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ABSTRACT Circular histogram thresholding is a new threshold selection method in color image segmen-
tation. However, the method of the existing circular histogram thresholding based on the Otsu Criteria
lacks the generality of using the circular histogram. In order to improve the effectiveness and reduce the
complexity of thresholding on circular histogram, this paper firstly introduces the Lorenz curve into circular
histogram. Then the circular histogram is expanded into the linearized histogram in clockwise or anti-
clockwise direction by the optimal index of the Lorenz curve. In the end, the entropy thresholding of the
linearized circular histogram is adopted to choose the optimal threshold to obtain the object of color images.
Many experimental results show that the proposed method has better effectiveness and adaptability than the
existing circular thresholding utilizing Otsu Criteria.

INDEX TERMS Color image segmentation, circular histogram thresholding, entropy method, Lorenz-curve
type technique.

I. INTRODUCTION
Target acquisition of color image is an important problem in
image analysis, understanding and computer vision due to
the color images can provide more information than gray-
level images. Color image segmentation [1], [2] has made
profound effects to color information analysis, for which the
RGB color space is the most used [1]–[3] with three primary
colors: red (R), green (G) and blue (B). Also, other color
representations can be derived from RGB color space, such
as HSI, CIE, YIQ color spaces and so on.

However, among all color spaces, RGB is not suitable
for the color image segmentation due to the high correla-
tion among the three components [3]. Conversely, HSI color
space [2], [4] has been used more frequently due to three
highly irrelevant components: hue (H), saturation (S) and
intensity (I). Many researchers had used the HSI color space
in the color images’ segmentation [4]–[7] due to this model
which can represent hue information and has a more natural
correspondence to human vision than the RGB color model.
Among them, segmenting the images only by H component
is an important approach. The angle value of hues increasing
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from 0◦ to 359◦ can be used adequately (Note that we leave
out the angle symbol (◦) for the convenience in the follow-
ing). This color model can establish a circular function with
periodicity and continuity.

Thresholding H component is first studied by
Tseng et al. [8], Wu et al. [9], Dimov and Laskov [10] and Lai
and Paul [11]. Among them, Lai and Paul [11] had proposed
an efficient circular histogram thresholding based on Otsu’s
method [12] taking O(L) time, and applied this model on
optical flow data, indoor/outdoor image classification and
non-photorealistic rendering, where L is the number of the
histogram bins. One interest property of Otsu’s method
expressed by within-class variance on circular histogram
thresholding using linear statistic is proved.

This circular thresholding model had assumed that the dis-
tribution of circular histogram satisfying satisfies the Gaus-
sian distribution. However, not all the distributions of hues
can ideally satisfy the Gaussian distribution. Furthermore,
the color defined in the HSI color model is one of exam-
ples of data in cylindrical coordinates, and using Euclidean
distance may result in an inappropriate analysis of the sam-
ples [13]. Because the hue value forms a periodic distribution,
the Euclidean distance used in the existed circular threshold-
ing [11] may not obtain the meaningful data [13]. Also, the
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Otsu Criteria assumes the distributions of the two classes of
the histogram are Gaussian distribution, and the sizes of them
are nearly similar [14]–[16]. There exists a limitation of the
Otsu Criteria whether on the circular histogram or the linear
one.

In that case, the Otsu method used in literature [11] may
have the problem. In order to adapt gray-level thresholding
methods appropriately on this periodic distribution, we use
entropy thresholding on this circular thresholdingmodel [11].
The entropy method [17] has been used more frequently in
image segmentation, due to it is dependent only on the unifor-
mity of the samples rather than distribution of the histogram.
However, we found the entropy-based circular histogram
thresholding takes O(L2) time for binary thresholding.
However, In fact, the brute force search is used directly

on the existing model [11] in the entropy-based cir-
cular histogram thresholding taking O(L2) time (taking
O(L2) time) in single-threshold cases, and the complex-
ity of entropy thresholding on circular histogram would be
O(L2),O(L3), . . . ,O(Ln+1) for n level-threshold cases. The
complexity of this entropy-based circular thresholding is
too high, which cannot meet the real-time requirement in
Industrial Automation fields, Intelligence traffic systems, and
Machine Vision fields and so on. Therefore, in order to reduce
the complexity of entropy-based circular thresholding and
make it more adaptable to be extended to multi-thresholding
cases, we aim to break the circular histogram into the lin-
earized one and obtain the optimal threshold on that. In that
case, the complexity of entropy thresholding on the lin-
earized histogram expanded from the circular histogram now
takes O(2L) time in single-threshold case, and that would
be reduced to O(2L),O(L2), · · · ,O(Ln) for n level-threshold
cases, where L is the number of the histogram bins.

The circular histogram of H component is not usually
like the gray-scale linear one histogram with the fixed start-
ing point (0) and the terminal point (255). The difference
between two histograms is that the change of hue levels is
not equivalent to that of the gray levels using linear statistic.
Furthermore, the starting point of the circular histogram can
be at any position on that.

In order to effectively select the optimal breakpoint to
break the circular histogram, the Lorenz curve technique [18]
is introduced. Lorenz curve method has been proposed
by American statistician Lorenz in 1907 in economics to
study the distribution of national income among nationals.
Researchers have used Lorenz curve more frequently in ana-
lyzing the distribution uniformity of samples value [19]–[23].
Hence, considering the nice property of the Lorenz curve,
we will apply this method on entropy-based circular
thresholding.

The organizational structure of this paper is as follows.
The basis of the existed circular thresholding model is given
in Section 2. Section 3 describes the entropy method on
the existed circular thresholding model. Section 4 intro-
duces the theory for breaking the circular histogram based
on the Lorenz curve technique. The entropy method

FIGURE 1. Circular histogram thresholding based on Otsu method.

on the linearized histogram is described in Section 5.
Section 6 shows the experimental results and the analysis. See
section 7 for conclusions.

II. RESEARCH BASIS
Lai and Paul [11] had introduced an efficient method of using
binary thresholding on circular histogram taking O(L) time,
where L is the number of the histogram bins. The principle
of the Otsu-based circular histogram thresholding is shown
as Fig. 1.

Thresholding on circular histogram proposed in litera-
ture [11] is different from that on linear histogram case,
the former needs two thresholds (t1, t2) to partition the his-
togram into two portions as shown in Fig. 1. The first
threshold is used to select the appropriate starting point, and
the second one is to segment the two portions (t1..t2−1) and
(t2..t1−1).

The circular sum is defined as
◦∑t2
t=t1 :

◦∑t2

t=t1
=


∑t2

t=t1
if t1 ≤ t2∑L−1

t=t1
+

∑t2

t=1
if t1 > t2

(1)

The circular histogram {h(t)} satisfies
∑L−1

t=0 h(t) =
1(h(t) ≥ 0), t = 0, 1, . . . ,L − 1, we have the following
formula based on Otsu criteria:

The probability P0, meansµ0 and within-class variance σ 2
0

of portion 1 is defined as:

P0(t1, t2) =
◦∑t2−1

t=t1
h(t), (2)

µ0(t1, t2) =

◦∑t2−1
t=t1 th(t)

P0(t1, t2)
, (3)

σ 2
0 (t1, t2) =

◦∑t2−1
t=t1 h(t)(t

◦

−µ0(t1, t2))2

P0(t1, t2)
. (4)

The probability P1, meansµ1 and within-class variance σ 2
1

of portion 2 is defined as:

P1(t1, t2) =
◦∑t1−1

t=t2
h(t), (5)
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µ1(t1, t2) =

◦∑t2−1
t=t2 th(t)

P1(t1, t2)
, (6)

σ 2
1 (t1, t2) =

◦∑t1−1
t=t2 h(t)(t

◦

−µ0(t1, t2))2

P1(t1, t2)
. (7)

Probabilities P0 and P1 satisfies the relations:

P0(t1, t2)+ P1(t1, t2) =
◦∑t1−1

t=t1
h(t) =

∑L−1

t=0
h(t) = 1

and P0(t1, t2)µ0(t1, t2) + P1(t1, t2)µ1(t1, t2) = µT , where

µT =
◦∑t2−1
t=t1 th(t) +

◦∑t1−1
t=t2 th(t) =

∑L−1
t=0 th(t) is the total

means.
Lai and Paul [11] had demonstrated that the within-class

variance σ 2
W showed a better segmentation effect than that

of σ 2
B(σ

2
T 6= σ 2

W + σ
2
B on circular histogram). Lai et al. had

proved that the optimal search using σ 2
W can be only on t1

and t2 is obtained by |t2
◦

− t1| = L/2 (when L is even). This
optimal search of linear statistic takes O(L) time unlike the
brute force search of circular statistic taking O(L2) time.
So the within-class variance σ 2

W (t1, t2) is obtained:

σ 2
W (t1, t2) = P0(t1, t2)σ 2

0 (t1, t2)+ P1(t1, t2)σ
2
1 (t1, t2) (8)

=

◦∑t2

t=t1
h(t)(t

◦

−µ0(t1, t2))2

+

◦∑t1−1

t=t2+1
h(t)(t

◦

−µ1(t1, t2))2. (9)

The between-class variance σ 2
B is obtained as:

σ 2
B(t1, t2) = P0(t1, t2)µ2

0(t1, t2)+ P1(t1, t2)µ
2
1(t1, t2), (10)

We can see that σ 2
T 6= σ 2

W + σ
2
B on circular histogram,

where σ 2
T (t, t) =

◦∑t1−1
t=t1 (t − µT )

2 is the total variance.

For the convenience, the circular difference
◦

− denotes
a
◦

− b = (a − t1) mod L − (b − t1) mod L, p mod q gives
a non-negative integer that has the remainder as p divided by
q. The main idea of this circular calculation can be taken as
measuring the difference between two points after rotating
the histogram and then t1 becomes the first point on the
histogram.

The optimal thresholds (t∗1 , t
∗

2 ) are obtained by minimizing
the within-class variance σ 2

W (t1, t2) [11]:

(t∗1 , t
∗

2 ) = Arg min
0≤t1,t2≤L−1

σ 2
W (t1, t2), (11)

The processes of circular thresholding are [11]:
1) Denoting all possible starting points t1 = 0, 1, . . . ,

L − 1 on circular histogram.
2) Once a starting point t1 is selected, the optimal thresh-

old t2 is obtained by t2 = (t1 + L/2) mod L, where L
is even in this paper.

3) Select the optimal threshold values (t∗1 , t
∗

2 ) such that the
with-class variance σ 2

W (t1, t2) on circular histogram is
minimal.

This efficient circular thresholding model optimized the
binary thresholding (t1, t2) on circular histogram. The model

had equally divided histogram by the constrain |t2
◦

− t1| =
L/2(L is even) to reduce the complexity of binary threshold-
ing from O(L2) to O(L).
However, the thresholds (t∗1 , t

∗

2 ) selected by (11) may not
be the most optimal due to the complexity and periodic-
ity of the circular histogram. That is, because the constrain

|t2
◦

− t1| = L/2(L is even) may not be able to be extended to
general cases. That is, an equal division of the hue level on
circular histogram may not always be ideal [14]–[16].

The measurement using Euclidean distance is reasonable
for a data, which is sampled from an isotropic Gaussian
distribution. However, we cannot always obtain a good result
on circular histogram because the distribution of elements of
the hue data does not meet the isotropic Gaussian distribu-
tion [15]. In that case, considering the special distribution
of hue component in HSI color space, we adapt the entropy
thresholding to the existed circular thresholding [11]. The
entropy thresholding requires no Euclidean distancemeasure-
ment, and the distribution of the samples for thresholding is
not considered.

III. ENTROPY THRESHOLDING METHOD
In this section, we will briefly introduce the entropy thresh-
olding on linear histogram, and then we use this method on
circular histogram based on the existing circular thresholding
model [11].

A. TRADITIONAL ENTROPY THRESHOLDING METHOD
Entropy [17] based on information theory is a measurement
of the uncertainty of a random variable, and the entropy
is the larger, random variables are the more uncertain. The
maximum entropy thresholding method has been used more
frequently in image segmentation, and the uniformity of the
distribution is the only index.

This maximum entropy model is that when we need to
predict the probability distribution of a random event, our
prediction should meet all known conditions, and do not
make any subjective assumptions for the unknown situation.
It’s important not to make subjective assumptions. In this
case, the probability distribution is the most uniform and
the predicted risk is the least. The information entropy of
probability distribution now is the largest.

This measurement seems to be more global and also of
more general to need no any of the prior knowledge about
the picture other than the grey-level histogram itself.

Let G denotes the gray levels G = [0, 1, . . . ,L − 1] of a
2D image, and the histogram of the image be h(g). Thereby,
the entropy H (g) of the histogram is achieved as:

H (g) = −
L−1∑
g=0

h(g) log h(g). (12)

In the two-class case, the threshold is denoted as t to divide
the histogram into two portions C0(t) and C1(t).
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The first portion is C0(t) = {0, 1, . . . , t} and the second
one is C1(t) = {t + 1, t + 2, . . . ,L − 1}. The cumulative
probability of the two parts:

P0(t) =
t∑

g=0

h(g), (13)

P1(t) =
L−1∑
g=t+1

h(g). (14)

The entropy of the entire image objective functionHT (t) =
H0(t)+ H1(t) is obtained:

HT (t)=H0(t)+H1(t)

=−

t∑
g=0

h(g)
P0(t)

log
h(g)
P0(t)

−

L−1∑
g=t+1

h(g)
P1(t)

log
h(g)
P1(t)

.

(15)

Therefore, the optimal threshold t∗ of entropy threshold-
ing is:

t∗ = arg max
0<t<L−1

HT (t). (16)

Considering the good nature of the entropy Criteria,
we used the entropy method on the existed circular thresh-
olding model [11].

B. ENTROPY-BASED CIRCULAR HISTOGRAM
THRESHOLDING
In order to process the circular histogram with the periodic
distribution appropriately, we adapt the entropy thresholding
on circular histogram. However, the optimal search model of
|t2−

◦ t1| = L/2 (L is even) is not suitable for entropy thresh-
olding because it is obtained from Otsu Criteria [14]–[16].
Thereby, the brute force search now is used for binary thresh-
olding.

Therefore, based on the model of the Otsu-based circular
thresholding [11], the threshold t also divides the histogram
into two partitions (t1, t2 − 1) and (t2, t1 − 1). The first
threshold t1 is used to select the appropriate starting point,
and the second one t2 now is used to identify the position
where the entire entropy can achieve the maximum value.

The entropy H0(t1, t2) of the portion 1 is obtained as:

H0(t1, t2) = −
◦∑t2−1

t=t1

h(t)
P0(t1, t2)

log
h(t)

P0(t1, t2)
, (17)

The entropy H1(t1, t2) of the portion 2 is obtained as:

H1(t1, t2) = −
◦∑t1−1

t=t2

h(t)
P1(t1, t2)

log
h(t)

P1(t1, t2)
, (18)

where the P0(t1, t2) and P1(t1, t2) are the cumulative proba-
bility of the two portions same as formula (2) and (5).

The entropy of the entire image is

HT (t1, t2) = H0(t1, t2)+ H1(t1, t2).

So the optimal thresholds are obtained:

(t∗1 , t
∗

2 ) = arg max
0≤t1,t2≤L−1

HT (t1, t2). (19)

However, this model takes O(L2) time, so that this circular
thresholding model may lack the adaptability, where L is the
number of the histogram bins.

Hence, it is necessary to modify this circular thresholding
model and in order to reduce the complexity of entropy-based
circular thresholding, so we use a specific method to achieve
the linearized histogram based on the constrain that the new
linearized histogram maintains the original distribution.

IV. CIRCULAR HISTOGRAM’S LINEARIZING METHOD
In this section, we will firstly introduce the Lorenz curve and
give a theoretical explanation that the circular histogram can
be expanded into a linear histogram. Then, we propose our
method using Lorenz curve technique to select the optimal
breakpoint on circular histogram as the starting point of the
linearized histogram.

A. LORENZ CURVE
Lorenz curve has provided a new analysis method for wide
application and popularization, especially for image process-
ing in recent years. Kittler and Illingwotth [16] had mea-
sured the texture segmentation problems with Gini index.
Kapur et al. [17] hadmeasured the pixels homogeneity within
each segmented region by Gini index. Joseph et al. [18] have
calculated the diagnosis of a lung nodule in computerized
tomography images. The sparsity measurement of a network
graph based on the Gini index is proposed by Shih and
Liu [19]. Cote and Albu [20] had determined whether the
received image is changed by noise or artificial tampering
using Lorenz curve. Habba et al. [21] had proposed an image
contrast enhancement method by the uniformity reflected by
the Lorenz curve.

The uniformity of cumulative probability distribution
reflected by Lorenz curve is a highly effective way tomeasure
the changing trend of any algorithm.

Denoting {h(x)} (
∑
+∞

−∞
h(x)dx = 1, h(x) ≥ 0) as the

probability density representing the distribution of a sample
set {x}, (note that we only consider the x ≥ 0 situation).
Denoting P(x) as cumulative probability distribution of the

samples, where 0 ≤ P(x) ≤ 1, ∀a < b,P(a) ≤ P(b), so:

P(x) =
∫ x

0
h(t)dt, (20)

Lorenz curve is denoted as L(P(x)) is described as Fig. 2,
which is defined as the ratio of the sum of all sample values
that are less than x to all samples in a set, that is:

L(P(x)) =

∫ x
0 th(t)dt∫ 1
0 th(t)dt.

(21)

As Fig. 2 demonstrates that the radian of the curve is related
to the distribution of all sample values in the set. The greater
the difference between the distributions of sample values,
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FIGURE 2. Lorenz curve.

the greater the radian of the Lorenz curve. A line in red from
(0, 0) to (1, 1) in Fig. 2 shows the curve of zero radian with
the same values of all samples in a set. We can see that the
entire area of Fig. 2 is divided into three pieces S2+S3 = S1.

B. CRITERIA FOR BREAKING CIRCULAR HSITOGRAM
1) Breaking PRINCIPLE
In order to effectively select the breakpoint, we aim to select
one of the linearized histograms which can still maintain the
original distribution. In that case, the circular histogram’s
expansion is reasonable when the original distribution still
remains as described in Fig. 3. (Note that in Fig. 3, the hue
level has been quantized to 256 levels).

Considered the specific property of the dynamic starting
and the terminal point within the interval on circular his-
togram, the basic thought of the circular histogram’s expan-
sion is that we first one breakpoint is that the first breakpoint
t1 is selected on circular histogram, and then the broken
histogram is expanded into the linearized histogram with the
selected breakpoint t1 as the starting point (0).
Fig. 3 shows a circular histogram’s expansion process at

four random points, we can see that the four breakpoints 30,
50, 70, 100 are used as the starting point of the linearized
histogram. However, from Fig. 3(b), (c) and (d), we can
observe that different breakpoints on circular histogram can
break the original distribution into different distributions.
Among these four linearized histograms, Fig. 3(e) shows the
distribution similar to that of Fig. 3(a) with a small peak at
low level. Fig. 3(f) is the most ideal histogram that we aim to
obtain from the original histogram with the breakpoint t1 as
the starting point.

Therefore, there can be one appropriate breakpoint
within 256 positions to obtain the histogram most similar to
the original distribution as Fig. 3(a). Thereby, we can break
the circular histogram into the linearized one.

2) SELECTION BY AREA DIFFERENCE
Considering the good property of the Lorenz curve, we use
this curve to select the optimal histogram from all the
256 kinds256 kinds of histograms, most similar to the original
distribution on circular histogram from which most similar to
the original distribution on circular histogram. In this section,
we firstly use the Lorenz statistic on different 256 linearized
histograms, and then chose the histogram based on the opti-
mal area difference.

We extend this curve to H component of HSI color space.
Based on the linearized histogram with the breakpoint t1 in
ACW anti-clockwise (ACW) direction case as an example,
the Lorenz curve L(P) now is obtained as:

L(P(r, t1)) =

∫ r
t=0 th(t, t1)dt∫ 1
0 th(t, t1)dt

, (22)

and the cumulative probabilityP(r, t1) of the H component is:

P(r, t1) =
r∑
t=0

h(t, t1) (23)

where r = (t + t1) mod 256, t, t1 ∈ {0, 1, . . . ,L − 1}.
From Fig. 2 we can know the smaller the area S3 is, the

larger the area S2. If the curve is close to the dotted line,
the distribution of the cumulative probability of H component
is much evener.

The corresponding Lorenz curves to the linearized his-
tograms from Fig. 3 (b)-(e) are described in anti-clockwise
(ACW) ACW direction as shown in Fig. 4.

In order to identify the appropriate linearized histogram
in Fig. 2, we use the area difference parameter δ(P) to reflect
the change of the area, which is defined as:

δ(P) = |S2(P)− S3(P)|

= |S1(P)− 2 · S3(P)|. (24)

where S3(P) =
∫ 1
0 L(P)dP, S2(P) = S1− S3(P) . S1 is a fixed

constant 1/2.
We have seen from the (24) that the larger the δ(P) value,

the greater the difference between the area S2 and S3. In that
case, we calculate 256 area differences as Fig. 5. (Note that
in Fig. 2, the hue level has been quantized to 256 levels.)

Fig. 5 shows the different linearized histograms with three
different breakpoints (5, 57) on circular histogram. From
Fig. 5(a), the breakpoint t1 = 5 is the maximum point of
the area difference point, while t1 = 57 is the minimum
value of the area difference. We have seen that the Fig. 5(b) is
the most similar to the original distribution. Thereby, we can
break the circular histogram at the maximum value of the area
difference.

3) RELATION BETWEEN AREA DIFFERENCE
AND DIRECTIONS
Also, the expansion in CW clockwise (CW) direction case
and the relation between the area difference and the expansion
direction should be discussed.

In order to analyze the relation between area difference and
search direction, we have also calculated the area difference
in clockwise (CW) CW direction as shown in Fig. 6.

As shown in Fig. 6, the area difference δ in CW direction
varies with the change of the breakpoints, and the minimum
value corresponds to 160, while the maximum value to 180.
We have tested the histogram distribution state at the break-
point t1 = 160 as Fig. 6(b) shows. With the criteria that we
propose, the Fig. 6(b) can be the optimal expansion result in
CW direction.
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FIGURE 3. Circular histogram’s expansion at four positions. (a) Circular histogram. (b) t = 30. (c) t = 50. (d) t = 70. (e) t = 100. (f) ideal histogram.

FIGURE 4. Lorenz curve at four points in ACW direction. (a) t = 30. (b) t = 50. (c) t = 70. (d) t = 100.

FIGURE 5. The linearized histogram based on area difference in ACW direction. (a) area difference (b) linearized histogram at maximum threshold
5 (c) linearized histogram at minimum point 57.

Therefore, the expansion breakpoints t∗1ACW and t∗1CW of
the circular histogram in two directions are as follows:

t∗1ACW = arg max
0≤P≤1

δACW (P(t1ACW )), (25)

or in the CW direction:

t∗1CW = arg max
0≤P≤1

δCW (P(t1CW )). (26)

C. CIRCULAR HISTOGRAM LINEARIZING MODEL
In the expansion process, we found there are two different
directions for expansion. In that case, the hue value t =
0, 1, . . . , 255 (Note that we have quantized the hue levels to
256 levels) on circular histogram denotes searching in anti-
clockwise (ACW) direction. The clockwise (CW) direction
denotes the opposite situation.
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FIGURE 6. The linearized histogram based on area difference in CW
direction. (a) area difference (b) linearized histogram at 160 point.

The linearized histogram

{h(t1), h(t1 + 1), . . . , h(255), h(0), . . . , h(t1 − 1)}

satisfies
◦∑t1−1
t=t1 h(t) = 1(h(t) ≥ 0).

Denoting the linearized histogram of two different direc-
tions as hACW (t, t1) and hCW (t, t1). So:

hACW (t, t1) = h((t + t1) mod 256), (27)

hCW (t, t1) = h((256− (t − t1)) mod 256), (28)

where t1 is the breakpoint on circular histogram, t, t1 ∈
{0, 1, . . . ,L − 1}.
Therefore, the new linearized histograms in two different

directions are obtained as:

hACW (t, t∗1ACW ) = h((t + t∗1ACW ) mod 256), (29)

hCW (t, t∗1CW ) = h((256− (t − t∗1CW )) mod 256), (30)

V. ENTROPY THRESHOLDDING ALGORITHM ON
LINEARIZED CIRCULAR HISTOGRAM
In ACW direction case, based on this new linearized his-
togram (29), denoting the threshold as t2, the cumulative
probabilities of the two parts now is obtained as:

P0(t∗1ACW , t2) =
◦∑t2

t=0
hACW (t, t∗1ACW ), (31)

P1(t∗1ACW , t2) =
◦∑t∗1ACW−1

t=t2+1
hACW (t, t∗1ACW ). (32)

The entropy of the entire image objective function
HTACW (t∗1ACW , t2) = H0 (t∗1ACW , t2) + H1 (t∗1ACW , t2) is

FIGURE 7. Color images in Berkeley database. (a) Tower. (b) Owl. (c) Boat.
(d) Starfish. (e) Duck. (f) Women. (g) Horse. (h) Eagle. (i) Butterfly.
(j) Mask.

FIGURE 8. Color images in HSI color space. (a) Tower. (b) Owl. (c) Boat.
(d) Starfish. (e) Duck. (f) Women. (g) Horse. (h) Eagle. (i) Butterfly.
(j) Mask.

obtained:

HTACW (t∗1ACW , t2)

−

◦∑t2

t=0

hACW (t, t∗1ACW )

P0(t∗1ACW , t2)
log

hACW (t, t∗1ACW )

P0(t∗1ACW , t2)

−

◦∑t∗1ACW−1

t=t2+1

hACW (t, t∗1ACW )

P1(t∗1ACW , t2)
log

hACW (t, t∗1ACW )

P1(t∗1ACW , t2)
.

(33)

Therefore, the optimal threshold t∗2 is obtained as:

t∗2 (t
∗

1ACW ) = argmax
t2∈η

HTACW (t∗1ACW , t2). (34)

where η = {t∗1ACW , t
∗

1ACW + 1, . . . , 255, 0, . . . , t∗1ACW − 1}.
As for CW direction case, the optimal threshold t∗2 is:

t∗2 (t
∗

1CW ) = argmax
t2∈γ

HTCW (t∗1CW , t2). (35)

where γ = {t∗1CW , t
∗

1CW − 1, . . . , 0, 255, . . . , t∗1ACW + 1}.
The process of entropy thresholding on linearized his-

togram in ACW direction is described as follows:
1) Transferring the images in RGB color space into HSI

color space and obtaining the circular histogram h(t) of
H component.

2) Denoting the breakpoint t1 = 0, 1, . . . ,L − 1 on
circular histogram and breaking the circular histogram
at all the breakpoints into the linearized histogram
hACW (t, t1) (27).

3) Once a starting point t1 is selected, using the index of
area difference δ(P) (24) in Lorenz curve to evaluate
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FIGURE 9. The flow chart of the experimental process.

FIGURE 10. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (CW). (g) Lorenz
entropy thresholding (CW). (h) Lorenz Otsu thresholding (ACW). (i) Lorenz
entropy thresholding (ACW).

all the 256 linearized histograms, and then choose the
optimal histogram hACW (t, t∗1ACW ) (29), satisfying the
maximum area difference index.

4) Using entropy thresholding method on the selected
optimal histogram hACW (t, t∗1ACW ) to obtain the
entropic threshold t∗2 (t

∗

1ACW ) (34), and finally segment-
ing the H component.

Similarly, the major process of entropy thresholding on
linearized histogram in CW direction is almost the same as
that of entropy thresholding on linearized histogram in ACW
direction. However, the differences between two processes
are in Step 2 and Step3. The linearized histogram hCW (t, t1)
(28) would be the opposite of that in ACW direction case in
Step 2, and the breakpoint t1 searches the CWdirection. Also,

FIGURE 11. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (CW). (g) Lorenz
entropy thresholding (CW). (h) Lorenz Otsu thresholding (ACW). (i) Lorenz
entropy thresholding (ACW).

the optimal index of area difference δ(P) in Lorenz curve
selects the minimum value to obtain the optimal histogram
hCW (t, t∗1CW ) (30). Finally, we obtain the optimal entropic
threshold t∗2 (t

∗

1CW ) (35) in CW direction case.

VI. EXPERIMENT RESULTS AND ANALYSIS
In order to evaluate the performance of our proposed meth-
ods, all the experiments are simulated on PC with Matlab
(2014 version) on H component.

The experiments have been designed to contain circular
histogram thresholding models of two types: Otsu-based cir-
cular thresholding by within-class variance (11), entropy-
based circular thresholding (19), Lorenz curve-based entropy
linear thresholding in ACW direction (34), and that in CW
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FIGURE 12. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (CW). (g) Lorenz
entropy thresholding (CW). (h) Lorenz Otsu thresholding (ACW). (i) Lorenz
entropy thresholding (ACW).

direction (35). It is shown that the Lorenz curve-based
entropy linear thresholding can obtain better segmentation
result. As compared, we also test the Lorenz curve-based
linear thresholding with Otsu method.

The experimental data is contained in Fig. 7 and Fig. 8.
Fig. 7(a)-(j) is the color images in RGB color space from
the Berkeley database. Fig. 8(a)-(j) are the exhibitions
in HSI color space, which have different periodic distri-
butions. For the convenience, the following experiments
Otsu-based circular thresholding by within-class variance,
entropy-based circular thresholding, Lorenz curve-based
Otsu linear thresholding, Lorenz curve-based entropy linear
thresholding and are simply noted as Otsu circular thresh-
olding, entropy circular thresholding, Lorenz Otsu thresh-
olding (ACW or CW) and Lorenz entropy thresholding
(ACW or CW).

The whole experimental process is shown as Fig. 9:
As we can see from Fig. 10 (a), the circular histogram

shows the bimodal distribution with a little difference
between the two classes. The optimal breakpoint is supposed
to lie at the left side of the small peak, so the threshold
would be selected in the middle of the two peaks. In this
case, the Otsu method can be applied to this histogram type

FIGURE 13. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (CW). (g) Lorenz
entropy thresholding (CW). (h) Lorenz Otsu thresholding (ACW). (i) Lorenz
entropy thresholding (ACW).

with little difference of the segmentation result to that of the
entropy thresholding.

Comparing with the results of Fig. 10(d)-(i), the entropy-
based results from Fig. 10(e) and Fig. 10(i) show the better
effect.

From Fig. 11 (a), we can see that the hues’ distribution
is close to unimodal where the Otsu method is not suitable
for thresholding on this histogram type. The entropy-based
method shows better adaptability. The optimal breakpoint
is not supposed to destroy the original distribution of the
circular histogram.

From Fig. 11(d), (f) and (h), we can know that the results of
Otsu-based method cannot segment the hues appropriately.

We have seen from Fig. 12 (a), the circular histogram is
close to the bimodal, however, the distribution of the two
classes shows a lot of difference. This distribution may not
be appropriate for using the Otsu method.

Fig. 12 (d) and (e) have shown that the segmentation result
of entropy circular thresholding is better that of the Otsu
circular thresholding. That shows the good properties of the
entropy method. From Fig. 12(i), the Lorenz entropy thresh-
olding (ACW) had obtained the best segmentation result.

As shown in Fig. 13 (a), the circular histogram has two
clear peaks with the difference. Fig. 13(d), (f) and (h) all show
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FIGURE 14. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (CW). (g) Lorenz
entropy thresholding (CW). (h) Lorenz Otsu thresholding (ACW). (i) Lorenz
entropy thresholding (ACW).

that the Otsu method is not suitable for thresholding on the
distribution with large difference, and demonstrates that the
proposed method can maintain the original distribution. The
threshold selected by the Otsu method may bias the larger
one.

We can observe intuitively from Fig. 14(a) that the his-
togram is bimodal that the two classes have large differences.
In this case, from Fig. 14(d) and (e), entropy thresholding
can obtain the better segmentation effect than that of the Otsu
method.

From Fig. 14(i) we can know that Lorenz entropy thresh-
olding (ACW) segmented the target most clearly. The Otsu-
based method from Fig. 14(d), (f) and (h) show low
effectiveness.

The histogram in Fig. 15(a) is shown as unimodal, and
the threshold selected by Otsu method may be in the middle
section of the peak. From Fig. 15(d) and (e), the segmentation
result by the Otsu-based method cannot isolate the target.
Fig. 15(i) demonstrates that the result by Lorenz entropy
thresholding can obtain a better result than that of entropy
circular thresholding.

From Fig. 16(a), we can see that this circular histogram of
Fig. 8(g) is nearly bimodal distribution. The optimal threshold

FIGURE 15. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (CW). (g) Lorenz
entropy thresholding (CW). (h) Lorenz Otsu thresholding (ACW). (i) Lorenz
entropy thresholding (ACW).

is supposed to be at the valley between the two peaks, and the
breakpoint should be at any point except the peaks. Therefore,
the Otsu method may be well used in it from Fig. 16(d),
with little difference between Fig. 16(e). We can see from
Fig. 16(h) and (i), the Otsu-based method can obtain a better
result in this bimodal case.

Fig. 17 (a) shows the unimodal case of the histogram, and
we can see from Fig. 17(d) that the Otsu method cannot
segment the target correctly. Fig. 17 (f) had corrected the
effect of the Otsu method to some extent. Fig. 17(g) had
demonstrated the better adaptability of the entropy method.

We can see from Fig. 18(i), the number of the pixels of the
two classes is not similar, and two classes of the histogram
show unequal variance. In that case, the Otsu method may
not segment the target appropriately. From Fig. 18(e), we can
see that the entropy thresholding can be applied on this case.
Fig. 18(i) shows the best segmentation result.

Fig. 19 (a) shows that the unimodal histogram of hue
values. In the comparison of Fig. 19 (d) and Fig. 19 (e), the
entropy-based method can modify the segmentation result of
that in Otsu thresholding. Fig. 19 (i) shows the best result of
the Lorenz entropy thresholding method (ACW).
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FIGURE 16. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (CW). (g) Lorenz
entropy thresholding (CW). (h) Lorenz Otsu thresholding (ACW). (i) Lorenz
entropy thresholding (ACW).

All the segmentation results from Fig. 10-Fig.19 demon-
strates that the entropy method can be well applied to the var-
ious distributions of the circular histogram. Lorenz entropy
thresholding can be more adaptable. Also, images (f) and (g)
from Fig.10-Fig. 19 had shown the low effect of the Lorenz
curve-based thresholding method in CW direction.

In order to evaluate the effectiveness of the proposed
method, considering the poor results of the methods in CW
direction, we only use the evaluation indexes [24] of image
segmentation to evaluate the segmentation results in ACW
direction.

Table 1 respectively shows the average value of speed,
pixel accuracy (PA) value [25] and structural similarity
(SSIM) value [26] of all the segmentation results of four
thresholding methods in ACW direction.

We can see from Table 1, Lorenz entropy thresholding
had the highest PA and SSIM value. Based on these two
indexes, Otsu circular thresholding may have the problems
in segmenting hues value. However, the entropy method can
modify the segmentation effect of the Otsu-based method on
hues.

Fig. 20 depicts the Precision-recall curve [27] for the seg-
mented images of the 10 images. The graph vividly describes

FIGURE 17. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (CW). (g) Lorenz
entropy thresholding (CW). (h) Lorenz Otsu thresholding (ACW). (i) Lorenz
entropy thresholding (ACW).

TABLE 1. Evaluation tests for various segmentation methods (ACW
direction).

the high effectiveness of the proposed method than that of
other methods.

Fig. 21 describes the average value of segmentation speed
for the segmented images of the 10 images. We can see that
the Otsu-based method shows higher segmentation efficiency
taking less time from method 1 and method 3. However,
compared with the Otsu-based methods, the entropy-based
methods take a longer time. From Fig. 21 shows the method
4 takes less time than that of method 2, that is, the proposed
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FIGURE 18. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (CW). (g) Lorenz
entropy thresholding (CW). (h) Lorenz Otsu thresholding (ACW). (i) Lorenz
entropy thresholding (ACW).

method has indeed reduced the complexity of entropy circular
thresholding.

Fig. 22 shows that the segmentation results by two normal
gray-level thresholding methods (Otsu and max entropy) on
saturation and intensity value in HSI color space. However,
Fig. 22(e)-Fig. 22(h) indicates that the poor segmentation per-
formance on these two components whether by two different
thresholding methods. Fig. 22(j) appears to have the better
result in entropy thresholding on saturation component. From
the above experiment, we can see that the two other compo-
nents in HSI color space may not be considered as the single
component for segmenting the color image. The thresholding
methods can be used on both these three components sepa-
rately, however, the three components converted from RGB
color space may not be all considered as the representative of
image information and the transformation process may have
the significant change, which cause the unbalance among H,
S and I components. Saturation is the measurement of how
the hues are diluted in white light; Intensity is the brightness
of the color information. In that case, using saturation and
intensity component to be as the segmentation indexmay lead
to the inappropriate results. Fig. 22(i)-Fig. 22(l) demonstrate
the better results than that of Fig. 22(e)-Fig. 22(h).

FIGURE 19. (a) circular histogram. (b) linearized histogram (ACW).
(c) linearized histogram (CW). (d) Otsu circular thresholding (e) entropy
circular thresholding. (f) Lorenz Otsu thresholding (ACW). (g) Lorenz
entropy thresholding (ACW). (h) Lorenz Otsu thresholding (CW). (i) Lorenz
entropy thresholding (CW).

FIGURE 20. Precision-recall curves of segmented images obtained by
different segmentation methods.

Besides, these three components (hue, saturation and inten-
sity) cannot be merged either due to the high irrelevant rela-
tion. In that case, this paper only utilizes the hue component,
which describes a pure color, and this component can rep-
resent the whole color information and can be well used in
achieving color information.

This paper has introduced a novel model of circular thresh-
olding. In order to reduce the complexity of binary thresh-
olding on circular histogram, unlike the efficient circular
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FIGURE 21. Speed of segmented images obtained by different
segmentation methods.

FIGURE 22. Segmentation results. (a) Saturation. (b) Intensity.
(c) Saturation. (d) Intensity. (e) Saturation Otsu thresholding.
(f) Saturation entropy thresholding. (g) Intensity Otsu thresholding.
(h) Intensity entropy thresholding. (i) Saturation Otsu
thresholding. (j) Saturation entropy thresholding. (k) Intensity Otsu
thresholding. (l) Intensity entropy thresholding.

thresholding in literature [11], the optimal breakpoint on
circular histogram is selected before the circular calcula-
tion to expand the circular histogram into the linearized
histogram most similar to the original distribution. In that
case, the Lorenz curve technique is utilized to measure the
uniformity of all the linearized histograms (expanded from
the circular histogram in two different directions), and then
obtain the corresponding optimal breakpoint when only the
linearized histogram satisfies the optimal index of Lorenz
curve. All the experimental data demonstrate that the pro-
posed method can achieve the better result, and actually
reduced the complexity of binary thresholding in entropy-
based circular thresholding. However, this proposed method
has not been extended to the multi-threshold case, in that
case, in future work we will modify the proposed method to
extend to themulti-threshold case. Also, in order to reduce the
complexity in the multi-threshold case to meet the real-time
requirement, one of the automatic threshold selection meth-
ods, literature [28] shows a fast automatic optimal threshold
selection technique with major practical application, and this

technique may be referred into the proposed method in the
paper in future work.

VII. CONCLUSION
This paper presents a new method to solve the problem of
the existing circular histogram thresholding, from which the
proposed method gives a solution of thresholding on circular
histogram of hues. Based on Lorenz curve technique and
the unique periodic distribution of H component, the circular
histogram is expanded with the optimal breakpoint as the
starting point and we can obtain the optimal segmentation
threshold by entropy method. The experimental results of the
Lorenz entropy thresholding method proposed in this paper
are better than other methods.
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