting subspace learning and feature selection
on X1 and X2, respectively.
To exploit the advantage of the relation among the dual-

network features, Z1 and Z2 are replaced by a shared regres-
sion parameter matrix Z ∈Rr×c of the dual-network. Thus,
Eq. (9) is rewritten as

min
A1,b1,A2,b2,Z

‖Y−X1A1Z− ab1‖2F + α1 ‖A1‖2,1

+‖Y−X2A2Z− ab2‖2F + α2 ‖A2‖2,1 ,

s.t., ZZT = Ir . (10)

Specifically, the complemented features of the dual-
network have different feature representations of breast
cancer pathological images. Meanwhile, adding orthogonal
rotationZ can transfer low-dimension feature representations
into the original label space spanned by the high-dimension
response variable Y. Such an orthogonal rotation step natu-
rally takes advantage of DLL and explores the relation among
the dual-network. Therefore, we use the orthogonal rotation
to consider the relation of complementarity among dual-
network in DLL method. At last, the DOLL is utilized for
feature selection by considering three relations to efficiently
remove redundant features and select many complementary
features to improve the classification accuracy of breast
cancer.

D. OPTIMIZATION
This Section describes the optimization process, which deter-
mines optimal parameters (e.g., Z, b1, b2, A1, and A2).
Specifically, we iteratively conduct the following two steps
until satisfying predefined conditions. (1) Update Z with
fixed b1, b2, A1 and A2. (2) Update b1, b2, A1 and A2 with
fixed Z.

1) UPDATE Z WITH FIXED b1, b2, A1 AND A2
When b1, b2,A1 andA2 are fixed to optimize Z, Eq. (10) can
be rewritten as

min
Z
‖Y−X1A1Z− ab1‖2F +‖Y−X2A2Z− ab2‖2F ,

s.t., ZZT = Ir . (11)
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After simple mathematical manipulation, Eq. (11) is equiv-
alent to the following formula

min
Z

∥∥Y′ − X′Z
∥∥2
F , s.t., ZZT = Ir , (12)

where Y′ =
[
Y′−ab1
Y′−ab2

]
∈ R2n×c and X′ =

[
X1A1
X2A2

]
∈

R2n×r . The optimization problem of Eq. (12) is actually an
orthogonal Procrustes problem [45]. The optimal solution of
Z is (UVT )T , where U ∈ Rc×r and V ∈ Rr×r are obtained
from the singular value decomposition of Y′

T
X′ = UGVT ,

and G ∈ Rr×r is a diagonal matrix.

2) UPDATE b1, b2, A1 AND A2 WITH FIXED Z
When Z is fixed to optimize b1, b2, A1 and A2, Eq. (10) can
be rewritten as

min
A1,b1,A2,b2

‖Y−X1A1Z− ab1‖2F + α1 ‖A1‖2,1

+‖Y−X2A2Z− ab2‖2F + α2 ‖A2‖2,1 . (13)

Taking the partial derivative of b1 and b2 in Eq. (10), and then
setting the derivative to zero, we have

aTX1A1Z+ aT ab1 − aTY = 0, (14)

aTX2A2Z+ aT ab2 − aTY = 0. (15)

After simple mathematical manipulation, we can get optimal
solutions for b1 and b2

b1 =
1
n
(aTY− aTX1A1Z), (16)

b2 =
1
n

(
aTY− aTX2A2Z

)
. (17)

By replacing b1 and b2 in Eq. (13) with Eq. (16) and
Eq. (17), we compute the optimal solutions of A1 and A2,
and define H = In − 1

naa
T ∈ Rn×n, where In ∈ Rn×n is an

identity matrix. Eq. (13) can be rewritten as

min
A1,A2

‖HY−HX1A1Z‖2F + α1 ‖A1‖2,1

+‖HY−XH2A2Z‖2F + α2 ‖A2‖2,1 . (18)

The orthogonal transformation of Z is used to simplify
Eq. (18), the objective function is

min
A1,A2

∥∥∥HYZT −HX1A1

∥∥∥2
F
+ α1 ‖A1‖2,1

+

∥∥∥HYZT − XH2A2

∥∥∥2
F
+ α2 ‖A2‖2,1 . (19)

We use iteratively reweighted least square to optimize
Eq. (19), which is expressed as

min
A1,A2

∥∥∥HYZT −HX1A1

∥∥∥2
F
+ α1tr

(
AT
1 PA1

)
+

∥∥∥HYZT − XH2A2

∥∥∥2
F
+ α2tr

(
AT
2QA2

)
, (20)

where P ∈ Rd×d and Q ∈ Rd×d are diagonal matrices with
pjj = 1

2
∥∥∥A1j

∥∥∥2
2

and qjj = 1

2
∥∥∥A2j

∥∥∥2
2

, j = 1,. . . , d , respectively.

By setting partial derivatives of A1andA2 in Eq. (20) to be
zero, A1 and A2 becomes

A1 = (XT
1HX1 + α1P)

−1
XT
1HYZT ), (21)

A2 = (XT
2HX2 + α2Q)

−1
XT
2HYZT ). (22)

Algorithm 1 Pseudo Code of Solving Eq. (10)

Input: X1 ∈ Rn×d , X2 ∈ Rn×d , Y ∈ Rn×c, α1, α2;
Output: W1,W2;

1 Initialize t = 1, a as a column vector of all elements set
to ones, and b1, b2 as two random vectors;

2 InitializeW1,W2, Z1, Z2, as four random matrices;
3 repeat
4 Update Z (t+ 1) via Eq. (12);
5 Update b1 (t+ 1) via Eq. (16);
6 Update b2 (t+ 1) via Eq. (17);
7 Update P (t+ 1) via p (t + 1)jj =

1

2
∥∥∥A(t+1)1j∥∥∥22 ,

j = 1, . . . , d ;
8 Update Q (t+ 1) via q (t + 1)jj =

1

2
∥∥∥A(t+1)2j∥∥∥22 ,

j = 1, . . . , d ;
9 Update A1 (t+ 1) via Eq. (21);
10 Update A2 (t+ 1) via Eq. (22);
11 t = t + 1;
12 Until The difference between the objective function
values of Eq. (10)within two sequential iterations is less
than 10−8;

13 UpdateW1 (t+ 1) andW2 (t+ 1) via Eq. (6);

Finally, we can obtain optimal parameters Z, b1, b2, A1

and A2, and then calculate the coefficient matrix W1 and
W2 via Eq. (6) to obtain the complementary features from
six dual-networks, respectively. Algorithm 1 summarizes the
optimization processes of solving Eq. (10).

E. TRAIN E-SVM CLASSIFIERS
As shown in Fig. 4, we train the classifiers via fused features
and voting strategy to conduct the breast cancer classification.
Specifically, the dual-network features are first fused to train
SVM classifiers, as shown in Fig. 4 (a). E-SVM classifier
is trained by voting strategy as shown in Fig. 4 (b). For the
features of each dual-network, we can train two SVMs and
vote on their predicted score.

We train an E-SVM classifier with high precision and
strong robustness by considering the fused features of
dual-network and voting strategy for the predicted score of
two dual-networks as depicted in Fig. 4 (c). In our experi-
ments, three E-SVM classifiers are trained. The reason why
we only train three E-SVM classifiers is that the features of
training each E-SVMclassifiermust be derived from different
DCNNs rather than sharing the features of the same DCNN
(e.g., D-R and D-MV shares the features of DenseNet-121),
which avoids introducing redundant features.
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FIGURE 4. Training classifiers: (a) training SVM using fused features of
the dual-network; (b) training E-SVM using voting strategy between the
dual-network; (c) training E-SVM using fused features and voting strategy
between different dual-networks.

IV. EXPERIMENTAL SETUP AND RESULTS
A. DATASETS
The public dataset of the ICIAR 2018 grand challenge [20]
is used in our experiments. It includes 400 H&E stained
images of breast histology microscopy (2048 × 1536 pix-
els). All the images are digitized with the same acquisition
conditions, with a magnification of 200× and pixel size of
0.42µm × 0.42µm. Each image is labeled with one of the
four balanced classes: benign, in situ carcinoma, invasive
carcinoma, and normal. Each class has 100 images and a
typical image of each predominant cancer type is shown in
Fig. 1. Moreover, two expert pathologists perform the image-
wise annotation of ICIAR 2018 dataset [20].

B. EVALUATION METRICS
In this paper, we adopt a nested 10-fold cross-validation
method to complete all the experimental verification.
We evaluate the performances of our proposed breast cancer
histopathological image classification model in ICIAR 2018
challenge dataset [20] in terms of accuracy (ACC), area under
receiver operating characteristic (ROC) curve (AUC), preci-
sion (Pre), Recall, and F1 score. The metrics for evaluating
classification results are defined as follow

ACC =
TP+ TN

TP+ FP+ TN+ FN
, (23)

AUC =

∑
rank i −

M×(M+1)
2

M × N
, (24)

Pre =
TP

TP+ FP
, (25)

Recall =
TP

TP+ FN
, (26)

F1 =
2× Pre× Recall
Pre+ Recall

, (27)

where TP, TN, FP, and FN are the number of true positive,
true negative, false positive, and false negative, respectively.∑
rank i represents the sum of the serial number of positive

samples. M and N represent the number of positive and
negative samples, respectively.

C. EXPERIMENTAL RESULTS
1) EXPERIMENTS ON THE BASELINE DCNNS
We evaluate six DCNNs (e.g., DenseNet-121, ResNet-50,
ML-InceptionV3, ML-VGG-16, InceptionV3, and VGG-16)
using two different pre-set crop sizes (e.g., 400×400 pixels
and 700 × 700 pixels) and fusing these features of two
different image crop sizes. The SVM classifiers are trained
to perform classification tasks, the results are shown in
Fig. 5. It can be noticed that, by comparing the results of
DenseNet-121 and ResNet-50 of deeper network structure,
the classification accuracy can be significantly improved
using fused features between different image crop sizes.
The features of different image crop sizes are different.
Hence, more comprehensive features are obtained by fused
features.

FIGURE 5. Experimental results of different scenarios: green represents
the image crops with a size of 400 × 400 pixels, orange represents the
image crops with a size of 700 × 700 pixel, and purple represents the
features fusion between different crop sizes.

FIGURE 6. Experimental results of different feature dimensions in six
dual-network: (a) Using the fused features strategy to train SVM, (b) Using
the voting strategy to train E-SVM.

In addition, the classification accuracy ofML-InceptionV3
is better than InceptionV3, but ML-VGG-16 is worse
than VGG-16. This is probably because ML-VGG-16
has many redundant and noisy features, which can
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TABLE 1. Experimental results using different fused features strategies to train SVM classifier (± 0.50%).

TABLE 2. Experimental results using the voting strategy to train E-SVM classifiers (± 0.50%).

FIGURE 7. Experimental results: (a) Different image crop sizes (e.g., 20 image crops, 50 color-enhanced images, the feature dimension is 300; (b) E-SVM
classifier trained using image crop size of 400 × 400 pixels; (c) E-SVM classifier trained using image crop size of 650 × 650 pixels; (d) E-SVM classifier
trained using features fusion between two image crop sizes.

affect the performance of the classifier. However, this is
avoided in our proposed method as we develop a fea-
ture selection algorithm to reduce redundant and noisy
features.

2) EXPERIMENTS ON THE DOLL FEATURE
SELECTION METHOD
We evaluate the effectiveness of the DOLL feature selection
method using fused features of the dual-network and voting
strategy between two dual-networks. We set the image pre-
processing parameters as follows: 50 color-enhanced images,
cropped image size of 400 × 400 pixels, and 20 cropped
images.

The classification accuracies of different feature dimen-
sions are shown in Fig. 6. When feature dimensions are
between 100 and 150, the best accuracy is obtained, and
the accuracy hardly improves with the increase of feature
dimensions. Meanwhile, we note that three dual-networks
of MI-MV, R-MI, and D-R obtain better accuracy using
either SVM or E-SVM classifiers. Also, the performance
of three different dimensional features (e.g. 100, 150, and
200) is verified in detail. Fused features of each dual-network

are then used to train SVM classifiers (e.g., Fig. 4 (a)),
the results are shown in Table 1. Compared with the exper-
imental results, we find that the classification accuracy of the
four dual-networks of D-MI, R-MI, R-MV, and MI-MV has
no significant improvement, and the results of the D-R and
D-MV are even worse. The reason is that the poor correla-
tion between deeper and shallower networks, which limits
the ability of the proposed feature selection algorithm. Last,
E-SVM classifiers (e.g., Fig. 4 (b)) are trained by the voting
strategy, the results are shown in Table 2. The performance
is worse when the feature dimension is reduced. Meanwhile,
by comparing Table 1 with Table 2, we observe that the
performance of the E-SVM classifiers is better. It is also
shown that the voting strategy can improve the accuracy of
classification.

In conclusion, at the expense of a small amount of preci-
sion, the feature dimensions can be greatly reduced, a signif-
icant amount of noise and redundant features are removed,
and overfitting is avoided, which shows that the proposed
feature selection method is effective. We also prove that
fused features and voting strategies are effective in improving
classification performance.
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FIGURE 8. The ROC curves of the experimental results of the E-SVM classifiers with D-R and MI-MV. From top to bottom: the image crop size is
400 × 400 pixels and the feature dimensions is 200; the image crop size is 650 × 650 pixels and the feature dimensions is 200; fused features between
400 × 400 pixels and 650 × 650 pixels, and the feature dimensions is 200. From left to right, (a) is benign, (b) is in situ carcinoma, (c) is invasive
carcinoma, and (d) is normal.

3) EXPERIMENTS OF FUSED FEATURES
AND E-SVM CLASSIFIER
In this sub-section, we first explore the impact of different
image crop sizes. The fused features of each dual-network
are used to train SVM classifiers (e.g., Fig. 4 (a)), the results
are shown in Fig. 7 (a). We have the following observa-
tions. On the one hand, when the cropped image size was
400× 400 pixels, we get the best classification accuracy and
while cropped size between 600 and 700 pixels, the accuracy
becomes unstable. On the other hand, we can find that D-MV
produces low accuracy. The main reasons are as follows.
When smaller size image crops are resized 224 × 224 pix-
els, we retain more local detailed feature information. When
larger size image crops are resized 224 × 224 pixels,
more global feature information can be retained. Therefore,
in the following experiments, we fuse the features between
400 × 400 pixels and 650 × 650 pixels to improve the
classification accuracy.

Next, we combine the image preprocessing (e.g., image
crop sizes of 400× 400 or 650× 650 pixels, 20 image crops,

50 color-enhanced images), the DOLL method, the fused
features, and the voting strategies together to further improve
classification accuracy of breast cancer pathological images.
Three E-SVMs are trained by utilizing the fused features of
six dual-networks (e.g., D-R and MI-MV, R-MI and D-MV,
R-MV and D-MI), as shown in Fig. 4 (c), and the results are
shown in Fig. 7 (b), (c), and (d). The E-SVM classifier of
using the dual-network features of D-R and MI-MV has the
best performance when compared with the other configura-
tions. Moreover, the fused features of different image crop
sizes can obtain better accuracy with the single image crop
size features. This is because the features fusion cannot only
obtain local detailed feature information that utilize small size
image crop, but also obtains global feature information from
large size image crop.

Furthermore, we compare the experimental results of dif-
ferent feature selection methods (e.g., PCA, LLE, MRR,
DALM, and DOLL), which use the features of different
cropped image sizes and fused features, and three E-SVM
classifiers. The results are summarized in Table 3. The feature
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TABLE 3. Experimental results using the voting strategy to train e-svm classifiers: ics is image crop size; fd is feature dimension (± 0.50%).

FIGURE 9. Feature maps of the last convolutional layer of different DCNN.

FIGURE 10. The feature maps of the middle module of our proposed ML-InceptionV3 model.

dimensions of each DCNN is reduced to 100 dimensions
in this experiment. Our method obtains the best classi-
fication accuracy compared with other methods, except
the results of DALM method in E-SVM classifier trained
with the R-MI and D-MV. In Fig. 8, we plot the ROC
curves of the experimental results of the E-SVM classifiers
with D-R and MI-MV, which use different feature selec-
tion methods. By analyzing the ROC curves of the four
classes of breast cancer pathological images, we also find

that the classification accuracy of our proposed method
is better than the competing methods. Finally, we com-
pare the performance of our proposed model with other
state-of-the-art methods, as shown in Table 4. The clas-
sification model of our proposed method obtains the best
classification accuracy of 97.70%. And the reduction of
feature dimensions can reduce computational costs and
avoid overfitting, which makes the E-SVM classifier more
robust.
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FIGURE 11. Feature maps of the middle module of our proposed
ML-VGG-16 model.

TABLE 4. Experimental results of different classification
methods (± 0.50%).

V. DISCUSSIONS
In this paper, to improve the efficacy and accuracy of the
early diagnosis of breast cancer, we propose a classifica-
tion model based on the multi-network features, the DOLL
feature dimension reduction, and the E-SVM classifier.
First, to demonstrate the complementarity of the features
of different DCNNs, for each input image, we randomly
obtain 20 image crops with a size of 400× 400 and processed
them using four DCNNs.We extract the feature maps of these
image crops from the last convolution layer and visualize
them in Fig. 9. These feature maps have complementarity
and redundancy. DenseNet-121 and ResNet-50 have stronger
learning ability, which acquire many abstract semantic fea-
tures. Hence, it is wise and effective to use dual-network fused
features to achieve more accurate and robust classification.

Second, to verify the effectiveness of ML-InceptionV3 and
ML-VGG-16, we extract and visualize the feature map
of the middle module of the networks in Figs. 10 and 11.
By increasing the depth of network structure increases
gradually, we obtain not only the shallow detail features
(e.g., shape, boundary, texture and color), but also the seman-
tic ones. Meanwhile, the features of all modules before
i-th intermediate module are fused, which are used to train
the SVM classifiers. The experimental results are shown
in Tables 5 and 6. It is noted that better experimental results
are obtained by feature fusion with the increase of blocks in

FIGURE 12. t-SNE visualization of fused features of the six dual-networks
after dimension reduction by DOLL method.

TABLE 5. Experimental results of the fused features among all the
preceding block of each intermediate block in ML-InceptionV3 (± 0.50%).

ML-InceptionV3 and ML-VGG-16, respectively. This shows
that our improvements for VGG-16 and InceptionV3 are
effective.

Third, to illustrate the separability of the features after
dimension reduction, the fused features of six dual-networks
are visualized using t-SNE visualization method [46]. They
all perform feature dimension reduction using the DOLL
method, as shown in Fig. 12. It is shown that the fused features
of D-R, R-MI and MI-MV have better separability, which are
consistent with the experimental results in Table 3.
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TABLE 6. Experimental results of the fused features among all the
preceding block of each intermediate block in ML-VGG-16 (± 2.00%).

VI. CONCLUSION
In this paper, we propose an effective model for the classi-
fication of H&E stained histological breast cancer images.
To increase the accuracy and robustness of the classifier,
we extract image features of the multi-network by using four
pre-trained DCNNs. Further, based on three relationships,
we devise a new feature selection method of DOLL algorithm
to enhance the classification results by reducing the feature
dimension to alleviate overfitting. Moreover, we train the
E-SVM classifiers by fused features and voting strategies
to improve the classification accuracy. Our proposed model
achieves considerable high accuracy and strong robustness.
The proposed method is expected to be clinically useful for
doctors to achieve the early diagnosis of breast cancer, which
can benefit the survival chances of breast cancer patients.
In our future work, we will validate our method on clinical
data and investigate the efficacy of our method on different
types of cancers.
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