
Received December 8, 2019, accepted December 26, 2019, date of publication January 6, 2020, date of current version January 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964432

Towards Taxonomical-Based Situational Model to
Improve the Quality of Agile Distributed Teams
AMBER SARWAR 1, YASER HAFEEZ 1, SHARIQ HUSSAIN 2, AND SHUNKUN YANG 3
1University Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
2Department of Software Engineering, Foundation University Islamabad, Islamabad 44000, Pakistan
3School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

Corresponding author: Shunkun Yang (ysk@buaa.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61672080.

ABSTRACT At present, software organizations are developing software products that employ global
software development (GSD) teams. Organizations tend to adopt new methodologies for global software
development, amongwhich is the use of agile in the GSD industry, which yields both benefits and challenges.
However, software development teams do not consider situational needs that delay software delivery, result-
ing in the late discovery of incompatible assumptions and architecture level rework. In this study, we conduct
a systematic literature review (SLR) to identify the situational factors that need to be considered by software
development teams before developing a software product. We further present taxonomical classification
and comprehensively map the situational factors that impact design development and advancement in the
proposed Situational Agile Distributed Development (SADD) model. We propose 18 directed hypotheses
against each situational factor that supports our SADD model. In order to evaluate our directed hypotheses,
statistical analysis method is used, and the level of confidence of each directed hypothesis is validated. The
result of our study confirms that global software development teams are highly reliant on the SADDModel.
Our study will largely contribute by devising a multilevel taxonomy of situational factors that elevate the
performance of global software development teams. This taxonomical classification will allow to better map
the relationships between multiple situational factors and elevate the process of creating a holistic model to
handle situational needs in the context of Agile Distributed Software Development (ADSD).

INDEX TERMS Agile distributed taxonomy, agile distributed teams, situational agile distributed
development, situational model, taxonomical model.

I. INTRODUCTION
Over the years, global software development (GSD) has taken
over the co-located software development model because of
the former’s increased benefits, such as increased quality and
decreased cost [1]. In GSD projects, both the development
teams and stakeholders may be located in different time zones
[2]–[5]. However, because of the culture variance and com-
munication barrier between the development teams, software
development can become difficult in GSD [6]. In addition,
with the passage of time, traditional approaches have become
less effective in managing complex software development
because of the many pitfalls and changes and the lack of
proper management. Similarly, traditional approaches fail
to generalize respective software development processes for

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

multiple contexts, and the evidence confirms the lack of a
unique approach to software development [1]. Agile method-
ology is one of the adaptive methods that can overcome the
issues of GSD, such as culture variance and communication
barrier. By contrast, emerging releases of agile makes it ques-
tionable to achieve a one-size-fits-all strategy [2]. Whereas
agile techniques may seem to be the ‘‘silver bullet’’ for
complex software development having tight constraints [7],
the issuewith this ‘‘silver bullet’’ is amplifiedwhen agile soft-
ware development is used in a distributed environment [8].
The fundamental responsibility of Agile Distributed Software
Development (ADSD) is that it should fit the needs of the
project [9]. In addition, the needs of the project highly depend
on the situational context, which may keep on changing.
Situational context defines the context in which project is
being developed. The context may change on the basis of
project needs. In this research, situational context is ‘‘Agile

6812 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7221-7722
https://orcid.org/0000-0003-4957-7233
https://orcid.org/0000-0003-2093-7274
https://orcid.org/0000-0002-8226-4477
https://orcid.org/0000-0003-3264-185X


A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

Distributed Software Development’’. Software development
teams need to consider situational needs that highly rely on
product quality [2]. Situational needs drive the context. i.e.,
situational context may change on basis of situational needs.
In this research, situational needs are Team, Organization and
Customer etc. Distributed software development teams must
consider a wide range of situational factors that fulfill their
situational needs ahead of deciding the most suitable process
to adopt in situational context (ADSD). In this research,
situational need is ‘Team’ and situational factors that drive the
need are ‘Team size, ‘Technical Experience’ etc. However,
development teams may be unable to identify these related
situational factors [2]. Another challenge lies with the view
that is shared in agile distributed software on the basis of
situational context, where the chosen situational approach
should best fit the conditions, product, view, and goals of
the markets and organization [10]. Similarly, whereas soft-
ware architecture serves as the central concept to the whole
software engineering, the evolution of software architecture
with situational needs that comply with the ADSD environ-
ment is still lacking [11]. There is an obvious need for a
software architectural design approach in the ADSD envi-
ronment [6]. As of this review, no well-established software
design methodology has been proposed in the literature. The
previously stated issues are the major problems of software
architecture in ADSD [12]. Therefore proper classification of
situational factors is mandatory for selecting, analyzing, and
evolving software architecture work products [13].

Previous studies somehow support the fact that architec-
tural changes are directly proportional to frequent situational
variations [10]. The determinant of situational needs on agile
software architecture is an aggregation of development team
performance and decline in software quality. Despite its
significance, there is a lack of techniques, approaches, and
experimental studies concerning the impact of situational
needs on software architecture [7]. Whereas there exist many
studies in the literature that examine the evolution of soft-
ware development in terms of situational needs, the evolution
of agile software architecture with situational needs is still
under progress [6]. Furthermore, as advancement continues,
tailoring and evolving software architecture for a given set
of situational factors is becoming a complex problem [7].
Whereas some progress has recently been noted in regard
to the evolution of software architecture with a given set of
situational factors, the association of situational factors to
software development teams is still an issue [2], [8]. In order
to unravel this problem, a set of situational factors affecting
software development teams were identified and taxonom-
ically classified on the multilevel. Each situational factor
represents a unique situation and is intelligently harmonized
with software architectures that have exploited both the situ-
ational factors and situational awareness [9]. Although there
exists a continuous stream of reported research in literature
regarding software architectures for ADSD, systematically
analyzing and taxonomically classifying the collective impact
of situational factors that exist in literature on architectural

solutions for distributed development teams in Situational
Agile Distributed Development (SADD) require a timely
effort.

In this study, we first conducted a systematic literature
review (SLR) [10] for the period of 2013 to 2019 to analyze
the current state-of-the-art approaches regarding situational
factors and needs of ADSD teams. The objective of this
SLR was to systematically identify the situational factors that
need to be considered by software development teams before
developing the software product. Further, this will help to
analyze and present a taxonomical classification and com-
prehensively map the situational factors that impact design,
development, and advancement in the proposed SADD. This
research work is initiated and motivated by a number of
research questions, and their findings are anticipated to dis-
tribute systematized knowledge among ADSD teams and
researchers interested in SADD. The conducted research and
proposed SADD model will further be beneficial for devel-
opment teams and researchers in SADD. A systematic orga-
nization of research transfers a body of knowledge to develop
and propose new theories and solutions and evolve future
dimensions. In addition, it will be helpful for practitioners
aiming to further extend work in SADD and propose new
models and techniques.

SLR is conducted to identify the situational factors
required in SADD, therefore providing quality and matu-
rity to development teams for identifying innovative trends,
research areas, and future magnitude of SADD. The main
reason for applying SLR is to identify, classify, and synthe-
size current state-of-the-art research and transfer knowledge
in the research community [10]. The following are the key
contributions of this study.

Systematic identification and analysis of the aggregate
findings on situational needs and factors existing in literature
for SADD teams for characterizing (i) prevailing situational
factors, (ii) multilevel taxonomical classification of those fac-
tors, (iii) SADD model proposed on the basis of taxonomical
classification, (iv) and statistical evaluation, and empirical
and practical implications of the SADD Model. We intend
to achieve our common objective by answering the following
questions by conducting a systematic literature review of the
current literature:
RQ1: What are the current challenges and practical barriers

of SADD?
RQ2: How can the identified challenges be classified tax-

onomically for attaining harmonization of software
architecture in SADD?

RQ3: What are the practical implications of the proposed
SADD model?

Our search string affirms to research questions, as RQ1will
uncover the challenges and situational factors which cause
situational variations in Agile Software Development. The
search string incorporates the key words related to our
research questions. The remaining paper is structured as
follows: Section II presents and explains our research
methodology in detail, along with the findings of SLR.

VOLUME 8, 2020 6813



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

Section III discusses the taxonomic classification of identi-
fied situational factors from the former section. Section IV
describes our proposed SADDModel. Section V presents the
results and discussions. Section VI concludes the paper and
outlines plans for future work.

II. SYSTEMATIC LITERATURE REVIEW
This investigation proposes SLR for recognizable proof of
situational variables required by different ADSDgroups. SLR
revealed situational factors in the literature and afterward
fundamentally broke down the recognized information. SLR
additionally raised the conduct of research in an increasingly
precise manner and decreases the bias of methodological
advances. It was a methodical and particular strategy for dis-
tinguishing and investigating distributed research in a similar
field to accomplish a general goal and answer an explicit
research question. SLRwas an assorted writing audit because
it was a relatively arranged and orderly survey when con-
trasted with standard writing survey. SLR additionally shaped
a reason for taxonomical grouping that was exceedingly legit-
imate and helpful and that probably will not be conceivable in
different techniques. The connected research system had been
presented in Fig. 1. SLR depended on remarkable, checked,
and approved audit conventions for the extraction, investi-
gation, and documentation of results. This SLR utilized the
rules proposed by Kitchenham et al. [14] with three-advance
procedure that incorporated: making arrangements for the
ideal SLR, directing the arranged procedure, and recording
the discoveries. The result of each progression of the audit
had been approved remotely to make the survey progressively
solid. On the premise of SLR discoveries, taxonomical group-
ing has been proposed. Each period of the proposed procedure
is outlined in the following subsections.

FIGURE 1. Overview of research methodology.

A. PLANNING THE REVIEW
Arranging began with recognizable proof of the requirements
for a deliberate audit and produced a survey convention:

1) IDENTIFY THE REQUIREMENTS FOR SLR
The need was distinguished in phase 1. We likewise detailed
the general objective and extent of the investigation through
Population, Intervention, Comparison, Outcome and Context
(PICOC) criteria [15], along with inclusion and exclusion
criteria as shown in Table 1.

TABLE 1. Inclusion and exclusion criteria.

2) SPECIFY RESEARCH QUESTIONS
Three research questions were produced in order to investi-
gate the answers with respect to situational needs in ADSD.
These examination questions altogether infer the quest pro-
cedure for writing mining.

3) DEFINE REVIEW PROTOCOL
In view of the targets, we stipulate the exploration ques-
tions and the survey extension to plan quest strings for
writing extraction. The inquiry string was created based on
characterized research questions. Furthermore, the search
string involved watchwords, topics, and ideas. Afterwards,
databases were selected according to expert opinions from
specialists. The method of creating a search string was shown
in Fig. 2. According to Fig. 2 first step was generating search
string i.e., identification of main concepts, which includes
finding keywords and synonyms. Second step was identifica-
tion of journals and databases that includes library catalogue.
Third step was searching of resources that includes boolean
operations like, ‘AND’ and ‘OR’. Final step was to present
results and refine results on review basis. The produced
inquiry string was presented in Fig. 3 formulated on basis of
Fig. 2 alongside databases. First level was string composition
based on the steps shown in Fig. 2. Then came phase 1 of
string execution on multiple databases. Phase 2 shows the
extracted studies based on inclusion and exclusion studies.
Phase 3 showed the screened studies. We additionally settle
a convention for a methodical audit by following [16] and

6814 VOLUME 8, 2020



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

FIGURE 2. Search string generation.

our involvement with SLR [15], [17], [18]. Based on the
proposal by Brereton et al. [16], we remotely assess the
convention before its usage. We approach an external expert
for input, who had involvement in directing SLR in a region
with underlying ADSD situational settings. We additionally
play out a starter investigation of the deliberate audit with five
(around 25 percent) of the included examinations. The goal
for leading a fundamental report is to initially decrease the
predisposition between the scientists and continually improve
the portrayal plot for information accumulation. We augment
the survey scope, improve hunt techniques, and refined the
incorporation/avoidance criteria during the pilot thinks about.

B. CONDUCTING THE REVIEW
Following are the subsequent stages, beginning with study
choice and produces filtered and integrated data:

FIGURE 3. Search string, database result, and primary studies.

1) SELECT PRIMARY STUDIES
The pursuit terms utilized are based on the work proposed
in [16] and are guided by research questions. Fig. 3 demon-
strates the outcomes against an inquiry string on five
unique databases. However, the search string as mentioned
in Fig. 3 has been generated on the basis of Fig. 2. The
generated search string identified main concepts relevant

to our study, sources and refinement of results. We mined
1,023 literature resources from 2013 to 2019. The year
2013 is picked because a starter search found no outcomes
prior to that year that were connected to the exploration
questions. Because we utilize our prime inquiry criteria on
title and conceptual aspect, this method brings about a high
number of disconnected investigations, which are addition-
ally refined with an auxiliary hunt.

2) EXTRACT DATA
The choice stage involves three phases: introductory hunt in
databases, incorporation/avoidance, and last choice depen-
dent on quality appraisal as shown in Fig. 4. This procedure
incorporates screening of titles, edits compositions of poten-
tial essential, and is performed by the researchers against the
inclusion/exclusion criteria in Table 1.

FIGURE 4. Search string, database result, and primary studies.

For nearly 20 percent of the studies, no choice could be
made. In such cases, both rejection and continuation to a
conclusive determination included looking at the full content.
Lastly, determination depends on an approval sweep of the
investigations, methods formovement, and apparatus backing
and subtleties of the assessment approach. Subsequent to
playing out this progression, 27 studies are chosen. During
the optional inquiry procedure, references for the 27 studies
are explored. Rules [14] suggest that snowballing from the
reference arrangements of the recognized articles ought to
be utilized, despite looking in databases to distinguish extra
significant articles through the reference arrangements of the
articles discovered by utilizing search strings. This method
prompted the exclusion of four progressively pertinent exam-
inations. Thus, 23 studies are incorporated for subjective eval-
uation. Subjective evaluation of the included investigations
is shown in Fig. 4. Fig. 4 explains the detailed process of
final selected studies. It also shows the quality assessment
of primary studies and selection of final studies. Quality
assessment was done by giving a value to each paper on basis
of their work. Paper with same domain was given high value.

VOLUME 8, 2020 6815



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

TABLE 2. Situational factors.

3) SYNTHESIZE DATA
For the 23 included examinations, we essentially focus on the
specialized thoroughness of the substance exhibited.

C. DOCUMENTING SLR FINDINGS
The review findings are efficiently organized, which recog-
nizes gaps in literature with respect to situational approach,
and are presented in Table 2. Table 2 answers our first
research question as well. In Table 2we have categorized situ-
ational factors on the basis of their concepts and themes along
with their ‘Value’ choices for defined cases. Paper ID defines
their references. Additionally, some essential and optional
investigations that are identified through SLR, and which
drive our motivation towards the target goal, are examined.

Organizations have been utilizing conventional program-
ming advancement approaches as a way to execute their
business techniques, in order to improve the achievement of
their activities, and require the following professions: ana-
lysts and specialists [2]. Within the scope of programming
advancement situations, numerous investigations have been
led to distinguish elements that add to the customary activity
disappointments. One of the serious issues with conven-
tional programming improvement is the difference in ven-
ture advancement innovations and business settings [6]. New
strategies and methodologies for programming advancement
ventures have been proposed. Among these is an advance-
ment procedure that spins around different improvements,
along with emphasis on advancement cycle that can encour-
age nonstop associations with clients and address vulner-
abilities. This iterative procedure is ordinarily one of the

light-footed strategies that have been progressively actualized
by numerous organizations to supplant customary program-
ming advancement [12]. According to [15], [23], a couple
of programming organizations all in all have received a
particularly deft procedure. In this manner, a chronicle of
light-footed strategy pieces, which arranges the obvious
information as indicated by their destinations and necessi-
ties, is presented. The depiction of spry strategies in differ-
ent venture circumstances is accomplished through a delib-
erate writing survey, which is dependent on observational
investigations. Likewise, the paper recommends a learning
technique that will facilitate the adaptation of new methods
by the practitioners of ADSD. Furthermore, their method-
ology is limited to assembled associations. Yagüe et al. [6]
gave guidance with respect to exercises gained from fitting
spry techniques for huge-scale disseminated advancement.
The exercises depended on one of the biggest improvement
programs in Norway, where 12 scrum groups consolidated
coordinated practices with customary undertaking by the
executives. The Perform program conveyed 12 discharges
over a four-year term, completing on a spending plan and
on schedule. The creators abridged 10 key exercises on
five pivotal themes that were important to other enormous
improvement ventures looking to consolidate scrumwith cus-
tomary undertaking by the board. In addition, their exercises
demonstrated that product improvement does not involve a
fixed course; rather, it needs to fulfill changing needs and
circumstances. As of late, two of the creators have deliv-
ered and distributed an underlying reference system that
will more likely guide process planners to tailor venture
explicit procedures just as much as to comprehend the hidden

6816 VOLUME 8, 2020



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

choices behind programming procedure fitting. The reference
structure involves 44 variables characterized into 8 primary
classifications and further explained into 170 sub-factors
[24], [25]. The reference system of O’Conner et al. [24]
creators is expanded, and the way that there is certifiably
not a solitary procedure splendidly fitting in all specific cir-
cumstances is settled upon; therefore, the product procedure
ought to suit the prerequisites of its situational setting. In their
past work, they combined an underlying reference system of
the situational elements influencing the product improvement
process. They controlled a contextual analysis and connected
the recognized situational factors for steady programming
advancement and conveyance. Their outcomes demonstrated
that setting is an unpredictable and key witness for program-
ming process choices. Their results inferred that situational
antiquities have a stern connection with item design and
procedure depiction [25], [26].

Similarly, Razavian et al. [27] conducted empirical
research in software architecture decision-making and clas-
sified software architecture decision-making that involves
humans, their behavioral issues, and practical situations.
However, interactions of these situations in agile soft-
ware architecture decision-making is still under progress
[28], [29]. Overcoming the aforementioned challenges of
coordination between situational factors and software archi-
tecture, Giray and Tekinerdogan [30] proposed a situational
method engineering (SME) approach, which can be repro-
cessed to develop customized methods. The authors agreed
upon the fact that there is not a single methodology that
encourages a ‘‘one size fits all’’ approach. The constructed
list of situational factors identified the method part, which
expressed the architecture and meta-model. Whereas their
work supported the Internet of Things domain, there is still
no exact approach that handles the same issue in the domain
of SADD. The stability of a system is highly dependent on
its software architecture [28], [31]. However, in distributed
systems, there are situations when the architecture is unavail-
able; thus, there should be a way to define the view of the
system. Many different methods and tools exist to provide
such a view. Whereas there have been taxonomies of differ-
ent recovery methods and survey results of those methods
analyzing how those results conform to the expert opinions
on the systems, there has not been a survey that goes beyond
a simple automatic comparison. Instead, this paper seeks to
answer questions about the viability of individual methods in
given situations [29], the quality of their results, and whether
these results can be used to indicate and measure the quality
and quantity of architectural situational changes. The authors
evaluated their solution through case studies of Android,
Apache Hadoop, and Apache Chukwa, obtained by running
PKG, ACDC, and ARC. Their approach was unable to solve
the architectural situational changes in distributed environ-
ment. Software architecture and early design decisions can
take various forms, and their optima demand that these must
be synchronized with the needs of the given situational con-
text. Although earlier theoretical proposition is practically

FIGURE 5. Taxonomic classification.

clear, the granularity of the communication between the soft-
ware architecture and the factors of the situational context is
less apparent. In view of the previously discussed reasoning,
situational factors with less change (traditional) and with
more change (agile) have high impact. Thus, during the con-
struction of software architecture, different situational factors
need to be considered [23], [30], [32].

III. TAXONOMIC CLASSIFICATION AND
MAPPING OF THE RESEARCH
In this sectionwe answer our second research question. Based
on the SLR findings, the topics and their sub-arrangement are
accomplished. To break down the situational requirements for
ADSD groups, first we recognize the transcendent research
subjects by applying topical investigation [33]. Staggered
taxonomical arrangement is performed by following themod-
ified rules proposed by Usman et al. [34]. According to
[34], [35], ideas that are of the extent of scientific catego-
rization advancement are excluded. This decision enables us
to prohibit strategies and methodologies that are not upheld
by the consequences of our SLR and fuse new discover-
ies to respond to the examination questions. This method
helps in the investigation of the subjects and ideas to dis-
tinguish new angles that could be additionally improved for
ADSD advancement groups. For example, the arrangement
of the situational approach and mindfulness and whether
exercises could be converged to encourage the utilization of
the situational model are determined. The scientific classi-
fication in Fig. 5 arranges the recognized topics as a dia-
gram for the current research and aides the result exchange
for an efficient writing survey. The scientific categorization
in Fig. 5 gives a precise distinguishing proof, with naming
and arrangement of different research subjects dependent on
the similitude or refinements of their relative commitments
for an efficient writing audit in form of a taxonomy. In order
to present in form of taxonomy, level based approach has
been proposed i.e., first level describes its general classifica-
tions, second level defines the thematic classification based
on related concepts and third level defines sub thematic
classification. Through the breaking down of some pertinent
examinations alongside the following of a portion of the rules
from the ACM Computing Classification System and Com-
puting Research Repository, and through the following of
the rules for taxonomical arrangement [36], the taxonomical
classification, as shown in the following figure, is determined.

VOLUME 8, 2020 6817



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

FIGURE 6. Proposed model.

IV. PROPOSED SADD MODEL
Based on the taxonomical arrangement, we propose a SADD
model, which is shown in Fig. 6. In our proposed approach
all situational challenges are handled by applying situational
awareness and situational enhancement approach. Situational
awareness is done on basis of perception and integration.
Afterwards taxonomical classification situational enhance-
ment approach should be applied. Situational challenges
should also be applied in architecture design decision. Archi-
tecture correction and architecture enhancement, results in
meta model that incorporates situational factors applied to
each software process. The recognized situational factors in
the proposed scientific categorization, will not just assist
one’s individual basic leadership, but will also additionally
make venture creation stable through considering both sit-
uational and natural variables. The proposed SADD model
enables the client to deal with situational needs, e.g., ven-
ture size and group size. Based on situational discernment
and combination, situational mindfulness is mapped on the
situational challenges. Situational mindfulness incorporates
the ID of situational needs and related variables identified
with ADSD [37], [38]. It will likewise upgrade the exhibition
and nature of ADSD groups because it will raise the ADSD
procedure. Later, when taxonomical grouping circumstance
is considered, upgrade is done through applying multilevel
taxonomical mapping. Through the use of taxonomical order,
situational requirements are distinguished, and related situ-
ational components are mapped. In the event that a change
happens, at that point the client, without much additional
effort, can include or adjust the circumstance in the situa-
tional vault, thus utilizing situational components extricated
from proposed scientific classification. On the premise of
situational challenges, an engineering plan choice is done
through making a situational network and choosing a reason-
able building view.

The situational framework will not just deal with
situational changes, but in addition, will accomplish har-
monization of programming engineering advancement
in light-footed appropriated programming improvement.
Nonexclusive classification features numerous parts of

situational technique, building to help with the product engi-
neering tasks, advancement (post-sending), and improvement
(pre-arrangement) periods of ADSD. Conventional character-
ization is utilized to compose the outcomes into three particu-
lar stages. Our proposed model has been validated according
to validation process proposed by [38]. The model life-cycle
should have development, implementation and operation
along with modelling elements. Modelling elements com-
prise of input, process and output. Roles and responsibilities
have also been defined in our proposed model. All of the
above have been shown in Figure 6.

V. RESULTS AND DISCUSSIONS
In this section, the findings of this study are discussed.
In order to obtain validated results, both case study and
questionnaires approaches were used. Afterward, statistical
techniques for analysis and synthesis of results were applied.

A. CASE 1: SITUATIONAL ADSD FOR SMALL-SCALE
FARM MANAGEMENT SYSTEM
In order to conduct a case study, we used a published case
study of a small-scale farm management system [23], [39]
and mapped an improved version of the meta model used
in [40] for representing the situational needs. The improved
representation of the meta-model conforms to the ISO/IEC
24744 standard. With the guidelines proposed by Farwick
et al. being followed [40], partial representation of a con-
ceptual model is formed as shown in Fig. 7(a). The process
is formed using our proposed SADD model. A small-scale
farm needs an information system to support its agricul-
tural decision-making process. A small team with a high
domain knowledge in precision farming will develop the
system. The farmers are the foremost clients, and two of
them are picked as full-time client delegates to be engaged
with this venture. The level of development is medium,
henceforth some exploratory methodology is expected to
moderate venture dangers. Existing methodologies and back-
end administrations will be utilized in the venture. When
the procedure represented in Fig. 7(a) are followed and the
distinguished arrangement of situational factors (recorded
in Table 2) are utilized, situational needs and related work
unit in regards to situational variables were recognized for the
pertinent ADSD groups and are shown in Fig. 7(b). Because
of contextual analysis mapping, Table 3 and Table 4 com-
municate with those distinguished situational factors from
the contextual analysis following the total choice procedure,
as appears in Fig. 8, and show the essential portrayals of
situational needs and factors. These subtleties give direction
to ADSD groups in recognizing new circumstances and uti-
lizing the current situational needs with their methodology.
ADSD groups ought to have the option to look at situa-
tional factors, which should be utilized in making new sit-
uational approaches, in order to approach the up-and-coming
entrepreneur. The related work units and work items to every
circumstance weremade on the premise of existing rules [40].
Thematic classification expands the conventional order by

6818 VOLUME 8, 2020



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

FIGURE 7. (a) A partial conceptual model of ISO/IEC 24744 standard, and (b) An example of work unit.

TABLE 3. A set of example situational needs and factors defined for the
published case.

FIGURE 8. Situational need descriptor.

including subtleties based on the essential focal point of
the examination in an accumulation of related investigations
to distinguish and speak to the repetitive research subjects
utilizing topical examination. We recognized five dominating
topics.

For constructing work units and work products mentioned
in Table 3 and Table 4, a descriptor is defined for each
situational need in order to make it reusable. The situational
need descriptor is illustrated in Fig. 8. A situational need is
identified by assigning a unique name, a type (work unit,
work product, producer) as defined in Fig. 7(a), description

regarding situational need, and associated role and responsi-
bility. The description of the situational need defines the situ-
ational factor associated, as shown in Fig. 7(b). The descriptor
defines the level of granularity for each situational factor.

When the situational need descriptor in Fig. 8 is utilized,
the search inquiry test to be executed on a situational store
is according to the following: SELECT situational need
WHERE Type = work unit OR work item OR maker AND
Description = ADSD group AND FOR EACH Situational
Factor = [Team][Size]. It is expected to choose all the
situational elements related with situational need ‘Group.’
In the wake of choosing these reusable situational needs,
an ADSD group has many applicant situational components
to be utilized during SADD. Following the total determina-
tion process, as appears in Fig. 9, circumstance needs could
be effectively mapped in programming engineering and raise
the presentation of ADSD teams. Sub-topical classification
gives a fine-grained refinement of the previously mentioned
three subjects with seventeen particular sub-subjects.

FIGURE 9. Constructing and mapping situational needs for software
architecture.

Fig. 9 represents the complete process of selection using
the proposed SADD model. According to the process, situ-
ational factors are defined after specifying associated situa-
tional needs. Afterward, situational enhancement approach is
applied if required; otherwise, existing approach is reused.
Once situational needs are properly identified, taxonomical

VOLUME 8, 2020 6819



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

TABLE 4. Identified situational need descriptor details.

classification is mapped against each situational factor, along
with the assembling of situational needs. Afterward, the sit-
uational factors are validated and mapped on software archi-
tecture in the form of meta-model or UML formalization.

After the complete selection process, as shown in Fig. 9,
is followed, a complete set of situational needs and associ-
ated situational factors are identified along with their value,
as shown in Table 3. The identified situational needs for the
mapped published case are used with their associated value.

Through the use of the conceptual model, as shown
in Fig. 7(a), and the situational need descriptor, as shown
in Fig. 8, Table 4 is generated. Table 4 explains the fields
of each situational need descriptor in detail. Each descriptor
is assigned a unique ID (e.g. SD01) that defines the situ-
ational descriptor for the first situational need as stored in
the situational repository. The descriptor detail defines the
roles and responsibilities for the mapped case, along with the
description and type of situational need.

A comparison of our results with the published case study
results indicate that our results are more refined and efficient.
The comparative results for both approaches used for the
published case are shown in Fig. 10. As shown in the figure,
both approaches share the same situational needs but used
different methodologies. It is evident from the figure that the
published case is only applicable to small teams, whereas
the SADD model is applicable for large teams. Similarly,
the domain experience remained high for both approaches.
Further, the published case is limited to on-site situations,
whereas SADD model is for distributed teams. The pub-
lished case did not use any situational approach, whereas the

FIGURE 10. Result comparison for published case and SADD model.

SADD model identified a complete set of situational needs
and proposed situational factors and descriptors, as shown
in Figs. 7, 8, and 9 respectively. As a result, using the SADD
model enhanced team performance and the overall quality of
the SADD team.

Similarly if we compare our SADD model with existing
situational Agile Distributed Software Development model
(SADSD) as presented in [2]. It could be seen that (SADSD)
only used scrum and XP practices to overcome the issues of
agile architecture, however, we have used software architec-
ture as agile architecture practice to overcome the harmo-
nization of situational variations with software architecture.
Also in SADD model situational perception and situational
integration have also been linked in order to apply situa-
tional enhancement approach. Similarly, our SADD model

6820 VOLUME 8, 2020



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

also stores user stories in form of matrix and further apply
architecture correction in order to synchronize the situational
variation in software architecture. This outputs a meta-model
also shown in our mapped case study.

B. TAXONOMIC CLASSIFICATION EVALUATION
In order to evaluate the taxonomic classification, interviews
from agile distributed software development practitioners
were conducted. A set of directed hypotheses and specific
questions was provided to the practitioners. The following
are the directed hypotheses generated against identified sit-
uational factors.

HA
o :- Requirements stability results in the upgrade of

business context => Business aspect of architecture.
HB
o :- Standards contribute to the successful business value

of software architecture.
HC
o :- Size of organization tends to contribute towards the

complexity of software architecture.
HD
o :- Commitment to the standards result in successful

architecture deployment.
HE
o :- Lack of maturity of organization leads to the missing

of situational factors in agile distributed environment.
HF
o :- Inconsistent structure of organization may lead to

agile development in distributed environment.
HG
o :- There should be a certain level of management of

software architecture to fulfill organization standards.
HH
o :- Geographic distribution does result in situational

variations.
HI
o :- Lack of technical dependencies within team leads to

inconsistent architecture modules.
HJ
o :- Domain experience affects the overall performance

of the team.
HK
o :- Lack of availability of customer makes communica-

tion a barrier in agile distributed environment.
HL
o :- The higher the resistance of customers, the higher the

level of inconsistent modules of architecture.
HM
o :- Lack of domain experience of customer makes

understandability difficult.
HN
o :- The more complex the size of the system, the higher

the performance of application.
HO
o :- The higher the complexity of system, the higher the

efficiency of application.
HP
o :- Lack of situational approaches affect the deployment

of system in agile distributed context.
HQ
o :- Incorporation of technology elevates the mapping

and traceability of system.
HR
o :- Reusability of software system components makes

application development easy in agile distributed context.
In order to evaluate the directed hypotheses, the follow-

ing list of questions was derived. The questions followed
guidelines as identified by Krosnick [41]. The list of directed
hypotheses and questions were circulated worldwide through
online survey. Experts from different countries participated in
the survey. The experts were contacted through LinkedIn and
snowballing technique [42]. The distribution of participating
respondents is shown in Fig. 11.

FIGURE 11. Respondents.

A. To what degree does requirements stability affect the
business aspect of architecture?

B. Rate how much standards do contribute to the successful
business value of software architecture.

C. How much does the size of organization contribute
towards the complexity of software architecture?

D. To what rate does commitment to the standards affect
successful architecture deployment?

E. To what rate does lack of maturity of organization lead
to the missing of situational factors in agile distributed
environment?

F. How likely is it that inconsistent structure of organization
leads to agile development in distributed environment?

G. Rate how necessary a certain level of management of soft-
ware architecture is to fulfilling organization standards.

H. How much is geographic distribution likely to result in
situational variations?

I. Rate whether lack of technical dependencies within team
leads to inconsistent architecture modules.

J. Rate howmuch domain experience does affect the overall
performance of the team.

K. How much does lack of availability of customer
make communication a barrier in agile distributed
environment?

L. How much does higher resistance of customers lead to
higher level of inconsistent modules of architecture?

M. How likely is that lack of domain experience of customer
makes understandability difficult?

N. Rate how much the complexity of system size affects the
performance of application.

O. How much does higher complexity of system make the
application more efficient?

P. To what level does lack of situational approaches affect
the deployment of system in agile distributed context?

Q. Rate how much the incorporation of technology elevates
the mapping and traceability of system.

R. How much does the reusability of software system com-
ponents make application development easy in agile dis-
tributed context?

Total 18 respondents both from agile distributed software
development and situational agile distributed development,

VOLUME 8, 2020 6821



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

TABLE 5. Statistical analysis of given responses.

6822 VOLUME 8, 2020



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

TABLE 5. (Continued.) Statistical analysis of given responses.

were collected. In order to normalize data, responses were
recorded on a rating scale of 1–5. Another reason for nor-
malizing the responses was to make the data suitable for
statistical analysis. Statistical analysis is explained later in
this section. The most common method used for statisti-
cal analysis in software development across multiple tests
of the directed hypotheses is Fisher’s combined probabil-
ity test. On the other hand, an alternative method called
the weighted Z-test has more power and more precision
than does Fisher’s test. Further, in contrast to some state-
ments in the literature, the weighted Z-test is superior to
the un-weighted Z-transform approach. The results show
that, when P-values from multiple tests of the directed
hypotheses are combined, the weighted Z-method should be
preferred [43].

Normalized responses extracted from the questionnaires
were statistically analyzed in order to prove the pro-
posed directed hypothesis. Statistical analysis was performed
online; Z-test, U-test, and probability of each variable were
also calculated in order to confirm the level of confidence for
each directed hypothesis, as shown in Table 5. In Table 5,
AD represents agile development, whereas SAD represents

situational agile development. A total of 26 practitioners took
part in interviews and gave their responses on the defined
rating scale. The practitioners belonged under both agile dis-
tributed software development and situational agile software
development. To conduct statistical analysis, mean, min/max,
median, and mean rank were calculated. Further, standard
deviation was calculated, and U-test was performed. In the
end, the probability was checked on the basis of significance
value. A significance value of 0.05 was set for comparing
the probability. Cultural variation and instant work were not
accepted because their probability was less than the signif-
icance value; therefore, an alternate hypothesis was selected
for both variables. Z-test was also calculated in order to check
the level of confidence of the directed hypothesis [43], [44].
The reason for generating directed hypothesis was to show
the relation between dependent and independent variables.
With respect to our approach the 18 identified situational
factors were independent variables, however, the software
architecture and agile distributed software development are
the dependent variable. After all levels of confidence for the
directed hypothesis were calculated, the results are presented
graphically, as shown in Fig. 12.

VOLUME 8, 2020 6823



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

FIGURE 12. Graph against level of confidence for direct hypothesis.

The level of confidence for each directed hypothesis is
shown in Fig. 12. Each bar in the figure represents a situa-
tional parameter. The highest level of confidence is for situa-
tional approaches. This means that when situational variation
in agile distributed development is not considered, the level
of confidence would be less satisfactory. Our contribution
emphasized the identification of situational factors high-
lighted in literature. Similarly, the effect of situational factors
on SADD architecture was also handled. Protocol review
was evaluated from practitioners, and questionnaires were
validated. The questionnaire was designed by the authors
and validated by the experts. Validation process involved the
understanding the problem and generating questions relevant
to the problem. Further taxonomy was generated on the basis
of identified situational factors.

C. IMPLICATION OF THE STUDY
In this section, we have answered our third research ques-
tions. The study provides a state-of-the-art overview of situa-
tional requirements as barrier in an agile distributed software
development environment. This study provides a taxonom-
ical classification of situational factors. It also proposes a
SADD model of situational barriers, which presents the key
categories of the situational barriers that can serve as knowl-
edge for academics, researchers, and practitioners working
on situational method engineering and software architecture
in the agile distributed software development. This model
will assist distributed software development firms into paying
more attention on the situational barriers with respect to
software architecture. Moreover, this research work provides
a deep understanding of the situational and contextual barriers
in relation to software architecture and on how to achieve
harmonization between both sides. The reported situational
barriers can assist the practitioners into considering the most
relevant situational barriers with respect to their context.
In summary, this study provides a detailed overview of a
literature survey of the available situational factors in the
context of an agile distributed software development that
harmonizes between situational factors and software archi-
tecture, which has not been conducted before. Finally, this
study contributes to the development of software architec-
ture in agile development, which assists distributed software

development organizations in assessing and improving their
software development programs effectively.

D. THREATS AND VALIDITY
We mapped the following threats as internal, external, and
reliability threats.

1) RELIABILITY
In this study, we used literature review approach in order to
investigate the situational barriers in agile distributed soft-
ware development. This may be a threat towards the validity
of the investigated situational barriers. This threat has been
addressed by using the systematic literature review approach.

In addition, among responses gathered through online
survey, only 18 were complete. This may be considered as
a small sample size. However, through the referencing of
existing empirical studies, the sample of the present study
is enough to justify the results of empirical study. Similarly,
an informal method was adopted to categorize the investi-
gated situational barriers into five situational aspects. This
may be a threat towards the validity of the situational-barrier
categorization process. However, most of the researchers
of other domains of agile distributed software develop-
ment also adopted the same process in order to classify
the identified situational factors/parameters into different
categories [26], [29].

2) INTERNAL VALIDITY
Internal validity is related to the cause and effect relationship.
An internal threat is present on the basis of the results gen-
erated by using published case study. We spent a substantial
amount of time in identifying situational needs and factors
associated with the published case study. The questionnaire
results were bound to have biases in opinions, current knowl-
edge, and attitudes of the respondents, and generate a very
narrow viewpoint as a whole. Multiple backgrounds, domain
knowledge, and levels of expertise of the respondents with
regard to ADSD are also likely to affect their adoption and
understanding of SADD.

3) EXTERNAL VALIDITY
Another threat related to our study is the external threat.
This threat is amplified when inaccurate conclusions are
drawn from the literature and applied to published cases
with different contexts and settings. The published case data
obtained might have lost valuable information and might not
be sufficient for making any assumption or recommendation.
However, we feel the SADDmodel can be implemented with
a good understanding of situational needs.

VI. CONCLUSION
The increasing trend of agile distributed software develop-
ment paradigm motivated us to investigate the situational
factors associated with software architecture. The software
architecture is not an initial phase of the software develop-
ment life cycle; however, it requires more intellection for

6824 VOLUME 8, 2020



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

producing the quality software. By using systematic liter-
ature review approach and snowballing technique, a total
of 18 situational factors were identified.Moreover, to validate
the key findings of systematic literature survey, taxonomical
classification was done and an empirical study (statistical
analysis) was conducted. We generated directed hypothe-
sis against each situational factor. In order to validate the
hypothesis, questions were generated and circulated world-
wide through LinkedIn and online survey. We received a total
of 18 complete survey responses. The responses proved that
situational approach has the greatest impact on the agile dis-
tributed software development. The responses showed com-
parison between traditional and ADSD domain considering
the same situations. Moreover, the situational hypothesis
‘‘F,’’ i.e., structure of the organization, has the minimum
importance. Furthermore, we generated five aspects of sit-
uational factors on the basis of taxonomical classification.
First, we identified the situational barriers and proposed a
solution in the form of taxonomical classification. Afterward,
we proposed a SADD model that incorporated situational
enhancement approach and harmonization with software
architecture in ADSD domain. Further, we proposed five
aspects of situational factors on the basis of SADDmodel and
taxonomical classification. To support our findings, statistical
analysis was performed. Z-test and probability were also
calculated. We believe that the findings of the current study
are helpful for addressing the challenges faced by ADSD
organizations in the software architecture development pro-
cess. It was also evident from the case study that software
architecture is especially recommended when working in
different situations. Similarly HoC resulted in 89.39% of
Level of contribution, thus it was clear that situational fac-
tor ‘size of organization’ contributes 89.39% to software to
architecture.

FUTURE WORK
The basic motive of this study is to develop a situational
taxonomic model in the context of agile distributed soft-
ware development. The proposed SADD model is based on
existing literature studies. The situational awareness of the
SADD model is based on perception and integration, which
may lead to biases if not handled properly and deeply. The
present study contributed in the area of situational factors
and harmonization of those situational factors in software
architecture. However, in the future, we plan to conduct a
systematic mapping review and an empirical study in order
to investigate the additional situational factors, which affect
the complete development of software, in terms of design and
implementation in the ADSD domain. In addition, we also
plan to conduct a systematic mapping study in order to
identify the success factors and best practices of software
architecture in the ADSD domain, which may be useful in
addressing the software components for situational method
engineering. We believe that the proposed SADD model is
useful for assessing and managing the situational factors in
the ADSD environment.

REFERENCES
[1] A. A. Khan, J. Keung, M. Niazi, S. Hussain, and M. Shameem, ‘‘GSEPIM:

A roadmap for software process assessment and improvement in the
domain of global software development,’’ J. Softw., Evol. Process, vol. 31,
no. 1, Jan. 2019, Art. no. e1988.

[2] A. S. Hashmi, Y. Hafeez, M. Jamal, S. Ali, and N. Iqbal, ‘‘Role of situ-
ational agile distributed model to support modern software development
teams,’’ Mehran Univ. Res. J. Eng. Technol., vol. 38, no. 3, pp. 655–666,
2019.

[3] M. Shameem, C. Kumar, B. Chandra, and A. A. Khan, ‘‘Systematic review
of success factors for scaling agile methods in global software development
environment: A client-vendor perspective,’’ in Proc. 24th Asia–Pacific
Softw. Eng. Conf. Workshops (APSECW), Dec. 2017, pp. 17–24.

[4] M. Shameem, C. Kumar, and B. Chandra, ‘‘Challenges of manage-
ment in the operation of virtual software development teams: A system-
atic literature review,’’ in Proc. 4th Int. Conf. Adv. Comput. Commun.
Syst. (ICACCS), Jan. 2017, pp. 1–8.

[5] A. Khan, C. Kumar, M. Shameem, and B. Chandra, ‘‘Impact of require-
ments volatility and flexible management on GSD project success: A study
based on the dimensions of requirements volatility,’’ Int. J. Agile Syst.
Manage., vol. 12, no. 4, pp. 199–227, 2019.

[6] A. Yagüe, J. Garbajosa, J. Díz, and E. González, ‘‘An exploratory study in
communication in agile global software development,’’Comput. Standards
Inter., vol. 48, pp. 184–197, Nov. 2016.

[7] B. Murphy, C. Bird, T. Zimmermann, L. Williams, N. Nagappan, and
A. Begel, ‘‘Have agile techniques been the silver bullet for software devel-
opment at microsoft?’’ in Proc. ACM / IEEE Int. Symp. Empirical Softw.
Eng. Meas., Oct. 2013, pp. 75–84.

[8] S. Fraser and D. Manci, ‘‘No silver bullet reloaded: Report on XP 2017
panel session,’’ SIGSOFT Softw. Eng. Notes, vol. 43, no. 4, p. 53, Jan. 2019.

[9] K. Suryaatmaja, D. Wibisono, and A. Ghazali, ‘‘The missing framework
for adaptation of agile software development projects,’’ in Eurasian Busi-
ness Perspectives. Cham, Switzerland: Springer, 2019, pp. 113–127.

[10] O. Sievi-Korte, S. Beecham, and I. Richardson, ‘‘Challenges and recom-
mended practices for software architecting in global software develop-
ment,’’ Inf. Softw. Technol., vol. 106, pp. 234–253, Feb. 2019.

[11] A. A. Alsanad, A. Chikh, and A. Mirza, ‘‘A domain ontology for software
requirements change management in global software development envi-
ronment,’’ IEEE Access, vol. 7, pp. 49352–49361, 2019.

[12] G. Rong, B. Boehm, M. Kuhrmann, E. Tian, S. Lian, and I. Richardson,
‘‘Towards context-specific software process selection, tailoring, and com-
position,’’ in Proc. Int. Conf. Softw. System Process (ICSSP), 2014,
pp. 183–184.

[13] L. Przybilla, M.Wiesche, and H. Krcmar, ‘‘The influence of agile practices
on performance in software engineering teams: A subgroup perspective,’’
in Proc. ACM SIGMIS Conf. Comput. People Res. (SIGMIS-CPR), 2018,
pp. 33–40.

[14] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
and M. Niazi, ‘‘Systematic literature reviews in software engineering—
A tertiary study,’’ Inf. Softw. Technol., vol. 52, pp. 792–805, Aug. 2010.

[15] S. D. Vishnubhotla, E. Mendes, and L. Lundberg, ‘‘An insight into the
capabilities of professionals and teams in agile software development:
A systematic literature review,’’ in Proc. 7th Int. Conf. Softw. Comput.
Appl. (ICSCA), 2018, pp. 10–19.

[16] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
‘‘Lessons from applying the systematic literature review process within the
software engineering domain,’’ J. Syst. Softw., vol. 80, no. 4, pp. 571–583,
Apr. 2007.

[17] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, ‘‘Systematic mapping
studies in software engineering,’’ in Ease, vol. 8, pp. 68–77, Jun. 2008.

[18] R. V. O’connor, P. Elger, and P. M. Clarke, ‘‘Continuous software
engineering—A microservices architecture perspective,’’ J. Softw. Evol.
Proc, vol. 29, no. 11, Nov. 2017, Art. no. e1866.

[19] Y. I. Alzoubi, A. Q. Gill, and B. Moulton, ‘‘A measurement model to ana-
lyze the effect of agile enterprise architecture on geographically distributed
agile development,’’ J. Softw. Eng. Res. Develop., vol. 6, p. 4, Mar. 2018.

[20] R. Hoda, N. Salleh, and J. Grundy, ‘‘The rise and evolution of agile
software development,’’ IEEE Softw., vol. 35, no. 5, pp. 58–63, Sep. 2018.

[21] J. Tripp, J. Saltz, and D. Turk, ‘‘Thoughts on current and future research
on agile and lean: Ensuring relevance and rigor,’’ in Proc. 51st Hawaii Int.
Conf. Syst. Sci., 2018.

[22] E. H. Trainer and D. F. Redmiles, ‘‘Bridging the gap between awareness
and trust in globally distributed software teams,’’ J. Syst. Softw., vol. 144,
pp. 328–341, Oct. 2018.

VOLUME 8, 2020 6825



A. Sarwar et al.: Towards Taxonomical-Based Situational Model to Improve the Quality of Agile Distributed Teams

[23] G. Giray, M. Yilmaz, R. V. O’Connor, and P. M. Clarke, ‘‘The impact
of situational context on software process: A case study of a very small-
sized company in the online advertising domain,’’ in Systems, Software
and Services Process Improvement (Communications in Computer and
Information Science). Cham, Switzerland: Springer, 2018, pp. 28–39.

[24] R. V. O’connor, P. Elger, and P. M. Clarke, ‘‘Exploring the impact of
situational context: A case study of a software development process for
a microservices architecture,’’ in Proc. Int. Workshop Softw. Syst. Pro-
cess. (ICSSP), 2016, pp. 6–10.

[25] P. Clarke and R. V. O’Connor, ‘‘Changing situational contexts present
a constant challenge to software developers,’’ in Systems, Software and
Services Process Improvement (Communications in Computer and Infor-
mation Science). Cham, Switzerland: Springer, 2015, pp. 100–111.

[26] P. Clarke and R. V. O’Connor, ‘‘The situational factors that affect the
software development process: Towards a comprehensive reference frame-
work,’’ Inf. Softw. Technol., vol. 54, no. 5, pp. 433–447, May 2012.

[27] M. Razavian, B. Paech, and A. Tang, ‘‘Empirical research for software
architecture decision making: An analysis,’’ J. Syst. Softw., vol. 149,
pp. 360–381, Mar. 2019.

[28] G. Borrego, A. L. Morán, R. R. Palacio, A. Vizcaíno, and F. O. García,
‘‘Towards a reduction in architectural knowledge vaporization during agile
global software development,’’ Inf. Softw. Technol., vol. 112, pp. 68–82,
Aug. 2019.

[29] S. Dhir, D. Kumar, and V. Singh, ‘‘Success and failure factors that impact
on project implementation using agile software development methodol-
ogy,’’ in Software Engineering. Singapore: Springer, 2019, pp. 647–654.

[30] G. Giray and B. Tekinerdogan, ‘‘Situational method engineering for con-
structing Internet of Things development methods,’’ in Proc. Int. Symp.
Bus. Model. Softw. Design, 2018, pp. 221–239.

[31] J. Jia, H. Mo, L. F. Capretz, and Z. Chen, ‘‘Grouping environmen-
tal factors influencing individual decision-making behavior in software
projects: A cluster analysis,’’ J. Softw., Evol. Process, vol. 30, Jan. 2018,
Art. no. e1913.

[32] C. Coulin, D. Zowghi, and A.-E.-K. Sahraoui, ‘‘A situational method
engineering approach to requirements elicitationworkshops in the software
development process,’’ Softw. Process, Improve. Pract., vol. 11, no. 5,
pp. 451–464, Sep. 2006.

[33] H. Munir, K. Wnuk, and P. Runeson, ‘‘Open innovation in software engi-
neering: A systematic mapping study,’’ Empir Softw. Eng, vol. 21, no. 2,
pp. 684–723, Apr. 2016.

[34] M. Usman, R. Britto, J. Börstler, and E. Mendes, ‘‘Taxonomies in software
engineering: A systematic mapping study and a revised taxonomy devel-
opment method,’’ Inf. Softw. Technol., vol. 85, pp. 43–59, May 2017.

[35] A. A. Zafar, S. Saif, M. Khan, J. Iqbal, A. Akhunzada, and A. Wadood,
‘‘Taxonomy of factors causing integration failure during global software
development,’’ IEEE Access, vol. 6, pp. 22228–22239, 2018.

[36] M.-L. Ryan, ‘‘Introduction: On the why, what and how of generic taxon-
omy,’’ Poetics, vol. 10, pp. 109–126, 1981.

[37] A. Aharoni and I. Reinhartz-Berger, ‘‘A domain engineering approach for
situational method engineering,’’ in Proc. Int. Conf. Conceptual Modeling,
2008, pp. 455–468.

[38] P. J. R. De Jongh, J. Larney, E. Mare, G. W. Van Vuuren, and T. Verster,
‘‘A proposed best practice model validation framework for banks,’’ South
Afr. J. Econ. Manage. Sci., vol. 20, pp. 1–15, Jun. 2017.

[39] G. Marks, R. V. O’Connor, and P. M. Clarke, ‘‘The impact of situa-
tional context on the software development process-a case study of a
highly innovative start-up organization,’’ in Proc. Int. Conf. Softw. Process
Improvement Capability Determination, 2017, pp. 455–466.

[40] M. Farwick, C. M. Schweda, R. Breu, and I. Hanschke, ‘‘A situational
method for semi-automated enterprise architecture documentation,’’ Softw.
Syst. Model., vol. 15, no. 2, pp. 397–426, May 2016.

[41] J. A. Krosnick, ‘‘Questionnaire design,’’ in Institute of Mathematical
Statistics. Cham, Switzerland: Palgrave Macmillan, 2018, pp. 439–455.

[42] W. I. King, ‘‘The annals of mathematical statistics,’’ Ann. Math. Statist.,
vol. 1, no. 1, pp. 1–2, Feb. 1930.

[43] M. C. Whitlock, ‘‘Combining probability from independent tests:
The weighted Z-method is superior to Fisher’s approach,’’ J. Evol. Biol.,
vol. 18, no. 5, pp. 1368–1373, Aug. 2005.

[44] G. Sun, H. Zhang, J. Fang, G. Li, and Q. Li, ‘‘A new multi-objective dis-
crete robust optimization algorithm for engineering design,’’ Appl. Math.
Model., vol. 53, pp. 602–621, Jan. 2018.

AMBER SARWAR is currently pursuing the Ph.D.
degree with the University Institute of Information
Technology, PMAS-Arid Agriculture University
Rawalpindi, Pakistan.

YASER HAFEEZ received the Ph.D. degree
from International Islamic University Islamabad,
Pakistan. He is currently working as an Asso-
ciate Professor with the University Institute of
Information Technology, PMAS-Arid Agriculture
University Rawalpindi, Pakistan. His research
interests include software engineering and knowl-
edge management.

SHARIQ HUSSAIN received the master’s degree
in computer science from PMAS Arid Agriculture
University, Rawalpindi, Pakistan, in 2007, and the
Ph.D. degree in applied computer technology from
the University of Science and Technology Bei-
jing, Beijing, China, in 2014. Since 2014, he has
been with the Department of Software Engineer-
ing, Foundation University Islamabad, Rawalpindi
Campus, where he is currently an Assistant Profes-
sor. His main research interests include web ser-

vices, QoS in web services, web service testing, the IoT, context awareness,
and e-learning.

SHUNKUN YANG received the B.S., M.S., and
Ph.D. degrees from the School of Reliability
and Systems Engineering, Beihang University,
in 2000, 2003, and 2011, respectively. He was an
Associate Research Scientist with Columbia Uni-
versity, from September 2014 to September 2015.
He has been an Associate Research Professor with
Beihang University, since 2016. His main research
interests include reliability, testing and diagno-
sis for embedded software, CPS, the IoT, and
intelligent manufacturing.

6826 VOLUME 8, 2020


