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ABSTRACT Deadlock is an undesired situation in multithreaded software since it can lead to the stoppage of
software. This paper studies the problem of deadlock control of multithreaded software based onGadara nets,
which are well studied for modelling concurrent programs. In particular, an iterative deadlock prevention
policy based on siphons is proposed for a class of ordinary Gadara nets where the initial marking of each
idle place is one. At each iteration, we compute emptiable siphons containing the smallest number of
resource places. Then, bad markings are computed based on these siphons. On the basis of the bad markings,
a constraint is constructed that forbids not only bad markings that empty one of the siphons but also some
other bad markings. The algorithm is carried out until no emptiable siphon exists in the net. Compared with
the existing methods, the resultant net derived from the proposed method is live and maximally permissive
with a simpler supervisor. Finally, two examples are provided to illustrate the proposed deadlock prevention
policy.

INDEX TERMS Petri nets, multithreaded software, deadlock prevention.

I. INTRODUCTION
The transformation of computer hardware from a single pro-
cessor core to multiple processor cores has promoted the
emergence of multi-threaded parallel programming systems
(MPPS). The development and usage of multithreaded soft-
ware are gradually coming into the mainstream [30], [31].
A major feature of this type of software is the sharing of
data among threads, which however makes multithreaded
software vulnerable to concurrency errors. Hence, it usu-
ally requires lock primitives to protect the shared data in
parallel programming paradigm. One of the most typical
lock primitives is mutual exclusion locks (mutexes). How-
ever, circular-mutex-wait (CMW) deadlocks will occur if
mutexes are improperly used [12], [14]–[17]. In this case,
a set of threads wait infinitely for resources held by each
other and none of them can continue to execute. Such dead-
locks are always deemed as undesirable situations since
they can lead to the stoppage of the software or even
cause catastrophic consequences. Therefore, it is necessary to
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implement effective deadlock control methods to ensure that
deadlocks never occur.

Many efforts have been made over the years to deal with
the deadlock problem in multithreaded software, resulting
in many methods such as static deadlock prevention and
detection [8], [26], [32] dynamic deadlock detection and
avoidance [12], [14]. Static deadlock prevention prevents
deadlocks by executing a strict order to acquire mutexes.
Such a method is straightforward in principle, but difficult to
apply in practice. Static deadlock detection ismainly based on
program analysis, which usually suffers from spurious warn-
ing. Dynamic deadlock detection utilizes automated rollback
technique to debug the behavior of programs online [11],
however it cannot detect all potential deadlocks. As for
dynamic deadlock avoidance, Banker’s algorithm [1], [2] is
often used to avoid deadlocks. Unfortunately, it requires a
large amount of data and comeswith high computational cost.

To solve the above problems, researchers gradually turn
their attention to model-based deadlock control methods.
One of the most common tools for modeling multithreaded
software is Petri nets [3], [6], [9], [10], [13]. Petri nets
are a powerful tool for investigating the supervisory control
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methods of discrete event systems [22]. They can describe the
inherent dynamics of the systems accurately and intuitively,
while avoid state enumeration. Wang et al. [12] propose a
subclass of Petri nets named Gadara nets. Compared with
other subclasses of Petri nets, it better models concurrent pro-
grams with lock acquisition and release operations. In order
to establish a systematic modelling formalism, Liao et al. [15]
formally define the class of Gadara nets as well as controlled
Gadara nets. They show that deadlock-freeness of a program
is related to the liveness of its Gadara model. Furthermore,
they present a necessary and sufficient condition for the
liveness of Gadara nets, i.e., a Gadara net is live if and only
if there exists no resource-induced deadly marked siphon in
its modified marking space. Motivated by the work of [15],
Liao et al. propose an optimal control policy called ICOG
for Gadara nets [16]. An original Gadara net is ordinary
by definition. However, the controlled Gadara net may be
non-ordinary since the added monitor places may possess
weighted arcs. Thus, the control policy studied in [16] aims
at the generalized Gadara nets. Subsequently, an improved
ICOGmethod called ICOG-O is presented to achieve optimal
control for ordinary Gadara nets [17]. In the above methods,
mixed integer programming (MIP) formulations are used to
detect siphons in Gadara nets that lead to a computational bot-
tleneck in the algorithm. Stanley et al. [18] propose a boolean
satisfiability formulation to detect siphons in Gadara nets.
Moreover, they combine this paradigm with ICOG scheme
to obtain a deadlock detection and avoidance approach for
Gadara nets.

In general, there are three criteria to evaluate a deadlock
control policy: computational complexity, structural com-
plexity, and behavioral complexity. Although ICOG scheme
is maximally permissive and its computational complexity
depends on the algorithm of siphon detection only, the con-
trolled net synthesized by ICOG may face the problem of
adding multiple monitor places. In this paper, we proposes an
iterative deadlock prevention policy for a class of Gadara nets
to ensure that the controlled net is not only live andmaximally
permissive but also with low structural complexity.

The iterative deadlock control policy proposed in the paper
mainly focuses on the minimal resource-number emptiable
siphon (MRES), i.e., the minimal emptiable siphon con-
taining the smallest number of resource places. At each
iteration, all MRESs in a Gadara net are computed by a
function named ComputeMRESs. If the output of the func-
tion is not empty, a function named FindBMs is called to
compute bad markings. Then, monitor places are computed
by the technique of Supervision Based on Place Invariants
(SBPI) [20], [21], which prevent the computed bad markings
from being reached. The resultant net is input to the Function
ComputeMRESs to compute MRESs and the above steps are
repeated until there is no MRES in the controlled net. Finally,
the obtained controlled net is live and maximally permissive.
At each iteration, the algorithm takes into account all the
bad markings that can empty an MRES so that each synthe-
sized monitor can prevent as many bad markings as possible.

Thus, the number of monitor places that need to be added
to the Gadara net is decreased, which reduces the structural
complexity of the final controlled net. In addition, uncon-
trollable transitions are taken into consideration so that the
proposed method can be applied to Gadara nets with uncon-
trollable transitions.

The rest of the paper is organized as follows. Section II
reviews basic definitions and properties of Petri nets and
recalls the notions of Gadara nets. Section III studies the
method to compute badmarkings based on siphons and reach-
ability analysis for a class of Gadara nets. An iterative dead-
lock prevention policy for a class of Gadara nets is proposed
in Section IV. Some examples and comparisons with existing
methods are provided in Section V to show the performance
of the proposed policy. Finally, Section VI concludes this
paper.

II. PRELIMINARIES
In this section, we recall the formalism used in the paper,
namely Petri nets and Gadara nets. For more details, we refer
the readers to [4] and [15].

A. PETRI NETS
A Petri net is a four-tuple N = (P,T ,F,W ), where P is the
set of places and T is the set of transitions. Both the two sets
are finite and non-empty sets with P∪T 6= ∅ and P∩T = ∅.
F ⊆ (P× T )∪ (T ×P) describes the flow relation of the net,
represented by arcs with arrows from places to transitions or
from transitions to places. W : (P × T ) ∪ (T × P)→ N is a
mapping that assigns a weight to an arc such thatW (x, y) > 0
iff (x, y) ∈ F , andW (x, y) = 0, otherwise, where x, y ∈ P∪T
and N = {0, 1, 2, . . .}. If ∀(x, y) ∈ F,W (x, y) = 1,N is
said to be ordinary and denoted as N = (P,T ,F). Given a
node x ∈ P ∪ T , the preset of x is denoted as •x = {y ∈
P ∪ T |(y, x) ∈ F} and the postset of x is x• = {y ∈ P ∪
T |(x, y) ∈ F}. A marking of N is a mapping M : P → N.
Usually, a marking M is denoted by the multi-set notation∑

p∈PM (p)p, where M (p) is the number of tokens in place p
atM . Incidence matrix [N ] of a Petri net is a |P|× |T | integer
matrix with [N ](p, t) = W (t, p)+W (p, t).
A transition t is enabled at M if ∀p ∈• t,M (p) ≥ W (p, t),

which is denoted asM [t〉. A transition t can fire if t is enabled
atM . Once t fires,M reaches another markingM ′, denoted as
M [t〉M ′, where M ′(p) = M (p)−W (p, t)+W (t, p),∀p ∈ P.
M ′ is said to be reachable from M if there is a transition
sequence σ = t1t2. . . tn and markings M1,M2, . . . , and
Mn−1 such thatM [t1〉M1[t2〉M2 . . .Mn−1[tn〉M ′ holds. We use
M [σ 〉M ′ to denote that M ′ is reachable from M via a transi-
tion sequence σ . For a Petri net N ,R(N ,M0) is often used
to denote the set of all markings that reachable from initial
marking M0. The set of all markings that are reachable from
M is denoted as R(N ,M ). Petri net N is said to be reversible
if ∀ M ∈ R(N ,M0),M0 ∈ R(N ,M ).

Given a Petri net (N ,M0), a transition t ∈ T is live at M0
if ∀M ∈ R(N ,M0), ∃M ′ ∈ R(N ,M ),M ′[t〉. (N ,M0) is live
if ∀t ∈ T , t is live at M0. A Petri net N is said to be dead
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at M0 if 6 ∃t ∈ T ,M0[t〉. (N ,M0) is deadlock-free if ∀M ∈
R(N ,M0), ∃t ∈ T ,M [t〉.
A path of Petri net N is a string π = x1x2. . .xn that ∀i ∈

Nn−1, xi+1 ∈ x•i , where ∀x ∈ {x1, x2, . . . , xn}, x ∈ P ∪ T .
If x1 = xn, then the path π is called a circuit. P(π ) is used to
denote the set of places in π and the set of transitions in π is
denoted as T (π ).

Let (N ,M0) be a Petri net, a nonempty set of places S is
said to be a siphon if •S ⊆ S•.
Let [N ] denotes the incidence matrix of a Petri net N .

A P-vector is a column vector I : P → Z indexed by P,
where Z is the set of integers. I is a P-invariant if I 6= 0
and IT •[N ]=0T holds. P-invariant I is a semiflow if every
element of I is non-negative. The support of a P-semiflow I
is denoted by ||I || = {p ∈ P|I (p) 6= 0}.

B. GADARA NETS
Gadara nets are composed of a set of process subnets and
resource places, where the former corresponds to thread entry
points in the program and the latter to the locks.
Definition 1 [15]: Let IN = {1, 2, . . . ,m} be a finite set

of process subnet indices. A Gadara net is an ordinary, self-
loop-free Petri net NG = (P,T ,F,M0) where:
1. P = P0 ∪ PA ∪ PR is a partition such that:
a) P = ∪i∈INPAi,PAi 6= ∅, and PAi∩PAj = ∅, for all i 6= j;
b) P0 = ∪i∈INP0 i, where P0 i = {p0 i}; and
c) PR = {r1, r2, . . . , rk}, k > 0.
2. T = ∪i∈INTi,Ti 6= ∅,Ti ∩ Tj = ∅, for all i 6= j.
3. For all i ∈ IN , the subnet Ni generated by PAi∪{p0 i}∪Ti

is a strongly connected state machine.
4. ∀p ∈ PA, if |p•| > 1, then ∀t ∈ p•,• t ∩ PR = ∅.
5. For each r ∈ PR, there exists a unique minimal-support

P-semiflow, Yr , such that {r}= ||Yr || ∩ PR, (∀p ∈

||Yr ||)(Yr (p) = 1),P0 ∩ ||Yr || = ∅, and PA ∩ ||Yr || 6= ∅.
6. ∀r ∈ PR,M0(r) = 1,∀p ∈ PA,M0(p) = 0, and ∀p0 ∈

P0,M0(p0) ≥1.
7. PA = ∪r∈PR(||Yr ||\{r}).
Given a Gadara net, SBPI [21] is often employed to enforce

the control logic on the net. The resultant net is augmented
with a set of monitor places that is defined as follows.
Definition 2 [15]:LetNG = (P,T ,F,M0) be a Gadara net.

A controlled Gadara net N c
G = (P∪PC ,T ,F ∪FC ,W c,M c

0 )
is a self-loop-free Petri net such that, in addition to all condi-
tions in Definition 1 for NG, it holds that:

8. For each pc ∈ PC , there exists a unique minimal-support
P-semiflow, Ypc, such that {pc}= ||Ypc|| ∩PC ,P0∩ ||Ypc|| =
∅,PR ∩ ||Ypc|| = ∅,PA ∩ ||Ypc|| 6= ∅, and Ypc(pc) = 1.
9. For each pc ∈ PC ,M c

0 (pc) ≥ max
p∈PA

Ypc(p).

The structural properties of monitor places pc ∈ PC
in N c

G are similar to those of resource places. Moreover,
∀pc ∈ PC , the initial marking of pc can be greater than one
and the weights of arcs associated with pc can be non-unit.
Hence, the monitor places are often considered as generalized
resource places, i.e.,∀r, r ∈ PR ∪ PC . Thus, N c

G preserves
the net structure of NG. The controlled Gadara net N c

G is a

generalization of Gadara net NG, namely, NG is a subclass
of N c

G. NG is ordinary while N c
G can be non-ordinary. Fur-

thermore, we note that the controlled net is ordinary if the
arcs associated with monitor places in the net possess unit
weights.

The Gadara nets considered in this paper actually belong
to a class of ordinary controlled Gadara nets N c

G where ∀
p0 ∈ P0,M0(p0) = 1. For the sake of simplicity, we use
NG = (P,T ,F,M0) to denote the Gadara nets considered in
this paper unless special mention is made.

III. COMPUTATION OF BAD MARKINGS
BASED ON SIPHONS
This section provides a method to compute bad markings
based on siphons and reachability analysis.

Deadlocks are closely related to emptiable siphons in
Gadara nets. Specifically, a net system is non-live once a
siphon is emptied. According to the work of Liao et al. [15],
we have the following theorem that reveals the relation-
ship between emptiable siphons and ordinary Gadara nets.
It shows that the absence of emptiable siphons is a necessary
and sufficient condition for the liveness of an ordinary Gadara
net.
Theorem 1 [15]: An ordinary Gadara net is live iff there

exists no emptiable siphon in the net.
The deadlock prevention policy proposed in this paper

focuses on a class of minimal emptiable siphons defined as
follows. In simple words, they are minimal emptiable siphons
containing the smallest number of resource places.
Definition 3: Given a Gadara net NG = (P0 ∪ PA ∪

PR,T ,F,M0), a siphon S of NG is called a Minimal
Resource-number Emptiable Siphon (MRES) if:
1) S is an minimal emptiable siphon; and
2) 6 ∃S ′ ∈ NG such that S ′ is an minimal emptiable siphon

and |S ′R| < |SR|, where SR = S ∩ PR.
Definition 4: Let NG = (P0 ∪ PA ∪ PR,T ,F,M0) be a

Gadara net and r ∈ PR. The set of the holders of r is defined
as H (r) = ||Yr || ∩ PA, where ||Yr || is the unique minimal-
support P-semiflow of r . Given a siphon S, the set [S]=
(∪r∈SH (r))\S is called the complementary set of siphon S.
Consider a Gadara net in Fig. 1. There exists an MRES in

the net, that is S = {p11−p13, p15−p18, p21, p23, p34,R1,R3}.
R1 and R3 are both resource places with ||YR1|| = {p11 −
p18, p23,R1} and ||YR3|| = {p15, p16, p21 − p23, p34,R3}.
According to Definition 4, H (R1) = {p11 − p18, p23} and
H (R1) = {p15, p16, p21 − p23, p34}. As a result, the comple-
mentary set of S is [S]= (∪r∈SH (r))\S = {p14, p22}.
We note that, if we control siphons randomly in Gadara

nets, it could happen that the number of siphons to be con-
trolled is very large, which leads to high computational and
structural complexity. Moreover, it could happen that the
weights of some arcs related to monitor places are non-unit.
In this case, bad siphons possibly emerge whose control is
much more complex than that of emptiable siphons.

Whether a siphon can be emptied is directly related to
its complementary set. Given an MRES S, all the tokens

16678 VOLUME 8, 2020



W. Duo et al.: Deadlock Prevention Policy for a Class of Multithreaded Software

FIGURE 1. A gadara net model for deadlock in linux kernel.

in S flow into its complementary set [S] if S is empty.
In other words, S can be emptied when certain places of [S]
are marked. Thus, we construct a constraint to control the
complementary set, guaranteeing that not all tokens in the
siphon can flow into its complementary set. The constraint is

∑
p∈[S]

M (p) ≤ M0(S)− 1 (1)

where M0(S) =
∑

p∈S M0(p).
In the following, σ or σ ′ is used to denote a transition

sequence.
Definition 5: Given a Petri net (N ,M0) and a reachable

markingM of the net,M can be divided into three categories:
1) M is a live marking if ∃σ such that M [σ 〉M0;
2) M is a bad marking if ∃σ such that M [σ 〉M ′ where

M ′ ∈ R(N ,M0), but 6 ∃σ ′ such that M [σ ′〉M0. Or M
is bad if there is no control logic to makeM reachM0;

3) M is a deadlock marking if all transitions are disabled
at M .

Note that condition 2 of Definition 5 shows that a marking
M ∈ R(NG, M0) is bad if there is no control logic to make
M reach M0. It is determined by the structure of Gadara
net. The condition 4 of Definition 1 shows that ∀p ∈ PA,
if |p•| > 1, then ∀t ∈ p•,• t ∩ PR = ∅, which means
branching transitions cannot request any resource. However,
monitor places are usually considered as a class of resource
places. Thus, the output arcs ofmonitor places cannot connect
to any branching transition, i.e., branching transitions cannot
be disabled by monitors. Therefore, a marking is bad if it can
reach deadlock markings via a branching transition since it
cannot be controlled by monitors.

Branching transitions in Gadara net are similar to uncon-
trollable transitions. Hence, branching transitions in Gadara
net are often regarded as uncontrollable.

Definition 6: Given a Gadara net NG = (P0 ∪ PA ∪
PR,T ,F,M0),∀p ∈ PA, if |p•| > 1, then ∀t ∈ p•, t is
uncontrollable.

The control logic defined by constraint (1) can forbid a set
of deadlock markings and bad markings. However, it may be
inefficient since it can only remove a small number of bad
markings. In addition, new emptiable siphons may emerge
in the net after monitor places are added. In other words,
new deadlock markings may arise. To solve these problems,
we provide a method that considers bad markings in a class
of Gadara nets. We need the following definitions before
presenting the method.
Definition 7: Given a Gadara net (NG,M0) and an emp-

tiable siphon S in NG, the set of reachable markings at
which S is empty is denoted as A(S), i.e, A(S) = {M ∈

R(NG,M0)|M (S) = 0} where M (S) =
∑

p∈S M (p).
Definition 8: Let S be an emptiable siphon in a Gadara net

NG and [S] be the complementary set of S. C(S) is defined as
C(S) = {P′ ⊆[S]|M (S) = 0,∀p ∈ P′,M (p) = 1}.
Take the Gadara net shown in Fig. 1 as an exam-

ple. There is an MRES S in the net, that is, S =

{p11−p13, p15−p18, p21, p23, p34,R1,R3}. Its complemen-
tary set is [S] = {p14, p22} by Definition 4. Siphon S is
emptied if p14 and p22 are both marked. Clearly, C(S) =
{{p14, p22}}.
Definition 9: Given a Gadara net NG = (P0 ∪ PA ∪

PR,T ,F,M0) and a set of place P′ ⊆ PA, the set of reachable
markings at which all places of P′ are marked is defined as
B(P′) = {M ∈ R(NG,M0)|∀p ∈ P′,M (p) = 1}.
Let � be an element of C(S), where S is an emptiable

siphon. Clearly, S is empty if all the places of � are marked,
i.e., S is empty at the marking M ∈ B(�). Hence, we have
the following lemma.
Lemma 1: Given a Gadara net NG, an emptiable siphon S

of the net and an element � of C(S), it holds that

A(S) = ∪�∈C(S)B(�).

Proof: The proof is trivial. ♣

Consider again the Gadara net in Fig. 1 and the siphon S=
{p11−p13, p15−p18, p21, p23, p34,R1,R3}, where C(S) =
{{p14, p22}}. Let � = {p14, p22} and we have B(�) = {M ∈
R(N ,M0)|M (p14) = M (p22) = 1}. There is only one element
in C(S). Hence, we have

A(S) = B(�) = {M ∈ R(N ,M0)|M (p14) = M (p22) = 1}.

A(S) contains all the markings at which S is empty. Obvi-
ously, constraint (1) can only remove themarkings ofA(S) but
cannot remove other bad markings that may reach markings
in A(S). In our work, A(S) can be equivalent to many sets of
B(�). By introducing B(�), we can look for bad markings
based on certain operation places rather than considering all
the reachable markings.
Definition 10: Given a Gadara net NG = (P0 ∪ PA ∪

PR,T ,F,M0), and a set of places P′ ⊆ PA, a place p′ is called
the downstream (upstream) place of p if p′ ∈ PA and there
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exists a path π from p to p′ (from p′ to p) such that P(π ) ∩
P0 = ∅,P(π ) ∩ PR = ∅ and T (π ) 6= ∅. The set of all down-
stream (upstream) places of p is denoted as Pd (p) (Pu(p)).
Given a set of places P′, the set of downstream (upstream)
places of all the places in P′ is denoted as Pd (P′)(Pu(P′)).

Consider the Gadara net in Fig. 1 and a place set P′ =
{p14, p22}. By Definition 10, the set of all downstream places
of p14 is Pd (p14) = {p13, p15, p16, p17, p18} and the set of
all upstream places of p14 is Pu(p14) = {p11, p12, p13, p15}.
In addition, the sets of downstream and upstream places of all
places in P′ are Pd (P′) = {p13, p15, p16, p17, p18, p21, p23}
and Pu(P′) = {p11, p12, p13, p15, p21, p23}.
Definition 11: Given a Gadara net NG = (P0 ∪ PA ∪

PR,T ,F,M0) and a set of place P′ ⊆ PA, the set of reachable
markings at which k places of P′ are marked is defined as
Bk (P′) = {M ∈ R(NG,M0)|6p∈P′M (p) = k ∧ M (p) ≤1},
where k ∈{1, 2, . . . , |P′|}.
Suppose that P′ = {p1, p2, p3} and any two places

of P′ can be marked at the same. Thus, B2(P′) =

B({p1, p2})∪B({p1, p3})∪B({p2, p3}). Obviously, |Bk (P′)| ≤
|B(P′)|. Thus, k can be ignored if k = |P′|.

As B(�) is a set of bad markings, places of � cannot be
marked simultaneously; otherwise, the system can reach a
bad marking. Hence, we have the following proposition.
Proposition 1: Given a Gadara net NG, an MRES S of the

net and an element � of C(S). If N c
G is a live controlled net

of NG, then the following constraint holds in N c
G:∑

p∈�
M (p) ≤ |�| − 1. (2)

Proof: By contradiction, suppose that (2) does not hold
in N c

G. It implies there is a marking M ∈ (N c
G,M0) at which

∀p ∈ �,M (p) = 1. Since � ∈ C(S), S is empty at M .
Based Theorem 1,N c

G is not live, which contradictsN c
G is live.

Thus, (2) holds in N c
G if N c

G is a live controlled net of NG. ♣
On the basis of the above definitions and analysis, Function

FindBMs is developed to compute bad markings. Given a
Gadara netNG and anMRNE S ofNG,C(S) can be computed
by Definition 8. Let � ∈ C(S) where B(�) is a set of bad
markings, at which S is empty. Then, a set 5 of MRESs is
given. The basic idea of Function FindBMs is as follows:

First, according to Definition 9 and Lemma 1, a set of
bad markings 9 can be computed based on the MRESs in
steps 1 to 6.

Second, let 8 = � and k = |�|. We compute
bad markings by considering the upstream places of 8.
More specifically, consider a place p ∈•• 8 ∩ Pu(8) and
Pu(8) = ∅. As we know, NG can reach a bad mark-
ing once k places of 8 are marked. To obtain more bad
markings, we want to determine whether the markings are
bad where p and k-1 places of 8 are marked, i.e., whether
Bk ({p}∪(8\Pd (p))) is a set of bad markings. To facilitate the
understanding, we explain Bk ({p}∪(8\Pd (p))) as follows.
The Gadara net considered in our work satisfies that ∀p0 ∈
P0,M (p0) = 1, i.e., at most one operation place can be
marked on each subnet. If Bk ({p}∪(8\Pd (p))) 6= ∅, p must

be marked and only k-1 places can be marked in 8\Pd (p).
Thus, Bk ({p}∪(8\Pd (p))) is a set of markings where p and
k-1 places of 8 are marked.

Third, steps 10 to 20 of Function FindBMs are used to
determine whether Bk ({p}∪(8\Pd (p))) is a set of bad mark-
ings. In steps 10 to 13, if ∀M ∈ Bk ({p}∪(8\Pd (p))), M
always reaches the marking of 9, then Bk ({p}∪(8\Pd (p)))
is a set of bad markings since any marking of 9 is bad.
Furthermore, Definition 5 shows that a marking is bad
if it can reach a bad marking via uncontrollable transi-
tions. Hence, steps 14 to 17 are used to determine whether
the markings of Bk ({p}∪(8\Pd (p))) can reach bad mark-
ings via uncontrollable transitions. Once Bk ({p}∪(8\Pd (p)))
is a set of bad markings, p is added to 8. The func-
tion terminates when all the upstream places of 8 are
considered.

Finally, a set of places 8 is obtained where Bk (8) is a set
of bad markings.
Theorem 2: Given a Gadara net NG, an MRES S of the

net, an element � of C(S) and a set 5 of MRESs, B|�|(8)
is a set of bad markings that can empty siphon S, where
8 = FindBMs(�,5).

Proof: Consider the following cases:
1) If no place is added to 8, then 8 = �. Let k =
|�|,Bk (8) = B(8) = B(�) is a set bad markings that can
empty siphon S;
2) If a place p is added to 8, then p must satisfy at least

one of the following conditions:
a) ∀M ∈ Bk ({p}∪(8\Pd (p))), ∀M ′ ∈ R(NG,M ) such that

R(NG,M ′)∩9 6= ∅. It impliesM can always reach markings
of 9. By contradiction, suppose that there is a marking
M ∈ Bk ({p}∪(8\Pd (p))) cannot always reach markings
of 9. Thus, ∃M ′ ∈ R(NG,M ),∀M9 ∈ 9, 6 ∃σ such that
M ′[σ 〉M9 , i.e., R(NG,M ′) ∩ 9 = ∅. Clearly, it contradicts
that ∀M ′ ∈ R(NG,M ) such that R(NG,M ′) ∩ 9 6= ∅.
Hence, given a marking M , if ∀M ′ ∈ R(NG,M ) such that
R(NG,M ′) ∩9 6= ∅,M can always reach markings of 9.
9 is known to be a set of bad markings, and M is also

bad if M can always reach the markings of 9. By con-
tradiction, suppose that M is a live marking so that there
must exist a transition sequence σ ′ such that M [σ ′〉M0.
We know that M must reach a marking of 9 before it
reaches M0. As any marking of 9 is bad, there exists no
transition sequence σ ′′ such thatM [σ ′′〉M0, which contradicts
that there is a transition sequence σ ′ such that M [σ ′〉M0.
Hence, Bk ({p}∪(8\Pd (p))) is a set of bad markings if all
the markings of Bk ({p}∪(8\Pd (p))) can always reach the
markings of 9;
b) |p•| > 1. It implies that the output transitions of p

are branching transitions. Definition 6 shows that branch-
ing transitions in Gadara net are uncontrollable so that they
are not disabled by any monitors. Due to p ∈•• 8, there
is at least one transition sequence such that the markings
of Bk ({p}∪(8\Pd (p))) can reach the markings of B(�) via
uncontrollable transitions. On the basis of Definition 5,
Bk ({p}∪(8\Pd (p))) is a set of bad markings;
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Function 8 = FindBMs (�,5)
Input: A set � ∈ C(S) and a set5 of MRESs in a Gadara
net (NG,M0).
Output: A set of places 8.
1. Let 9: = B(�);
2. for each S ′ ∈ 5 do
3. compute C(S ′) based on Definition 8;
4. compute A(S ′) based on Lemma 1; /∗A(S ′) =

∪�∈C(S ′)B(�)∗/
5. 9 := 9 ∪ A(S ′);
6. end for/∗ compute a set of bad markings based on the
known siphons ∗/
7. let 8: = � and k: = |�|; /∗k is the number of places in
�∗/
8. while (Pu(8) 6= ∅) do
9. if ∃p ∈•• 8 ∩ Pu(8) then
10. if ∀M ∈ Bk ({p}∪(8\Pd (p))), ∀M ′ ∈ R(NG,M ) such
that R(NG,M ′) ∩ 9 6= ∅then /∗M will always reach
markings of 9∗/
11. 8 := 8 ∪ {p};
12. 9 := 9 ∪ Bk ({p}∪(8\Pd (p)));
13. end if
14. if |p•| > 1 then/∗ if |p•| > 1, then ∀t ∈ p•, t is
uncontrollable according to Definition 6∗/
15. 8 := 8 ∪ {p};
16. 9 := 9 ∪ Bk ({p}∪(8\Pd (p)));
17. end if
18. Pu(8): = Pu(8)− p;
19. else
20. Pu(8) = ∅;
21. end if
22. end while
23. output: 8;
24. end

Based on the above analysis,Bk (8) is a set of badmarkings
at the initial situation. A place will be added to 8 only
if at least one of the above conditions is satisfied. Hence,
Bk (8) is still a set of bad markings after adding these places.
In addition, all the added places satisfy p ∈ Pu(�) and
the Gadara net considered in our work is subject to ∀p ∈
P0,M0(p0) = 1, i.e., only one operation place can be marked
on each subnet. Thus, ∀M ∈ Bk (8), there exists at least one
transition sequence σ such that M [σ 〉M ′, where M ′ ∈ B(�).
Therefore, Bk (8) is a set of bad markings that can empty
siphon S. ♣

Theorem 2 shows that we can find some bad markings
based on the MRESs. Furthermore, these markings can even-
tually empty a siphon. Obviously, any |�| places of8 cannot
be marked at the same time, since otherwise, the net can
inevitably reach a deadlock state. Hence, it is trivial to obtain
the following proposition.
Proposition 2: Given a Gadara net NG, an MRES S of the

net, an element� ofC(S) and a set5 of MRESs, it holds that

∑
p∈8M (p) ≤ |�| − 1 in N c

G where 8 = FindBMs(�,5),
if N c

G is live controlled net of NG.
Consider the Gadara net in Fig. 1. There is an MRES in the

net that is S1 = {p11−p13, p15−p18, p21, p23, p34,R1,R3}.
The complementary set of S1 is [S1]= {p14, p22} and C(S1)
can be computed based on Definition 8, i.e., C(S1) =
{{p14, p22}}. There is no other MRES in the net. Let � =
{p14, p22} and 5 = {S1}.
Next, Function FindBMs is called. First, we have 8 =

� = {p14, p22} and 9 = B(�) = {M ∈

R(N ,M0)|M (p14) = M (p22) = 1}. Then, each place of
Pu(�) = {p11, p12, p13, p15, p21, p23} is taken into account.
Consider the markings of B({p13, p22}) since p13 ∈

••

p14, t15 is disabled and t5, t10 are enabled at the markings
of B({p13, p22}). However, t5 and t10 are both branching
transitions, which implies that p14 can obtain a token from p13
via an uncontrollable transition. Thus, we have a set of bad
markings where B({p13, p22})= {M ∈ R(N ,M0)|M (p13) =
M (p22) = 1}. p13 should be added to 8 and 9 = B(�) ∪
B({p13, p22}). Next, consider place p12, i.e., consider the
markings of B({p12, p22})= {M ∈ R(N ,M0)| M (p12) =
M (p22) = 1}. Clearly, as t15 is disabled at these markings,
these markings can reach the markings of B({p13, p22}) once
t4 is enabled. Thus, B({p12, p22}) and p12 should be added
to 9 and 8, respectively. Similarly, B({p11, p22})= {M ∈
R(N ,M0)|M (p11) = M (p22) = 1} should be added to9, and
p11 should be added to 8. As for p15, there is only one place
in p15 and p22 can be marked since they both require resource
PR3. Thus, remove p15 from Pu(�).

Now, we have 8 = {p11, p12, p13, p14, p22} and Pu(�) =
{p21, p23}. Consider the markings of B2(p21 ∪ {8\p22}),
i.e., consider the following markings:
B({p14, p21}) = {M ∈ R(N ,M0)|M (p14) = M (p21) = 1},
B({p13, p21})= {M ∈ R(N ,M0)|M (p13) = M (p21) = 1},
B({p12, p21})= {M ∈ R(N ,M0)|M (p12) = M (p21) = 1},
B({p11, p21})= {M ∈ R(N ,M0)|M (p11) = M (p21) = 1}.
Obviously, all the abovemarkings can reachmarkings of9

via uncontrollable transitions. Hence, p21 is added to 8 and
B2(p21 ∪8\{p22}) is added to 9.
Consider place p23. Only one of the places p11, p12, p13,

p14, p15 and p23 can be marked at any time since they
all use the same resource PR1. Hence, they cannot be
marked at the same time. p23 is thus not added to 8. As a
result, Pu(�) = ∅ and Function FindBMs terminates. 8 is
updated to 8 = {p11, p12, p13, p14, p21, p22}. As a result,
we have a set of bad markings where B2(8) = B(�) ∪
B({p11, p22})∪B({p12, p22})∪B({p13, p22})∪B({p11, p21})∪
B({p12, p21})∪B({p13, p21})∪B({p14, p21}).
The method of finding bad markings based on Function

FindBMs is simple but may be inefficient when the places of
� refer tomany process subnets. Given a set� ∈ C(S) and let
8 = �,B(8) is a set of bad markings. Let p ∈ 8, we want to
determine whether the markings of B({••p}∪(8\p)) are also
bad. It often requires enumerating all or parts of the reachable
markings that reduces the computational efficiency. To solve
this problem, the emptiable siphon considered in our work is
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minimal and contains the smallest number of resource places
and the initial marking of each idle place is equal to one. Due
to the structural characteristics of the considered Gadara net,
the efficiency of computing bad markings can be enhanced.

IV. ITERATIVE DEADLOCK PREVENTION POLICY
A. COMPUTATION OF ALL MRNES
In our work, the set of all MRNEs in a Gadara net is
required to be computed so that bad markings can be com-
puted by FindBMs. It is not the focus of our work. Thus,
we briefly introduce a method to look for all MRNEs of a
Gadara net. The mixed integer programming (MIP) formula-
tion employed in the following function is proposed in [32]
called MMIP-1. MRESs in a Gadara net can be computed by
MMIP-1. More details are referred to [32].

First, MMIP-1 is employed to compute an MRES in a
Gadara net. If there is an MRES S in the net, S is added
to 5 and let n = |S ∩ PR|. Monitor place is designed
based on the method in [32] to prevent S from being empty.
After obtaining a controlled net, two constraints are added
to MMIP-1: 1) the objective siphon can only possess n
resource places; 2) for any objective siphon S ′, S ′ ∩ VS = ∅,
where VS is the set of monitor places computed in Function
ComputeMRESs. The new MIP formulation is denoted as
MIP∗. Then, MIP∗ is used to detect MRES in the controlled
net. Once an MRES is detected, the siphon will be added
to 5 and then be controlled. The controlled net is input to
MIP∗ again to detect MRES and the above steps are repeated.
The function terminates when there is no feasible solution
for MIP∗.
Proposition 3: Given a Gadara net (NG,M0),5 =

ComputeMRESs(NG,M0) is the set of all MRESs of NG.
Proof: Let S be an MRES detected by MMIP-1 in

Gadara net NG. Let n = |S ∩ PR| and VS = {pc}, where
pc is the monitor place to prevent S from being empty. Two
constraints are added to MMIP-1 to obtain MIP∗, where
6r∈PR (1-vr ) = n and ∀p ∈ VS , vp = 1. It implies that
for an MRNEs S ′ detected by MIP∗, |S ′ ∩ PR| = n and
|S ′ ∩ VS | = ∅. MIP∗ only computes MRESs of the original
Gadara net. Thus, 5 is a set of MRESs.
Then, we prove that 5 is the set of all MRESs of NG. 5

is the output of Function ComputeMRESs when the function
terminates. By contradiction, suppose that5 is not the set of
all MRESs of NG. It means that there is an MRES S ′′ such
that S ′′ /∈ 5. According to Function ComputeMRESs, S ′′ will
be added to 5 and then be controlled, which contradicts that
Function ComputeMRESs terminates. Therefore,5 is the set
of all MRESs of NG. ♣

The Gadara net (NG,M0) in Fig. 5 is used to illustrate
Function ComputeMRESs. Let (NG1,M01) = (NG,M0).
First, an MRES is detected by MMIP-1, which is S1 =
{p5, p10,R3,R4}. Add S1 to the set 5 and let n = |S1 ∩
PR| = 2. Next, a monitor pc1 is designed to prevent S1 from
being empty according to [32], i.e., the monitor is computed
for

∑
p∈[S]M (p) ≤ M0(S) − 1 based on SBPI. pc1 is added

Function 5 = ComputeMRESs(NG,M0)
Input: A Gadara net (NG,M0).
Output: The set of all MRESs 5.
1. Let (NG1,M01): = (NG,M0) and 5: = ∅;
2. if there is an MRES S in (NG1,M01) computed by the
MIP formulation in [32] do
3. 5 := 5 ∪ S;
4. let n: = |S ∩ PR|;
5. add a monitor pc to (NG1,M01) to prevent S from being
empty according to [32];
6. the resultant net is denoted as (NG1,M01);
7. VS : = VS ∪ {pc};
8. add two constraints to the MIP formulation in [32]:
6r∈PR (1-vr ) = n and ∀p ∈ VS , vp = 1, the new MIP
formulation is denoted as MIP∗; /∗ In the MIP formulation
of [32], vp = 1⇒ p /∈ S, vp = 0⇒ p ∈ S. ∗/
9.while (there exists an MRES S ′ in (NG1,M01) computed
by MIP∗ and S ′ /∈ 5) do
10. 5 := 5 ∪ S ′;
11. add a monitor pc to (NG1,M01) to prevent S ′ from being
empty according to [32];
12. the resultant net is denoted as (NG1,M01);
13. VS : = VS ∪ {pc};
14. end while
15. end if
16. end

to VS and NG1. Subsequently, two constraints are added to
MMIP-1: 6r∈PR (1-vr ) = 2 and ∀p ∈ VS , vp = 1. The
new MIP formulation is called MIP∗. Clearly, any MRES
in NG detected by MIP∗ can only possess 2 resource places.
Then, S2 = {p6, p9,R4,R5} is detected by MIP∗ and pc2 is
added to NG1 to prevent S2 from being empty. 5 and VS are
updated to 5 = {S1, S2} and VS = {pc1, pc2}, respectively.
S3 = {p4, p11,R2,R3} is detected byMIP∗ inNG1 augmented
with pc1 and pc2. NG1 is updated by augmenting with pc3.
Thus, 5 = {S1, S2, S3} and VS = {pc1, pc2, pc3}. Similarly,
S4 = {p3, p12,R1,R2} is detected in the updated net and we
have 5 = {S1, S2, S3, S4}, VS = {pc1, pc2, pc3, pc4}, where
pc4 is designed to control S4. There is no feasible solution for
MIP∗ after updating NG1 with pc4. Hence, ComputeMRESs
terminates. As a result, the set of all MRESs in the Gadara
net of Fig. 5 is 5 = {S1, S2, S3, S4}.

B. DEADLOCK PREVENTION POLICY
In this section, we propose an iterative deadlock prevention
policy to obtain a live Gadara net.
Definition 12: Let NG be a Gadara net and S be an emp-

tiable siphon of NG. Let �i ⊆ C(S), �i is called the redun-
dant set of C(S) if ∃�j ⊆ C(S),∀p ∈ �i, p ∈ �j or
p ∈ Pu(�j), where i 6= j.
Definition 13: Let NG be a Gadara net and S be an emp-

tiable siphon of NG. C(S)max is defined as C(S)max ⊆ C(S)
and there is no redundant set in C(S)max .
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Suppose that C(S) = {{p1, p2},{p1, p3}} where p1 ∈
Ni, p2, p3 ∈ Nj and p2 ∈•• p3, i 6= j. According to Defini-
tion 12, we know {p1, p2} is the redundant set ofC(S). Hence,
C(S)max = {{p1, p3}}. Let�1 = {p1, p2} and�2 = {p1, p3},
FindBMs is called to compute bad markings that can reach
B(�1) and B(�2). Assume that the results are B(81) and
B(82), respectively. As Function FindBMs only considers the
upstream places of �1, �2 and Pu(�1) ⊆ Pu(�2), we have
B(81) ⊆ B(82) if 81 ⊆ 82. Then, two monitors C1 and
C2 are designed to forbid the markings of B(81) and B(82),
respectively. If B(81) ⊆ B(82), once the markings of B(82)
are forbidden byC2, themarkings ofB(81) are also prevented
from being reachable without adding monitor placeC1. Thus,
C1 is a redundant monitor.

Based on the above analysis, the redundant set of C(S)
may result in redundant monitors. Therefore, the pro-
posed deadlock prevention policy in the following only
considers C(S)max .

Algorithm 1 An Iterative Deadlock Prevention Policy
Input: A Gadara net (NG,M0)
Output: A live controlled Gadara net (N c

G,M
c
0 ).

1 Let (N c
G,M

c
0 ) = (NG,M0).

2 while (5 = ComputeMRESs(N c
G,M

c
0 ) 6= ∅) do

3 let S ∈ 5;
4 compute the complementary set [S] of S based on
Definition 4;
5 compute C(S)max based on Definition 13;
6 for each � ∈ C(S)maxdo
7 8 := FindBMs(�,5);
8 construct a constraint as

∑
p∈8M (p) ≤ |�|-1 and add a

monitor place pc to (N c
G,M

c
0 ) based on SBPI;

9 end for
10 the resultant net is denoted by (N ′,M ′0);
11 let (N c

G,M
c
0 ): = (N ′,M ′0);

12 end while
13 end

Algorithm 1 works as follows. Steps 2 to 12 rep-
resent the iteration cycle. At each iteration, if 5 =

ComputeMRESs(N c
G,M

c
0 ) 6= ∅, let S ∈ 5, steps 4 to

5 compute the complementary set [S] and the set C(S)max
for an MRES S of 5. For each set � ∈ C(S)max , let
8 = FindBMs(�,5) and B|�|(8) be a set of bad markings
that can empty S. Thus, Step 8 constructs the constraint∑

p∈8M (p) ≤ |�|-1 and SBPI is employed to compute
the monitor places. Every element of C(S)max is taken into
account so that a large amount of badmarkings that can empty
the detected siphon are removed. Finally, the added monitor
places are considered as resource places and the controlled
net is input to ComputeMRESs to compute all MRESs. The
algorithm executes until there is no MRES in the Gadara net.
Consequently, all emptiable siphons are prevented from being
emptied.
Theorem 3: Let (N c

G,M
c
0 ) be the net obtained from

(NG,M0) by Algorithm 1. (N c
G,M

c
0 ) is ordinary.

Proof: The constraint established in Algorithm 1 have
the form as

∑
p∈8M (p) ≤ |�| − 1. We can rewrite it as

n∑
i=1

liM (pi) ≤ |�| − 1 (3)

where n is the number of places in the Gadara net. Let L =
[l1, l2, . . . , ln], (2) is equivalent to LM(p) ≤ |�|-1, where
L(pi) = 1 if pi ∈ 8, otherwise, L(pi) = 0. According to
SBPI, the monitor place is computed as [Nc] = −L·[NG]=
−L8·[NG]8, where L8 is the set of non-zero components
of L and [NG]8 is a part of the incidence matrix [NG] that
corresponds to the places of 8. The element of [NG]8 can
only be 0, 1 and -1 since all the places of 8 are operation
places. Furthermore, the definition of Gadara net shows that
each subnet is a strongly connected state machine. Hence,
there is at most one output operation place and at most
one input operation place for each transition. Thus, there is
at most one 1 and one -1 in each column of [NG]8 while
other elements are 0. Moreover, all the components of L8
are 1. As a result, the element of [Nc] can only be 0, 1 and
−1, i.e., the weights of the arcs associated with the monitor
places are all one. Therefore, the controlled Gadara net is still
ordinary. ♣

Theorem 4: Given a Gadara net (NG,M0) where ∀p ∈
P0,M0(p0) = 1, and the net (N c

G,M
c
0 ) obtained from

(NG,M0) by Algorithm 1. (N c
G,M

c
0 ) is live and maximally

permissive.
Proof: At each iteration, if 5 = ComputeMRESs

(N c
G,M

c
0 ) 6= ∅, it implies that there exists an MRES S,

the algorithmwill compute the badmarkings when S is empty
and all the badmarkings that can eventually empty S. Monitor
places will be designed to forbid all the bad markings and
deadlock markings that can empty S. Therefore, S can be pre-
vented from being empty under the control logic. Algorithm 1
is carried out if 5 = ComputeMRESs(N c

G,M
c
0 ) = ∅,

i.e., there is no MRES in the net. Theorem 3 shows that
the controlled net is still ordinary. Hence, the liveness of the
controlled is related to emptiable siphon only. According to
Theorem 1, the final controlled Gadara net (N c

G,M
c
0 ) is live

since it has no any emptiable siphon.
As for the maximal permissiveness, at each iteration,

the proposed method will establish a constraint based on the
output of Function FindBMs. For an MRES S ∈ 5,8 =

FindBMs(�,5) where � ∈ C(S). Theorem 2 shows that
B|�|(8) is a set of bad markings. The constraint estab-
lished in step 8 only forbids bad markings of B|�|(8). After
Algorithm 1 terminate, all bad markings that lead to emp-
tiable siphons are forbidden and all live markings are reach-
able after the iterative process terminates. Thus, the final
controlled Gadara net (N c

G,M
c
0 ) obtained by Algorithm 1 is

maximally permissive. ♣

Remark 1: Since Definition 5 shows that a marking is bad if
there is no control logic to make it go back to the initial mark-
ing, the markings associated with uncontrollable transitions
are considered as bad. Thus, the controlled net obtained by
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Algorithm 1 can be regarded as maximally permissive even if
themarkings associatedwith branching transitions are forbid-
den. Moreover, the controlled net obtained by Algorithm 1 is
admissible, i.e., the outgoing arcs of monitor places never
connect to branching transitions.
Remark 2: The computational complexity of Algorithm 1

mainly depends on Function FindBMs. Hence, the computa-
tional complexity of Algorithm 1 is exponential since Func-
tion FindBMs requires the reachability analysis. Note that it
is mentioned in Section III that the computational efficiency
of FindBMs is improved since we add some constraints on the
considered Gadara net. Thus, the computational efficiency of
Algorithm 1 can also be improved.
Remark 3: As analyzed in Section III, the constraint (1)

or (2) can only forbid a small number of bad markings,
which may lead to the problem of adding multiple monitors
to the controlled net. Thus, Algorithm 1 employs Function
FindBMs to compute all the bad markings that can empty an
MRES. Then, a monitor place is designed in Algorithm 1 to
forbid as many bad markings as possible so as to simplify
the control structure. Although Algorithm 1 cannot guarantee
that the control structure is the simplest, it can obtain a
supervisor with simpler structure compared with the existing
methods.

The Gadara net model in Fig. 1 is used to demon-
strate the proposed algorithm. The model corresponds to
a deadlock bug in version 2.5.62 of the Linux kernel.
This model is constructed in the paper [16], where P0 =
{p01, p02, p03}, PA = {p11−p18, p21−p23, p31−p35}, and
PR = {R1,R2,R3}. There are 80 reachable markings in the
net in which 2 markings are dead and 78 markings are live.
However, 22 of 78 markings can reach two dead markings via
uncontrollable transitions. Hence, these markings are consid-
ered as bad.

According to our iterative control scheme, the set of all
MRESs is computed as 5 = {S1}, where

S1 = {p11−p13, p15−p18, p21, p23, p34,R1,R3}.

The complementary set of S1 is [S1] = {p14, p22}. Based
on Definition 7 and Definition 13, we have

C(S1)max = C(S1) = {{p14, p22}}.

Hence, let � = {p14, p22}, Function FindBMs is called.
The result of Function FindBMs in this example is com-

puted in Section III. Namely, 8 = FindBMs(�,5) =
{p11, p12, p13, p14, p21, p22}. Clearly, any two places in 8
cannot be marked at the same time, since otherwise siphon
S1 is empty. Hence, a constraint is constructed as

M (p11)+M (p12)+M (p13)+M (p14)+M (p21)+M (p22) ≤ 1.

Then, a monitor place pc1 can be computed on the basis
of SBPI. As a result, we have M0(pc1) = 1,• pc1 =
{t2, t6, t10, t15, t17} and p•c1 = {t1, t9, t13, t16} after pc1 is
added to the Gadara net. The controlled net is shown in
Fig. 2 and we can see that the controlled net is admissible.

FIGURE 2. Controlled net of the gadara net shown in fig. 1 by algorithm 1.

At the second iteration, the added monitor place pc1 is
regarded as a resource place and the controlled net in Fig. 2 is
input to Function ComputeMRESs. As a result, 5 = ∅.
Hence, Algorithm 1 terminates and only one monitor place
is needed to guarantee the liveness of the considered net.
The resultant net is shown in Fig. 2. Adding the monitor
place to the original net model, we obtain a live controlled
Gadara net with 56 reachable markings. The obtained result
proves that Algorithm 1 prevents all the deadlock markings
and handles uncontrollable transitions in aminimal restrictive
manner. Furthermore, all the incoming and outgoing arcs of
the synthesized monitor place have unit arc weight, i.e., the
resultant net remains ordinary.

Note that the proposed method is only applicable to the
ordinary Gadara nets where ∀p0 ∈ P0,M0(p0) = 1, i.e., there
is always one token in each process subnet so that the opera-
tion places of a same subnet cannot be marked at the same
time. Hence, the constraints involved in Algorithm 1 only
prevent the deadlock markings and bad markings but do
not prevent any live marking. Unfortunately, the method
may fail to guarantee the maximal permissiveness if ∃p0 ∈
P0,M0(p0) > 1. In this case, the constraints in the method
may prevent live markings since the operation places of a
same subnet can be marked at the same time.

V. EXAMPLES
This section further shows the performance of the proposed
policy by applying it to two Gadara nets in the literature.

The Gadara net model of a multithreaded software is
shown in Fig. 3, which has been studied in several papers
(see [15]–[17]). The places of Fig. 3 can be divided as: P0 =
{p1, p7}, PR = {R1 − R3}, and PA = {p2 − p6, p8 − p12}.
The net has 16 reachable markings in which two markings
are dead and 11 markings are live. Our deadlock prevention
policy is applied to prevent the two dead markings from
being reachable. At the first iteration, the set of all MRESs is
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FIGURE 3. Gadara net model in [15].

FIGURE 4. Controlled net of the gadara net in fig. 3.

51 = {S1, S2}, where S1 = {p5, p6, p9, p10, p11,R2,R3} and
S2 = {p3, p4, p5, p11, p12,R1,R2}. The complementary set
of S1 is [S1]= {p3, p4, p8} and C(S1)max = {{p4, p8}}.Thus,
let �1 = {p4, p8}, Function FindBMs is applied to �1
and 51. As a result, we have 81 = FindBMs(�1,51) =
{p2, p3, p4, p8}. Since |�1| = 2, a constraint is constructed as

M (p2)+M (p3)+M (p4)+M (p8) ≤ 1.

Thus, a monitor place pc1 is designed to forbid these bad
markings. It isM0(pc1) = 1, •pc1 = {t4, t8} and p•c1 = {t1, t7}.
The resultant net is shown in Fig. 4.

At the second iteration, 51 = {S2} where S2 =
{p3, p4, p5, p11, p12,R1,R2}. Similar to the first iteration,
Function FindBMs is applied to �2 and 52, where �2 =

{p2, p10}. The result of Function FindBMs is 82 =

{p2, p9, p10}. By our deadlock prevention policy, a monitor

place pc2 is designed for

M (p2)+M (p9)+M (p10) ≤ 1.

As a result, we have M0(pc2) = 1,• pc2 = {t2, t10} and p•c2 =
{t1, t8}. The resultant net is shown in Fig. 4.
At the third iteration, the net augmented with pc1 and

pc2 is input to Function ComputeMRESs and 5 = ∅.Thus,
Algorithm 1 terminates. In the resultant net, there are two
monitor places with eight arcs. After adding the two monitor
places to the original Gadara net, the controlled net is livewith
11 markings. It shows that the proposed method guarantees
the liveness of Gadara nets with maximal permissiveness.

FIGURE 5. A Gadara net.

Next, we consider the Gadara net shown in Fig. 5, where
P0 = {p1, p7},PR = {R1−R5}, andPA = {p2−p6, p8−p12}.
There are 21 reachable markings in the net with 11 live
markings and four dead markings, respectively. By using the
deadlock prevention policy, four dead markings and six bad
markings can be forbidden. The application of our deadlock
prevention policy is shown in Table 1, where the first column
is the iteration number, the second is the output of Function
FindBMs, the third column shows the constraints at each
iteration, M0(pci0),• pci, and p•ci shown in the fourth column
to sixth column are the initial marking, preset and postset
of the computed monitor place pci, respectively, and the last
four columns are the numbers of reachable markings, bad
markings, dead markings and live markings, respectively.

For this example, there are four iterations and four con-
straints are constructed by the algorithm and each of them
corresponds to a monitor place. After adding these four mon-
itor places to the original Gadara net, the controlled net is live
with 11 live markings. Furthermore, the results listed in the
last four columns of the table show that the final controlled net
is maximally permissive. It demonstrates that the proposed
method is maximally permissive since the added monitor
places prevent all the deadlock markings and bad markings
while forbid none of live markings.
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TABLE 1. Monitor places computed for the net in Fig. 5 by Algorithm 1.

TABLE 2. Monitor places computed for the net in Fig. 3 by ICOG-O.

TABLE 3. Monitor places computed for the net in Fig.5 by ICOG-O.

In order to provide a comparison between our dead-
lock prevention policy and other approach, the ICOG-O
method [17] is applied to the two examples. The application
of ICOG-O in the two examples is shown in Table 2 and
Table 3, respectively.

For the first example, it requires five iterations to terminate
the ICOG-O algorithm. Accordingly, five constraints are con-
structed by the algorithm. The monitor places corresponding
to the five constraints are shown in Table 2. It can be seen
that the ICOG-O is maximally permissive and it requires five
monitor places to guarantee the liveness of the net. In contrast,
by using our method, we find a simpler supervisor that can
keep the Gadara net live with only two monitor places. As for
the second example, ten monitor places are designed by
ICOG-O to forbid deadlock markings and bad markings in
the net. We notice that three of the ten monitor places are
redundant, which are pc18 − pc20. Compared with the results
in Table 1, the structure of the controlled net obtained by
our method is simpler. It only requires four monitor places to
forbid deadlockmarkings and badmarkings and none of them
is redundant. From the two examples, we have the following
conclusions:

1) As behavior permissiveness is concerned, both of our
method and ICOG-O can obtain an optimal supervisor since
they prevent the bad and deadlock markings only while do
not forbid any live markings.

2) From the point of view of structural complexity,
the number of monitor places synthesized by our method is
rather fewer than ICOG-O. Furthermore, there is no redun-
dant monitor place in the controlled nets obtained by our
method. Besides, it also implies that the monitors synthesized
by our method are more effective since each of them can
prevent more bad and deadlock markings.

3) Consider the computational efficiency, our method is of
exponential complexity while ICOG-O is NP-hard. However,
it is worth nothing that our method does not require comput-
ing the covering and there are obviously fewer iterations in
our method.

VI. CONCLUSION
In this paper, the problem of deadlock prevention in a class of
ordinary Gadara nets is studied. An iterative control scheme
based on siphons is proposed to obtain a maximally per-
missive supervisor with a small number of monitor places.
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Moreover, we provide a method to compute bad markings
on the basis of siphons. All bad markings that lead to a
minimal emptiable siphon are computed and forbidden at
each iteration so that a live controlled Gadara net is finally
obtained. The experimental results show that the proposed
method has the following advantages: first, the controlled
Gadara net obtained by the proposed algorithm is maximally
permissive with a simple control structure; second, although
the proposed algorithm is iterative, it requires only a few
iterations to terminate; third, the final controlled net is still
ordinary.

The computational complexity of the proposed approach
is in theory exponential since it requires enumerating all or
part of reachable markings. Another limitation is that the
approach is applicable to a class of ordinary Gadara nets
only, where each idle place contains exactly one token at
the initial marking. Therefore, our future work aims to avoid
enumerating reachable markings and extend our method to a
broader class of Gadara nets.
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