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ABSTRACT This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the
survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and
low consumption density), A route optimization model is constructed for RECL’s last-mile distribution to
maximize the profit of the logistics enterprise, which is subsidized by the government. To solve the model,
the ant colony optimization (ACO) was improved to suit the RECL’s last-mile distribution by modifying
the heuristic information, the update rule of pheromone, and the solution construction. Next, the optimal
combinations of the default parameters in the improved ACO were determined through Matlab tests on five
test datasets in different sizes. The other parameters were configured according to the scale of the RECL.
On this basis, the improved ACOwas proved effective through example analysis on the said test datasets. The
analysis results also reflect how the number of vehicles affects the maximum profit of the logistics enterprise
and the coverage of the RECL logistics network.

INDEX TERMS Rural e-commerce logistics (RECL), last-mile distribution, route optimization, ant colony
optimization (ACO).

I. INTRODUCTION
The rural area is becoming the new blue ocean for online
consumption, triggering a boom in rural e-commerce logis-
tics (RECL). The Chinese Ministry of Transport proposed
to speed up the construction of three-tier (county, town and
village) distribution node system for rural logistics, offer-
ing infrastructure support for the ‘‘Express Delivery to the
Countryside’’ project. Under the incentive policy, logistics
enterprises start to set up outlets in easily accessible towns.
However, the service network of most logistics enterprises
has not yet covered villages, owing to their remote loca-
tions and poor transportation infrastructure. The economy in
China’s rural areas is increasingly bottlenecked by the incom-
plete network, high cost and slow speed of rural logistics.

The existing research on last-mile distribution mainly
focuses on densely populated areas like cities, communities
and business areas. The relatively few studies on the RECL
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manage to provide reference and theoretical basis for the
last-mile distribution of rural logistics. Last-mile delivery
has become a critical source for market differentiation, moti-
vating retailers to invest in a myriad of consumer delivery
innovations, such as buy-online-pickup-in-store, autonomous
delivery solutions, lockers, and free delivery upon minimum
purchase levels [1]. Consumers care about last-mile deliv-
ery because it offers convenience and flexibility [2]. For
these reasons, same-day and on-demand delivery services are
gaining traction for groceries, pre-prepared meals, and retail
purchases [3]. To meet customer needs, parcel carriers are
increasing investments into urban and automated distribution
hubs [4]. However, there is a lack of understanding as to
how best to design last-mile delivery models with retailers
turning to experimentations that, at times, attract scepticism
from industry observers [5]. Punakivi et al. [6] held that the
last mile is one of the biggest challenges to e-commerce
logistics, and proposed shared reception box to combine
profitability and service level. Boyer et al. [5] pointed out
that consumer-direct delivery of packages ordered over the
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Internet has grown at well over 25% per year in the last
decade, while logisticians have faced a challenge in devis-
ing efficient and low-cost methods for last-mile delivery.
Joress et al. [7] mentioned that the cost of global parcel dis-
tribution, excluding pickup, line-haul, and sorting, amounts
to about e70 billion, more than half of which is incurred
in the last mile, and that the last-mile distribution is not
the focal point of express delivery enterprise. Considering
the features of e-commerce logistics distribution, Durand
and Gonzalez-Féliu [8] compared three common last-mile
delivery modes: all home delivery, home delivery + pickup
service, and pickup everything, and determined the most
favorable last-mile distribution mode in urban environment.
These studies show that logistics enterprises mainly face
three problems in the last-mile distribution and the first-mile
pickup, namely, sufficient demand, high distribution cost and
imperfect facilities. These problems create a harsh environ-
ment for logistics enterprises to operate in rural areas, making
it hard for them to earn profit and slowing down their pene-
tration into rural areas.

The vehicle routing problem (VRP), a key issue in logis-
tics distribution system, has long been a research hotspot.
Many mature algorithms have been developed and applied
to solve the VRP and its variants, laying a solid basis for
optimizing the route of last-mile distribution in the RECL.
The VRP first appeared in a paper by Dantzig and Ramser
in 1959 [9], which is concerned with the optimum routing of
a fleet of gasoline delivery trucks between a bulk terminal and
a large number of service stations supplied by the terminal.
Clarke and Wright [10] considered the VRP as a linear opti-
mization problem, a common issue in logistics and transport
and a hot topic in operational research. Azi et al. [11] pro-
posed a single-vehicle, multi-route VRP with time window
based on the home delivery of perishable goods, where vehi-
cle routes are short and must be combined to form a working
day, and solved the problem with an accurate algorithm with
resource constraints. Ai et al. [12] put forward the VRP
with simultaneous pickup and delivery (VRPSPD), solved
it by a particle swarm optimization (PSO) algorithm with
multiple social structures, and verified the solution using
three benchmark datasets. Marinakis and Marinaki [13] suc-
cessfully solved the VRP through the combination of the
genetic algorithm (GA) [14] and the PSO [15]. Archetti [16]
designed two exact branch-and-cut algorithms for the split
delivery VRP (SDVRP), which excludes any feasible solu-
tion to relaxed constraints that does not satisfy the model
constraints from the search space of the relaxed problem.
Kalayci and Kaya [17] developed a hybrid algorithm based
on an ant colony system (ACS) [18] and a variable neigh-
borhood search (VNS) [19], in which the VNS releases
pheromones instead of ants, solved the VRPSPD with the
hybrid algorithm, and verified the high quality of the solution
through numerical simulation.

Drawing on the above results and the features of the RECL
(long transport chain+ low consumption density), this paper
thoroughly analyzes the cost and income of the RECL under

fiscal subsidy, and puts forward an optimization model for
the last-mile distribution of the RECL, according to the mod-
elling practices for route optimization and vehicle orienta-
tion problems. Next, the ant colony optimization (ACO) was
improved and applied to solve the established model, under
the constraint of vehicle capacity (the maximum allowable
quantity of goods onboard) and driver’s working hours. The
optimal parameters of the improved ACO for different num-
bers of distribution nodes were identified based on multiple
groups of test data. Finally, the proposedmodel and algorithm
were proved effective through example analysis.

The remainder of this paper is organized as follows:
Section 2 establishes the optimization model for the last-mile
distribution of the RECL, in the light of the RECL features,
and improves the ACO algorithm; Section 3 verifies the
proposedmodel and algorithm through example analysis, and
discusses the verification results in details; Section 4 puts
forward the main conclusions of this research.

II. METHODOLOGY
In China, the last-mile distribution of the RECL mainly takes
places between the town level and the village level in the
three-tier distribution node system. The following parame-
ters are all known in advance: the number and location of
all villages, the quantity of goods to be picked up (pickup
quantity) from each village, and the quantity of goods to be
delivered (delivery quantity) to each village. Each vehicle
has a limited capacity, and each driver only works for a
limited number of hours. To maximize its profit, the logistics
enterprise needs to fully consider the cost and income of dis-
tribution, and rationally select the number of vehicles, under
the constraint of vehicle capacity and driver’s working hours.
During the delivery process, the vehicles will leave from the
logistics service center at the town (LSC-T), travel along the
designed routes to deliver the goods to the selected villages
in sequence, and return to the LSC-T after completing all
distribution tasks.

From the perspective of graph theory, the last-mile distri-
bution of the RECL can be described by a complete graph
G = (N , E), where N = {0, 1, 2, . . . , n} is the set of nodes
(LSC-T and villages), and E = {(i, j)|i, j ∈ N } is the set
of edges (routes). Let K = {0, 1, 2, . . . ,m} be the set of
vehicles. Node 0 (LSC-T) is the fixed start and end points of
each route. Each node i ∈ N has a nonnegative income si and
nonnegative service time ti. The income and service time at
node 0 (LSC-T) are both zero, i.e. s0 = t0 = 0. The transport
cost per unit distance f and cost of each vehicle ck are also
nonnegative. The travel time of each route should not exceed
the maximum travel time Tmax , and the quantity of goods
on each vehicle k ∈ K should not surpass the maximum
capacity Qmax .

The objective of the last-mile distribution of the RECL
is to select m routes from the start point to the end point,
each covering a subset of N , such that the total profit of
vehicles travelling along these routes to the corresponding
nodes, i.e. the total income of the visited nodes minus the
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total distribution cost of the vehicles, is maximized, without
violating the constraints on vehicle capacity and driver’s
working hours.

A. HYPOTHESES
In China, the RECLmainly relies on a three-tier (county, town
and village) distribution node system. All the vehicles must
leave from the LSC-T, visit the selected villages in sequence
and return to the LSC after completing all distribution tasks.
For simplicity, the following hypotheses were put forward
before modelling the last-mile distribution of the RECL.

Hypothesis 1. The pickup and delivery quantities of each
village are fixed, and the two quantities of the selected vil-
lages can be fully satisfied.

Hypothesis 2. All the vehicles are of the same type and all
the goods to be picked up and delivered belong to the same
category.

Hypothesis 3. The cost and income of pickup and delivery
at non-selected villages are not taken into account.

Hypothesis 4. The logistics enterprise receives no benefit
from the distribution tasks from the LSC-T to the villages.
The logistics network between the town level and village level
is newly constructed. In this network, the only distribution
income comes from fiscal subsidy.

Hypothesis 5. Each vehicle can serve multiple villages, but
each village can only be served by one vehicle.

Hypothesis 6. Each vehicle only travels along one distribu-
tion route.

Hypothesis 7. Every vehicle leaves from the LSC-T at
time 0.

Hypothesis 8. Every vehicle leaving from the LSC-T trav-
els at a constant speed.

Hypothesis 9. All the villages are fixed at the same position
and within the coverage of the LSC-T.

B. MODEL CONSTRUCTION
Considering the survival of third-party logistics enterprises,
this subsection sets up a route optimization model for the
last-mile distribution of RECL according to the modelling
practices for route optimization and vehicle orientation prob-
lems. Under the abovementioned hypotheses, the following
objective function of model was established to maximize the
profit of the logistics enterprise:

maxZ =
n∑
i=1

m∑
k=1

(s1qi + s2pi) yik −
n∑
i=0

n∑
j=0

m∑
k=1

fdijxijk

−

n∑
j=1

m∑
k=1

x0jkck (1)

where the first term is the distribution income; the second
and third terms are the distribution cost. Here, the distribution
income is replaced with fiscal subsidy.

The established model is subjected to the following
constraints:

n∑
j=1

x0jk = 1, k = 1, 2, · · ·m (2)

n∑
i=1

xi0k = 1, k = 1, 2, · · ·m (3)

Formulas (2) and (3) requires each vehicle to leave from
the LSC-T, visit the selected villages in sequence and return to
the LSC after completing all pickups and deliveries, forming
a closed loop.
n∑
i=0

xipk−
n∑
j=0

xpjk=0, p=0, 1,· · ·n, k=1, 2,· · ·m (4)

Formula (4) ensures the continuity of the distribution route:
the goods to be delivered to the selected villages must be
loaded onto the same vehicle.

m∑
k=1

yik ≤ 1, i = 1, 2, · · · n (5)

Formula (5) stipulates that each village can only be visited
once at most, which is consistent with the actual situation of
rural logistics distribution. This is because the demand for
rural logistics is small, and multiple traversals will increase
the cost.

n∑
i=0

xijk = yjk , j = 1, 2, · · · n, k = 1, 2, · · ·m (6)

n∑
j=0

xijk = yik , i = 1, 2, · · · n, k = 1, 2, · · ·m (7)

Formulas (6) and (7) define the relationship between two
decision variables, which are explained later.

n∑
i=1

qiyik ≤ Qmax, k = 1, 2, · · ·m (8)

n∑
i=1

piyik ≤ Qmax, k = 1, 2, · · ·m (9)

Formulas (8) and (9) limit the delivery quantity and pickup
quantity, respectively. In the last-mile distribution of the
RECL, pickup and delivery take place simultaneously at
each village. Both delivery and pickup quantities should be
constrained at each village, such that the quantity of car-
goes onboard does not surpass the maximum capacity of
the vehicle throughout the distribution process. Otherwise,
the vehicle may be overloaded, when the pickup quantity is
greater than the delivery quantity.

n∑
i=1

Liyik≤Qmax,Li=max{pi, qi}, k = 1, 2, · · ·m (10)

where Li is the maximum pickup and delivery quantities at
node i. Formula (10) is integrated from formulas (8) and (9)
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TABLE 1. Description of model parameters.

to restrict the pickup and delivery quantities at each village.
In this way, the two constraints are combined into a single
constraint on vehicle capacity.

n∑
i=0

tiyik + n∑
j=0

dij
v
xijk

 ≤ Tmax, k = 1, 2, · · ·m (11)

Formula (11) sets the limit on driver’s working hours. The
maximum working hours of the driver must always be longer
than the travel time on each route. Here, the travel time is
the sum of the driving time and the pickup and delivery time
(service time) at each village.

2 ≤ uik ≤ n, i = 1, 2, · · · n, k = 1, 2, · · · ,m

(12)

uik − ujk + 1 ≤ n
(
1− xijk

)
, i, j = 1, 2, · · · n,

k = 1, 2, · · · ,m (13)

Formulas (12) and (13) are established based on
Vansteenwegen P.’s subtour elimination constraint, aiming to
eliminate secondary routes [15].

The two decision variables are defined below:

xijk =

{
1 Vehicle k travels directly from nodeito node j
0 Otherwise

(14)

where xijk reflects whether vehicle k travels directly from
node i to node j. If yes, xijk = 1; otherwise, xijk = 0.

yik =

{
1 Vehicle k passes through node i
0 Otherwise

(15)

where yik reflects whether vehicle k passes through node i.
If yes, yik = 1; otherwise, yik = 0.

The parameters of the model and their definitions are given
in Table 1.

C. DESIGN OF SOLVING ALGORITHM
1) APPLICABILITY ANALYSIS
For the following reasons, the ACO was selected as the basis
of the solving algorithm of our route optimization model for
last-mile distribution in the RECL:

First, the ACO has been successfully applied to solve route
optimization and vehicle orientation models. It only requires
minor modifications to make the algorithm suitable for solv-
ing the last-mile distribution problem in the RECL.

Second, the ACO can preserve information well with its
positive feedback mechanism. In the ACO, each ant releases
pheromone on each route. The higher the pheromone con-
centration, the better the route, and the more likely for the
route to be selected. The optimal route can be approximated
iteratively through the update of pheromone concentration.

Third, the ACO boasts strong robustness. Through slight
revisions, the algorithm will become suitable for various
combinatorial optimization problems, and effectively tackle
largescale problems that are non-deterministic polynomial-
time (NP) hard.

Fourth, the ACO enjoys great potential of parallel search,
for each ant in the colony can look for the optimal route at the
same time. Through parallel search, the algorithm achieves a
high efficiency, and the final result will not be affected by
suboptimal choices of individual ants. With properly selected
parameters, the ACO can be improved to shorten the search
time, avoid early convergence and prevent the local optimum
trap.

2) DESIGN OF THE IMPROVED ACO
The key to solving combinatorial optimization problems with
the ACO lies in the construction of feasible solutions. In clas-
sic travelling salesman problem (TSP) and knapsack prob-
lem, the solutions are set up randomly: one of the unvisited
nodes is selected as the next target according to the state
transfer rules, until all the nodes have been visited once. In the
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FIGURE 1. The workflow of the improved ACO.

last-mile distribution of the RECL, however, each ant needs
to select a vehicle and its target node before each movement.
To fulfil these needs, this paper decides to construct feasible
solutions by the serial method in the literature [16]: each ant
plans a feasible route for a vehicle, and then plans a feasible
route for the next vehicle. This process continues until every
vehicle has its feasible route. The workflow of the improved
ACO is illustrated in Figure 1.

III. EXAMPLES
A. DATA
Standard route optimization and vehicle orientation problems
are generally processed by themathematical models and solv-
ing algorithms, which are developed based on the instances
in the common test database (http://neo.lcc.uma.es/vrp/vrp-
instances/capacitated-vrp-instances/). The common test data
cannot be directly used to verify the effect of the improved
ACO, because our research problem, i.e. the route optimiza-
tion of last-mile distribution in the RECL, is not a standard
VRP. Therefore, the datasets suitable to verify the improved
ACO were developed based on five sets of standard test

data (scales (A-n32-k5, B-n45-k5, B-n56-k7, B-n68-k9, and
A-n80-k10) proposed by Augerat et al. with capacity con-
straint. Considering the actual conditions of the RECL’s last-
mile distribution, the pickup quantity at each node was added
to the original data, and the start and end points of each
vehicle were set to node 1.

B. EXPERIMENT RESULTS
1) PARAMETER SELECTION
Based on the test datasets, the optimal parameter combina-
tions of the improved ACO were determined for node sets in
different sizes. The values of model parameters are recorded
in Table 2. During the verification, only one parameter was
changed at a time to reflect its impact on algorithm perfor-
mance. The improved ACO was applied to solve the estab-
lished model on each test dataset ten times. The mean profit
of the ten tests was computed for further comparison.

The impact of the colony size on test results was neglected.
Relevant literature has shown that the ACO has the best con-
vergence when the number of ants is 1.5 times that of nodes.
Thus, the colony size was set to 60, according to the largest
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TABLE 2. Parameter settings.

node set (80 nodes) in the test datasets [17]. In addition,
the probability Pbest for an ant to find the optimal solution
in each iteration was set to 0.05, and the maximum number
of iterations was set to 100 [18].

Multiple Matlab tests were carried out on a laptop (CPU:
Intel Core i7; memory: 16GB). Table 3 records the mean
profit of each test dataset in the ten tests under each parameter
combination. For node set with 32-56 nodes and ρ = 0.2 for
node set with 68-80 nodes, the three default parameters were
set as follows: the weight of pheromone factor α = 1; the
weight of heuristic factor β = 1; the pheromone volatility
ρ = 0.3.

TABLE 3. Mean profits of 10 tests.

For example, the value ‘‘780.786’’ in row 2 is the mean
result after the model ran 10 times at α = 2, β = 1, and
ρ = 0.3; the value ‘‘861.909’’ in row 6 is the mean result
after the model ran 10 times at α = 1, β = 2 and ρ = 0.2.
The blank cells in Table 3mean that the improved ICO did not
converge under the corresponding parameter combinations.

As shown in Table 3, parameters α and β had far greater
impacts than parameter ρ on the solution quality. When β
and ρ remained constant, the solution at α = 1 was much
better than those at the other values of α. With the grow-
ing value of α, the solution quality declined continuously.
Hence, α value of the improved ACO should be set to 1 in
the example analysis and actual application. When α and ρ
remained constant, the optimal and suboptimal solutionswere
obtained respectively at β = 1 and β = 0.5. As the value of β

FIGURE 2. (a) Optimal route (m = 1). (b) Convergence results (m = 1).

increased from 1 to 3, the solution quality steadily declined.
Hence, β = 1 was selected for our algorithm.

Compared with α and β, parameter ρ exhibited a con-
sistently weak influence on the solution quality. With the
growth in the number of nodes, the value range of ρ become
increasingly small, and the ρ value began to affect the con-
vergence to the optimal solution. Our tests show that, when
there were fewer than 45 nodes, the ρ value had no impact
on convergence; in this case, the optimal value of ρ is 0.3.
When there were 56 nodes, the algorithm did not converge
after ρ surpassed 0.3; in this case, the optimal value of ρ is
also 0.3. When there were 68 ∼ 80 nodes, the algorithm did
not converge after ρ surpassed 0.2; in this case, the optimal
value of ρ is 0.2 for the node set with 68 nodes and 0.1 for
the node set with 80 nodes. The relevant results are listed
in Table 4 below.

2) RESULTS AND DISCUSSION
Because the rural logistics distribution area is much smaller
than the conventional urban logistics, the route optimization
of the RECL is a small-scale problem. The small-scale prob-
lem here mainly refers to the rural logistics distribution point
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TABLE 4. Optimal parameter combinations of the improved ACO.

FIGURE 3. (a) Optimal route (m = 2). (b) Convergence results (m = 2).

is less. Therefore, the 32-node test dataset was selected to
verify the effects of the number of vehicles on the model
parameters. According to the optimal parameter combina-
tions of the improved ACO for node sets of different sizes,
the maximum number of iterations was set to 100, the colony
size to 60, the weight of pheromone factor α to 1, the weight
of heuristic factor β to 1, and the pheromone volatility to 0.3.
In the last-mile distribution network for the RECL, each

vehicle leaves from node 1 and returns to node 1. The loca-
tion, pickup quantity and delivery quantity are known at
each node to be visited. The 32-node test dataset is shown
in Table 5. The parameter values in the model are listed
in Table 6. On this basis, the established model was solved
by the improved ACO.

When only one vehicle left from the LSC-T to serve the
area (m= 1), the maximum profit of 758.721 was obtained at

FIGURE 4. (a) Optimal route (m = 3). (b) Convergence results (m = 3).

TABLE 5. The 32-node test dataset.

the 60th iteration, and the optimal route is 1→ 25→ 20→
16→ 3→ 5→ 26→ 14→ 17→ 29→ 10→ 23→ 1
(Figure 2). It took 2.157s for the improved ACO to converge
to the optimal solution.

When two vehicles left from the LSC-T to serve the area
(m = 2), the maximum profit of 1,257.3921 was obtained at
the 81st iteration, and the two optimal routes are 1→ 26→
13→ 4→ 3→ 25→ 21→ 18→ 14→ 23→ 10→ 1,
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TABLE 6. Parameter settings.

FIGURE 5. (a) Optimal route (m = 4). (b) Convergence results (m = 4).

and 1→ 16→ 29→ 28→ 8→ 32→ 5→ 17→ 20→
27 → 31 → 1 (Figure 3). It took 3.117s for the improved
ACO to converge to the optimal solution.

When three vehicles left from the LSC-T to serve the area
(m = 3), the maximum profit of 1,447.2334 was obtained at
the 62nd iteration, and the three optimal routes are 1→ 29→
13→ 3→ 16→ 20→ 11→ 14→ 31→ 17→ 1, 1→
23 → 26 → 25 → 24 → 32 → 28 → 5 → 7 → 4 → 1,
and 1→ 10→ 18→ 21→ 22→ 19→ 2→ 12→ 8→
15 → 27 → 1 (Figure 4). It took 4.593s for the improved
ACO to converge to the optimal solution.

When four vehicles left from the LSC-T to serve the area
(m = 4), the maximum profit of 1,447.2334 was obtained at
the 58th iteration, and the four optimal routes are 1→ 29→
2→ 7→ 15→ 30→ 26→ 6→ 25→ 28→ 1, 1→ 23→
16→ 9→ 10→ 11→ 5→ 3→ 1, 1→ 18→ 27→ 22→
8→ 20→ 32→ 17→ 1, and 1→ 4→ 21→ 19→ 13→
31 → 14 → 24 → 12 → 1 (Figure 5). It took 6.039s for
the improved ACO to converge to the optimal solution. The
demand of all nodes could be satisfied with four vehicles.

IV. CONCLUSION
Considering the cost and benefit of the RECL, this paper puts
forward the VRP of the last-mile distribution in the RECL,
and designs a route optimization model for the RECL’s
last-mile distribution to maximize the profit of the logistics
enterprise. The model was constructed based on the mod-
elling practices for route optimization and vehicle orienta-
tion problems. To solve the established model, the ACO
was improved to suit the RECL’s last-mile distribution by
modifying the heuristic information, the update rules of
pheromone, solution construction and local search strategy.
Besides, the optimal combination of the weight of heuristic
factor α, the weight of pheromone factor β and pheromone
volatility ρ was determined through repeated tests on five test
datasets. Meanwhile, the improved ACO was also verified
on these test datasets. The results show that the improved
ACO could provide a feasible routing plan for the RECL’s
last mile distribution. The research findings lay a solid basis
for solving the last-mile distribution in the RECL.
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