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ABSTRACT Isolated conductors appear in various electrostatic problems. In simulations, an equipotential
condition with an undefined/floating potential value is enforced on the surface of isolated conductors.
In this work, a numerical scheme making use of the discontinuous Galerkin (DG) method is proposed to
model such conductors in electrostatic problems. A floating-potential boundary condition, which involves
the equipotential condition together with a total charge condition, is ‘‘weakly’’ enforced on the conductor
surfaces through the numerical flux of the DG method. Compared to adaptations of the finite element
method used for modeling conductors, this proposed method is more accurate, capable of imposing charge
conditions, and simpler to implement. Numerical results, which demonstrate the accuracy and applicability
of the proposed method, are presented.

INDEX TERMS Discontinuous Galerkin method, electrostatics, finite element method, floating potential
conductors, magnetostatics, plasmonic-enhanced photoconductive antenna.

I. INTRODUCTION
In electrostatic simulations, a perfect conductor is used to
approximate a metallic body with a very high conductivity
and its surface is assumed to be equipotential. Furthermore,
in many applications these conductors are isolated, in other
words, the value of the potential on their surface is not defined
or fixed [1]–[10]. For example, electrode core of high-voltage
inductors [1], floating electrodes of IEC surge arresters [2],
defects in ultra-high-voltage gas-insulated switchgear [3],
passive electrodes of earthing systems [4], conductor of
floating-gate transistors [5], plasma analyzer for spacecraft
floating potential measurements [6], and metallic nanostruc-
tures in optoelectronic devices [7] can all be modeled as
isolated conductors in electrostatic simulations. In the rest
of this paper, these conductors are referred to as floating-
potential conductors (FPCs).

Various methods have been developed to incorporate
FPC models in electrostatic simulations. For unbounded
problems with homogeneous or piece-wise homogeneous
materials, the boundary element method (BEM) is often
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preferred [2], [9]. In [2] a total electric charge condition is
applied to determine the potential of uncharged floating elec-
trodes. In [9], the Poincare-Steklov operator is used to enforce
constraints corresponding to the floating potential. For more
complex systems with inhomogeneous materials, the finite
element method (FEM) is widely used [10]–[17].

Several techniques have been introduced to the traditional
FEM so that FPCs can be accounted for. These include
the virtual permittivity method (VPM) [10], the matrix
reduction method (MRM) [13], and the charge simulation
method (CSM) [11], [12], [16]. These methods’ accuracy,
ease of implementation (or amount of modifications required
for implementation in legacy FEM codes), ability to account
for charges on FPCs, and savings in the number of unknowns
have recently been compared in [15]. Among all the schemes
used for analyzing problems involving FPCs, VPM is per-
haps the easiest one to implement since it does not require
any modifications to the traditional FEM code. However, its
accuracy depends on the proper selection of the ‘‘virtual’’
permittivity. Accurate representation of an FPC requires a
very high virtual permittivity value but this in return reduces
the solution accuracy since it makes the FEM matrix ill-
conditioned. MRM does not suffer from this problem but
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it requires considerable modifications to the original FEM
code [13]–[15]. Additionally, both VPM and MRM lack the
ability to enforce nonzero charge conditions on the surface
of an FPC [13]–[15]. CSM can account for charge conditions
but setting a specific charge distribution on an FPC calls for
a priori knowledge often acquired heuristically by running
multiple simulations [13]–[16].

In this work, we propose a scheme that permits the dis-
continuous Galerkin (DG) method [18]–[20] to account for
FPCs. This scheme ‘‘weakly’’ enforces both the equipotential
condition and the charge condition (on the total electric field
intensity) on the surface of an FPC using the numerical flux of
DG. In the rest of the paper, the combination of these two con-
ditions is referred to as the floating potential boundary con-
dition (FPBC). The implementation of the FPBC is similar
to that of the Dirichlet boundary condition and requires only
subtle modifications to the original DG code. In addition,
by effectively ‘‘replacing’’ an FPC with its FPBC, the need
for an internal mesh discretizing the FPC is eliminated, and
the inaccuracy problem that would be introduced by a virtual
permittivity is avoided. It should also be noted here that
the proposed formulation naturally handles multiple isolated
conductors with independent charge conditions. The proper-
ties of the proposed method are summarized and compared to
those of the other methods in Table. 1.

TABLE 1. Comparision of FEM-based methods used for modeling FPC.

The rest of the paper is organized as follows. Section II
starts with the formulation of DG for the Poisson equation.
This is followed by introduction of the FPBC into DG frame-
work and description of its discretization. In Section III,
the proposed method is validated through comparison of the
results computed for a canonical problem to those obtained
from analytical expressions. Its applicability of the method is
further demonstrated through its application to the analysis of
a realistic optoelectronic semiconductor device. Section IV
provides a summary and discusses possible future research
directions.

II. FORMULATION
A. MATHEMATICAL MODEL
Consider the electrostatic problem described in Figure 1.
M isolated conductors �C

1 , �
C
2 , . . . , �

C
M are distributed in

domain �. Surface of each conductor and the charge on it
are represented by ∂�C

η and QCη , η = 1, 2, . . .M , respec-
tively. Domain � is bounded by surface ∂�: ∂� = ∂�D

∪

∂�N , where ∂�D and ∂�N represent the boundaries where
Dirichlet and Neumann boundary conditions are enforced,

FIGURE 1. Schematic description of an electrostatic problem involving
multiple isolated conductors.

respectively. This electrostatic problem is expressed in the
form of a boundary value problem (BVP)

∇ · [ε(r)∇ϕ(r)] = −ρ(r), r ∈ � (1)

ϕ(r) = f D(r), r ∈ ∂�D (2)

n̂ · ε(r)∇ϕ(r) = f N (r), r ∈ ∂�N , (3)

ϕ(r) = ϕCη ,−
∮
∂�Cη

n̂ · ε(r)∇ϕ(r)dr = QCη ,

r ∈ �C
η . (4)

In (1)-(4), ϕ(r) is the electric potential distribution to be
solved for, ε(r) is the permittivity, ρ(r) is the charge den-
sity, f D(r) and f N (r) are the coefficients associated with the
Dirichlet and Neumann boundary conditions, respectively,
and n̂ denotes the outward normal vector of the corresponding
surface. Equation (4) represents the physical conditions on
FPCs. We note that on each FPC, the equipotential value ϕCη
is an unknown. Physically, ϕCη changes with the total charge
QCη of the conductor. ϕCη is uniquely determined by the charge
condition in (4), i.e., the total electric flux is equal to the total
charge.

B. DISCONTINUOUS GALERKIN FORMULATION
In this subsection, we discuss the DG scheme used for dis-
cretizing the BVP described by only (1)-(3). Then we intro-
duce the FPBC (4) with some necessary modifications in the
next subsection. To facilitate the numerical solution of the
BVP (1)-(3), we use the electric field E(r) = −∇ϕ(r) to
reduce the order of the spatial derivative. Equation (1)-(3) can
be rewritten as

∇ · [ε(r)E(r)] = ρ(r), r ∈ � (5)

E(r) = −∇ϕ(r), r ∈ � (6)

ϕ(r) = f D(r), r ∈ ∂�D (7)

−n̂ · ε(r)E(r) = f N (r), r ∈ ∂�N . (8)

BVP (5)-(8) is solved with the local DG (LDG) method [18],
[21], [22]. First, � is discretized into K non-overlapping
tetrahedrons. The volumetric support of each of these ele-
ments is represented by �k , k = 1, . . . ,K . Let ∂�k denote
the element surface of �k and n̂(r) denote the outward unit
vector normal to ∂�k . Then, (5)-(6) are tested with Lagrange
polynomials on element k . Applying the divergence theorem
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yields the following weak form

−

∫
�k

ε(r)Ek (r) · ∇`i(r)dV

+

∮
∂�k

n̂(r) · [ε(r)Ek (r)]∗`i(r)dS=
∫
�k

ρ(r)`i(r)dV (9)∫
�k

Eνk (r)`i(r)dV −
∫
�k

ϕk (r)
∂

∂ν
`i(r)dV

+

∮
∂�k

n̂ν(r)ϕk (r)∗`i(r)dS = 0. (10)

Here `i(r), i = 1, . . . ,Np, are p-th order interpolating
Lagrange polynomials [21], Np = (p + 1)(p + 2)(p + 3)/6
denotes the number of interpolating nodes, and ν ∈ {x, y, z}
denotes the components of E(r) in the Cartesian coordinate
system. We note here ϕk (r) and Ek (r) denote the local solu-
tions on element k and the global solutions on� are the direct
sum of the local solutions.
ϕ∗ and (εE)∗ are numerical fluxes ‘‘connecting’’ element

k to its neighboring elements. Here, the variables are defined
on the interface between elements and the dependency on r
is dropped for simplicity of notation. In LDG, the alternate
flux [18]

ϕ∗ = {ϕ} + 0.5β̂ · n̂ [[ϕ]]

(εE)∗ = {εE} − 0.5β̂(n̂ · [[εE]])− τ [[ϕ]]

is used in the interior of�, where the ‘‘average’’ and ‘‘jump’’
operators are defined as {�} = 0.5(�+ + �−) and [[�]] =
�
−
−�

+, respectively (here� could be a scalar or a vector).
Superscripts ‘‘−’’ and ‘‘+’’ refer to variables defined in ele-
ment k and in its neighboring element, respectively. −τ [[ϕ]]
is a stabilization term introduced to penalize the non-physical
oscillating eigenvectors corresponding to zero eigenvalues
of the discretized system [21]. The vector β determines the
upwind direction of ϕ and (εE). In LDG, it is essential to
choose opposite directions for ϕ and (εE), while the precise
direction of each variable is not important [18], [21], [22].
Here we choose β̂ = n̂ on each element surface, which
means that we always use ϕ∗ = ϕ− and (εE)∗ = (εE)+.
On boundaries, the numerical fluxes are chosen as ϕ∗ = f D

and (εE)∗ = (εE)− on ∂�D and ϕ∗ = ϕ− and (εE)∗ = f N

on ∂�N .
We expand ϕk (r) and Ev,k (r) with the same set of Lagrange

polynomials `i(r) [21]

ϕk (r) '
Np∑
i=1

ϕ(ri)`i(r) =
Np∑
i=1

ϕik`i(r) (11)

Eνk (r) '
Np∑
i=1

Eν(ri)`i(r) =
Np∑
i=1

Eν,ik `i(r) (12)

where ri denote the location of interpolating nodes, ϕik and
Eν,ik , ν ∈ {x, y, z}, k = 1, . . . ,K , are the unknown coeffi-
cients to be solved for. Substituting (12) into (9) and (10),

the weak form is converted into a global matrix system[
T̄ D̄ε̄
Ḡ M̄

] [
8̄

Ē

]
=

[
B̄ϕ

B̄E

]
. (13)

Here, the global unknown vectors 8̄ = [8̄1, . . . , 8̄K ]T

and Ē = [Ēx1 , Ē
y
1, Ē

z
1, . . . , Ē

x
K , Ē

y
K , Ē

z
K ]

T are assembled
from element-wise vectors 8̄k = [ϕ1k , . . . , ϕ

Np
k ] and

Ēνk = [Eν,1k , . . . ,E
ν,Np
k ], ν ∈ {x, y, z}. The dimension of (13)

can be further reduced by using the Schur complement,
Ē = M̄−1(B̄E − Ḡ8̄), which results in

(T̄ − D̄ε̄M̄−1Ḡ)8̄ = B̄ϕ − D̄ε̄M̄−1B̄E. (14)

In (13) and (14), M̄ is the mass matrix, which is a
K×K block diagonal matrix, with each diagonal block being
a 3×3 block diagonal matrix with 3 identical Np×Np blocks
defined as

M̄ (m)
kk (i, j) =

∫
�k

`i(r)`j(r)dV , m = 1, 2, 3.

ε̄ is a diagonal matrix with entries (ε̄1, . . . , ε̄K ), where
ε̄k = (ε̄xk , ε̄

y
k , ε̄

z
k ), ε̄

ν
k (i) = εk (ri), k = 1, . . . ,K , ν ∈ {x, y, z}.

We note that ε(r) is assumed isotropic and constant in each
element.
Matrices Ḡ and D̄ represent the gradient and diver-

gence operators, respectively. For LDG, one can show that
D̄= − ḠT [19]. The gradient matrix Ḡ is a K × K block
sparse matrix, where each block is of size 3Np × Np and has
contribution from the second volume integral term and the
surface integral term in (10). The volume integral term only
contributes to diagonal blocks as Ḡvol

kk =
[
S̄xk S̄

y
k S̄

z
k

]T , where
S̄νk (i, j) = −

∫
�k

`i(r)
d`j(r)
dν

dV , ν ∈ {x, y, z} .

The surface integral term contributes to both the diagonal
blocks Ḡkk and off-diagonal blocks Ḡkk ′ , where k ′ corre-
sponds to elements connected to element k , k ′ 6= k . Let ∂�kk ′

be the interface connecting elements k and k ′, and let θk (j)
selects the interface nodes from element k ,

θk (j) =

{
1, rj ∈ �k , rj ∈ ∂�kk ′

0, otherwise.

Then, the contribution of the surface integral term to the
diagonal block and the off-diagonal blocks are Ḡsurf

kk =[
L̄xk L̄

y
k L̄

z
k

]T and Ḡsurf
kk ′ =

[
L̄xk ′ L̄

y
k ′ L̄

z
k ′
]T , where

L̄νk (i, j) =
1+sign(β̂ ·n̂)

2
θk (j)

∮
∂�kk′

n̂ν(r)`i(r)`j(r)dS,

and

L̄νk ′ (i, j) =
1−sign(β̂ ·n̂)

2
θk ′ (j)

∮
∂�kk′

n̂ν(r)`i(r)`j(r)dS

respectively, ν ∈ {x, y, z}. Special care needs to be taken
on the domain boundaries where element k ′ does not exist.
On ∂�D, the numerical flux is chosen as ϕ∗ = fD and
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(εE)∗ = (εE)−, which means β̂ = −n̂ and only the off-
diagonal term Ḡsurf

kk ′ has nonzero contribution to the numerical
flux. Because ϕ∗ = f D is a known value, the contribution is
moved to the right hand side. Similarly, on ∂�N , ϕ∗ = ϕ−

and (εE)∗ = f N , meaning that β̂ = n̂ and only Ḡsurf
kk has

nonzero contribution.
Matrix T̄ is the stabilization operator corresponds to the

stabilization term in the numerical flux. It is a K × K block
sparse matrix Np×Np blocks. The diagonal and off-diagonal
blocks are

T̄kk (i, j) = −τθk (j)
∮
∂�kk′

`i(r)`j(r)dS

and

T̄kk ′ (i, j) = τθk ′ (j)
∮
∂�kk′

`i(r)`j(r)dS.

Finally, the right hand side terms correspond to the force
term and boundary conditions as

B̄ϕk (i) =
∫
�k

f (r)`i(r)dV +
∮
∂�k∩∂�N

f N (r)`i(r)dS (15)

B̄E,νk (i) =
∮
∂�k∩∂�D

n̂ν(r)f D(r)`i(r)dS, ν ∈ {x, y, z}. (16)

C. FLOATING POTENTIAL BOUNDARY CONDITION
Having described the LDG method in the previous section,
we now introduce the FPBC (4) on the boundary of an FPC.
Consider conductor η, the first condition in (4) requires all
potential values on ∂�C

η to be equal to a single value ϕCη .
This is similar to the Dirichlet boundary condition. Hence,
we enforce the boundary condition through the numerical
flux as ϕ∗ = ϕCη and (εE)∗ = (εE)−. On ∂�C

η , the surface
integral term in (10) becomes∮

∂�k

n̂ν(r)ϕCη `i(r)dS, i = 1, 2, . . . ,Np, r ∈ ∂�C
η

However, different from the Dirichlet boundary condition,
ϕCη is an unknown and therefore we can not simply move
the above integral to the right hand side as done in (16).
Therefore we add ϕCη as an unknown to the linear system (13).
But then, an additional equation is needed. This equation is
precisely the charge condition in (4). This condition can be
expressed as∮

∂�Cη

n̂(r) · ε(r)E(r)dr = QCη , r ∈ ∂�C
η .

The above conditions are implemented in two steps. First,
add one column ḠCη to Ḡ to set the numerical flux ϕ∗ on ∂�C

η

to be a single value ϕCη ,

ḠCη =
[
ḠC,xη,1 , Ḡ

C,y
η,1 , Ḡ

C,z
η,1 , . . . , Ḡ

C,x
η,K , Ḡ

C,y
η,K , Ḡ

C,z
η,K

]T
where

ḠC,νη,k (i) =
∮
∂�k∩∂�Cη

n̂ν(r)`i(r)dS, ν ∈ {x, y, z}.

Second, add one row F̄Cη to D̄ε̄ to enforce the total electric
flux on ∂�C

η to be a single value QCη :

F̄Cη =
[
F̄C,xη,1 , F̄

C,y
η,1 , F̄

C,z
η,1 , . . . , F̄

C,x
η,K , F̄

C,y
η,K , F̄

C,z
η,K

]
where

F̄C,νη,k (i) =
∮
∂�k∩∂�Cη

n̂ν(r)ε(r)`i(r)dS, ν ∈ {x, y, z}.

Then, the matrix system becomes[
T̃ D̃
G̃ M̄

] [
8̃

Ẽ

]
=

[
B̃ϕ

B̄E

]
(17)

where

T̃ =
[
T̄ 0
0 0

]
, G̃ = [Ḡ, ḠCη ], D̃ =

[
D̄ε̄
F̄Cη

]
,

8̃ =

[
8̄

ϕCη

]
, B̃ϕ =

[
B̄ϕ

QCη

]
.

Eliminating Ẽ using Schur complement, one can obtain the
reduced linear system

(T̃ − D̃M̄−1G̃)8̃ = B̃ϕ − D̃M̄−1B̄E. (18)

This procedure can be generalized to an arbitrary number
of isolated FPCs by simply adding multiple variables ϕCη ,
η = 1, 2, . . .M , and correspondingly, M rows and columns
as described above.
In practice, one can avoid changing the matrix size. Note

that all unknowns ϕik on one FPBC are equal to a single value
ϕCη , we can simply choose a reference node on that FPC
boundary and set the numerical flux ϕ∗ associated with all
ϕik on the same boundary as the unknown of the reference
node. Assume that the row index of the reference node is m
in 8̄, then the two modification steps to (13) become:
• Step (I): Add ḠCη to the m-th column of Ḡ
• Step (II): Add F̄Cη to the m-th row of D̄ε̄ and add QCη to
the m-th row of B̄ϕ

Here, one has the freedom of choosing any node on a given
FPC boundary as the reference node in Step (I), while the
charge condition added in Step (II) ensures that the solution
is unique. For cases with multiple FPCs, an individual ref-
erence node is defined for each FPC. With the modified sub-
matrices, the reduced linear system has the same form as (14).

III. NUMERICAL EXAMPLES
A. COAXIAL CAPACITOR WITH FPC
To validate the proposed method, first, we consider a two
dimensional canonical problem that involves an isolated thin
metallic tube inserted into a coaxial capacitor. The schematic
describing the problem is provided in Figure 2a. The isolated
tube is modeled as an FPC surface. The radii of the inner
metallic core, the outer metallic boundary, the inner surface
of the FPC, and the outer surface of the FPC are r0, r1, r2, and
r3, respectively. The total charge on the FPC is Q. It assumed
that the potential on the surface of the core and the outer
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FIGURE 2. (a) Schematic description of the coaxial capacitor model.
(b) ϕ solved from the proposed DG method. (c) Comparison of analytic
and numerical solutions of ϕ on the line (x, y = 0).

boundary are known, ϕ(r = r0) = V0 and ϕ(r = r1) = V1.
Then the potential everywhere inside the outer boundary has
an analytical expression

ϕ(r, θ) =

{
a0 + b0 ln(r), r ∈ [r0, r2]
a1 + b1 ln(r), r ∈ [r3, r1].

Here, a0 = V0 − b0 ln(r0), a1 = V1 − be ln(r1),
b0 = b1 + Q/(2πε), b1 = [V0 − V0 − C20Q/(2πε)]/
(C20 − C31), and Cij = ln(ri/rj). For the numerical experi-
ments described below, V0 = 0, V1 = 10 V, r0 = 0.1 cm,
r1 = 2 cm, r2 = 0.8 cm and r3 = 1.2 cm.
We first assume that the FPC is electrically neutral,

i.e., Q = 0. The DG method uses first-order basis func-
tions for a fair comparison with VPM and MRM, which are
first-order methods. Figure 2b shows the electric potential
computed using the DG method. Figure 2c compares the DG
solution with the analytical solution along the line (x, y = 0).
One can see the numerical solution agrees very well with the
analytical solution.

Using the analytical expression above, one can find that the
value of the potential on the FBC is ϕAnaf = 8.027904 V. This
value is also computed using DG, MRM, and VMP with
different values of virtual permittivity εv (all methods use the
same mesh but for DG mesh elements internal to the FPC are
removed). Table. 2 summarizes the results. Second column is
the floating potential value ϕf as computed by the numerical
schemes, third column is the difference with respect to the
analytical solution: difff = |ϕf − ϕAnaf |, and fourth column
is the condition number of the matrix. We should note here
that VMP does not produce a single value for the floating
potential (especially for low values of εv), therefore ϕf for

TABLE 2. Comparison of different methods in the coaxial capacitor
example.

VMP is selected as the value that produces the maximum
difff . The table shows that, for DG and MRM, the errors
are on the same level while the accuracy of VPM depends
on the choice of εv (as reported in [15]). For smaller values
of εv, the virtual material does not behave like a perfect
conductor. For larger values of εv, the FEM matrix becomes
more and more ill-conditioned, which eventually results in an
inaccurate solution.

For the second case, we assume that there are charges
residing on the FPC, i.e., Q 6= 0. In this case, the accuracy
of the DG method is verified against only the analytical
solution since VPM and MRM cannot directly account for
charges located on an FPC [15]. Figure 2c plots the elec-
tric potential computed by the DG method and using the
analytical expression above along the line (x, y = 0) for
two cases with Q = −5 × 109 q0 and Q = −1010q0,
where q0 is the electron charge. The figure shows that the
DG solutions match with the analytical results very well.
The errors are at the same level as in the Q = 0 case:
For Q = −5 × 109 q0, difff = 7.787 × 10−6 V and
for Q = −1010q0, difff = 1.311× 10−5 V.

B. PLASMONIC-ENHANCED PHOTOCONDUCTIVE
ANTENNA
Next, we consider a practical three dimensional exam-
ple. In recent years, nanostructures have become common
components of optoelectronic devices since they signifi-
cantly enhance the interaction between optical electromag-
netic waves and semiconductor material often resulting in
increased device performance [23]. Modeling these devices
calls for solving two sets of equations: (i) a steady-state
system modeling interactions of DC electric field and carrier
densities and (ii) a transient-state system modeling interac-
tions of high-frequency electromagnetic waves and carrier
densities. The solution of steady-state system provides not
only the initial state for the transient system but also the DC
electric field that persists throughout the transient response.
Moreover, the field-dependent mobility obtained from the
steady-state solution is needed in the transient simulation.
Hence, an accurate solution of the steady-state system is
essential for correctly modeling these devices.
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FIGURE 3. (a) Structure of the plasmonic-enhanced PCA and
corresponding mesh used in the proposed DG method. (b) ϕ and
(c) Ez on the plane (x, y, z = 0.3µm) solved from the proposed DG
method. (d) ϕ on the line (x, y = 0.3µm, z = 0.3µm) solved from the
proposed DG method and COMSOL multiphysics.

The semiclassical approach for semiconductor devices
models the steady-state in the form of a coupled sys-
tem of Poisson equation (describing the behavior of the
electric potential) and drift-diffusion/hydrodynamic equa-
tions (describing the behavior of the carrier densities).
In many of the optoelectronic device designs, the nanos-
tructures are isolated conductors that not directly connected
to any electrode [7]. This calls for solution of the Poisson
equation with an FPC.

Here, we consider the device component of a
plasmonic-enhanced photoconductive antenna (PCA) and
solve the pertinent electrostatic problem. Figure 3 shows a
typical configuration [7] of the device. Dirichlet boundary
condition is enforced on the surface of the electrodes (shown
in red in the figure). The left electrode is the cathode with
ϕ(r) = 0 and the right electrode is the anode with ϕ(r) = 10
V. The nanostructures (shown in yellow in the figure) are the
FPCs and each block is modeled by enforcing an independent
FPBC on its surface. The semiconductor layer (shown in blue
in the figure) has relative dielectric permittivity of 10.9 and
the surrounding area (shown in gray in the figure) is vacuum.
The computation domain is truncated at the outmost bound-
aries with the homogeneous Neumann boundary condition.

Figure 3b shows the electric potential computed by the DG
method on the plane (x, y, z = 0.3µm). The figure clearly
shows that ϕ(r) is constant on the surface of each FPC block.
The potential values on different FPC blocks change along
the x direction significantly while staying approximately the
same along the y direction. These results presented in this
figure demonstrate that the nanostructures not only interact
with optical electromagnetic waves (which is the original
reason for introducing them into the optoelectronic device),
but also change the local (static) electric potential. In fact,
the static electric field E(r) = −∇ϕ(r) becomes very strong
in vicinity of the nanostructures. For example, see the Ez
component shown in Figure 3c. This can greatly influence
the carrier mobilities in the semiconductor layer [24] and
therefore change the device performance.

The electric potential computed using the DG method is
verified against that computed using the commercial soft-
ware package COMSOL multiphysics. Figure 3a plots the
solutions on the line (x, y = 0.3µm, z = 0.3µm). The
maximum difference between the solutions, max(|ϕ(r) −
ϕCOMSOL(r)|), is 0.0314V . Note that while computing the
difference, we have interpolated ϕCOMSOL to the nodal points
of the DG method.

We should also mention here that, since the FPCs are
treated as boundary conditions, volumetric meshes are not
required inside the FPCs. This is shown in Figure 3, where
some mesh elements are made transparent intentionally
for visualization purposes. This treatment saves significant
amount of computational resources since the nanostructures
usually require finer meshes.

IV. CONCLUSION
In this work, we report a new approach to model FPCs within
a DG-based numerical framework. This approach permits
both the equipotential condition and the charge condition
(collectively termed as FPBC) to be enforced on the surface
of an FPC. As a result, nonzero charge conditions are easily
and ‘‘naturally’’ taken into account. We should note here that
directly enforcing such nonzero charge conditions in FEM
is not a trivial task and to the best of our knowledge it has
not been reported in the literature yet. Unlike the popular
VPM, the FPBC does not degrade the accuracy of the original

7536 VOLUME 8, 2020



L. Chen et al.: Modeling FPCs Using DG Method

DG solver. At the same time, the implementation of FPBC
only requires simple changes to the original code.

The main disadvantage of DG over FEM is the larger
number of unknowns due to the nodal duplication at element
interfaces. Nevertheless, by treating FPC as (surface) bound-
ary conditions and therefore removing the volumetric meshes
internal to them, the number of unknowns can be reduced.
A further reduction can be achieved by using coarser meshes
with higher order basis functions [21]. Note that defining
higher order basis functions is easier within DG than FEM.
Our future work includes development of extensions of the
DG method to account for non-conformal meshes and to
make use of local h-/p- refinement strategies. These exten-
sions will significantly increase efficiency of the simulation
especially for complex geometries.
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