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ABSTRACT Lane-changing (LC) is a critical task for autonomous driving, especially in complex dynamic
environments. Numerous automatic LC algorithms have been proposed. This topic, however, has not been
sufficiently addressed in existing on-road manoeuvre decision methods. Therefore, this paper presents a
novel LC decision (LCD) model that gives autonomous vehicles the ability to make human-like decisions.
This method combines a deep autoencoder (DAE) network with the XGBoost algorithm. First, a DAE is
utilized to build a robust multivariate reconstruction model using time series data from multiple sensors;
then, the reconstruction error of the DAE trained with normal data is analysed for LC identification (LCI)
and training data extraction. Then, to address the multi-parametric and nonlinear problem of the autonomous
LC decision-making process, an XGBoost algorithm with Bayesian parameter optimization is adopted.
Meanwhile, to fully train our learning model with large-scale datasets, we proposed an online training
strategy that updates the model parameters with data batches. The experimental results illustrate that the
DAE-based LCI model is able to accurately identify the LC behaviour of vehicles. Furthermore, with the
same input features, the proposed XGBoost-based LCD model achieves better performance than other
popular approaches. Moreover, a simulation experiment is performed to verify the effectiveness of the
decision model.

INDEX TERMS Autonomous vehicle, lane-changing identification, lane-changing decision-making, deep
autoencoder network, XGBoost.

I. INTRODUCTION
Autonomous driving, which is an emerging and rapidly grow-
ing field, exhibits enormous potential to improve driving
safety and transportation system efficiency and is the future
direction for the development of vehicles [1]–[3]. The driving
decision-making system is the key technology for ensuring
the driving safety of autonomous vehicles (AVs), and the
lane changing decision is a significant part of the research in
this area [4]–[6]. Lane-changing (LC), which is a complex
and potentially dangerous driving behaviour, significantly
impacts the traffic capacity and road safety. According to
research data from the US National Highway Traffic Safety
Administration, traffic accidents caused by lane changing
accounted for 27% of all traffic accidents [7]. Recently,
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human-like decision-making has become a popular topic
in autonomous driving systems research. Although the fast
development of depth sensors and machine learning methods
have given a considerable boost to the self-driving research,
making high-level LC decisions that conform to social norms
is difficult, especially when vehicles are driving in complex
dynamic environments [8], [9]. Therefore, this work mainly
focuses on LC analyses.

An intelligent vehicle’s monitoring and sensor system cap-
tures the parameters (e.g., location, velocity, acceleration,
etc.) from its surrounding traffic participants and objects and
performs remote or local monitoring. The system can change
signals quickly and has numerous operating parameters. The
motion characteristics of the vehicle are embedded in the
motion variables that represent its operating state. Thus,
the vehicle LC identification (LCI) and LC decision (LCD)
can be studied by mining the information existing in the
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vehicle’s historical motion data. Over the years, researchers
have conducted extensive investigations to identify intelligent
vehicle LC behaviour; for example, Moridpour et al. [10]
proposed an LCD model and provided judgement criteria for
the start and end points of an LC task.Wang et al. [11] studied
the characteristics of various LC behaviours and designed a
model to assess vehicle driving behaviours through lateral
velocity. Additionally, Yang et al. [12] derived the mapping
relationship between the vehicle driving state and the driving
trajectory based on vehicle steering kinematics and then used
a support vector machine (SVM) linear classifier to analyse
the vehicle body transfer angle and maximum steering angle
given by a moving direction vector model. Because deep neu-
ral networks (DNNs) have high learning abilities [13]–[16],
Wang et al. [17] demonstrated that DNNs have the highest
level of precision compared to other algorithms and are more
suitable for detecting state changes through comparison using
support vector regression (SVR) and shallow artificial neural
networks (ANNs). Chen et al. [18] presented a procedure for
selecting the key features and predicting the risks associated
with a vehicle’s LC behaviour, in which fault tree analysis,
a k-means clustering algorithm and a random forest (RF)
classifier were employed to model the LC process. Because
of the correlations and coupling that occur among an AV’s
variables, using a deep learning method to mine the embed-
ded information from the variables can significantly improve
the LC behaviour identification performance.

The above studies mainly focus on detecting the LC
behaviours of vehicles, but do not further assess the vehi-
cle LC decision-making process. The earliest research study
on the LC decision-making process, which mainly analysed
the benefits, safety, and necessity of LC behaviours, was
proposed by Gipps [19] in 1986. Based on Gipps’ model,
Yang and Koutsopoulos [20] considered the probability of
lane changes and introduced random error. Hidas [21] clas-
sified LC behaviours into three categories, i.e., free, coopera-
tive, and forced LC behaviours. Monteil et al. [22] introduced
the state information of multiple preceding vehicles and
developed an LCD framework that integrated a full velocity
difference model (FVDM) with a general model (minimizing
overall braking induced by lane changes,MOBIL).Moreover,
Toledo et al. [23] used the acceptable gap model to study LC
behaviour. Basically, most of the above models are based on
the thought process of the driver. The weakness of these mod-
els is that it is difficult to accurately capture some potential
decision-making modes and factors considered by the driver
in the decision-making process. In recent years, with the
development of artificial intelligence, many researchers have
attempted to improve the accuracy of vehicle LCD models
through machine learning and deep learning. Hou et al. [24]
investigated two ensemble learning methods, i.e., RF and
AdaBoost, to develop an LC assistance system. Qiu et al. [25]
used a segmented discrete method to pre-process the vehi-
cle trajectory measurement data and then established a
Bayesian network (BN)-based LCD model. Most recently,
Liu et al. [26] suggested that combining an SVM and a

Bayesian optimization algorithm (BOA) could improve the
performance of the decision-making system. Nie et al. [27]
analysed the influence of a speed advantage and a space
advantage on lane changes scenarios and designed a decision-
making framework based on intention triggering and fea-
sibility assessment. Xu et al. [28] proposed a fusion LCD
model based on a gradient boosting decision tree (GBDT)
and compared the effects of different features on the decision
results. The XGBoost algorithm, which is based on the boost-
ing tree, further improves the loss function, regularization and
parallelization processes and exhibits excellent classification
performance, which can effectively improve the precision of
the LCD model [29]–[31].

At present, a number of LCI and LCD models have been
proposed to improve the AVs’ LC behaviour identification
ability and LC decision-making ability, however, the existing
approaches are very preliminary. Therefore, this study seeks
to establish a novel LCD model for AVs by introducing
deep learning and machine learning methods, thus improving
the existing research and addressing the existing problems
in LC behaviour identification and LC decision making for
AVs. The main contributions of our work are summarized as
follows:

1) We introduce the deep autoencoder (DAE) network to
capture nonlinear correlations in the multivariate sen-
sor data while providing a robust signal reconstruction.
By analysing the trends in reconstruction errors and the
situations in which a threshold is exceeded, the driving
behaviours of vehicles can be identified. In addition,
an adaptive threshold is adopted to improve the reli-
ability of the recognition results and the robustness of
the model. To the best of our knowledge, this is the first
study to leverage DAE for LC behaviour identification
applications in AVs.

2) To address the multi-parameter and nonlinear prob-
lems in the autonomous LC decision-making process,
we propose a novel LCD model based on XGBoost
and apply the Bayesian optimization algorithm to
identify the optimal hyperparameters of XGBoost.
A data extraction scheme for LCD based on the opti-
mal time window is also proposed. The experimental
results illustrate that a better human-like performance
is achieved through our approach than through the
previous approaches.

3) An online model rolling update strategy is proposed to
guarantee the model prediction accuracy. The update
strategy integrates the LCI and LCD modules. Specif-
ically, the online model is obtained by updating the
identified historical model with new samples collected
by the DAE-based LCI algorithm, which enables the
XGBoost-based LCD model to be fully trained with
large-scale datasets and further improves the perfor-
mance of the decision systems.

The remainder of this paper is organized as follows.
In Section II, the LC behaviour identification and
LC decision-making processes of AVs are analysed.
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In Section III, a DAE-based LCI model and an XGBoost-
based LCD model are established. In Section IV, the parame-
ters of the DAE and XGBoost models are optimized, and the
models are trained. In Section V, the simulation results and
analyses are presented. In Section VI, this study is concluded.

II. VEHICLE LC ANALYSIS
A. VEHICLE LCI ANALYSIS
The LC process is divided into two phases based on the
characteristics of free LC behaviours and the research objec-
tive. The first phase is the LC decision-making stage, which
is the process that occurs between the driver’s intention to
change lanes and the implementation of an LC behaviour.
The second phase is the LC execution stage, during which
the vehicle starts tomove towards the target lane continuously
and horizontally until the continuous lateral movement of the
vehicle ends.

The general purpose of the LC execution control algorithm
is to divide the LC trajectory planning problem into the
following two modules: longitudinal trajectory planning and
lateral trajectory planning [32]. The control algorithm con-
sists of the following five steps: 1) determine the acceptable
inter-vehicle gap and time at which the manoeuvre should
be performed; 2) determine the longitudinal safety channel
corridor; 3) plan the longitudinal trajectory (e.g., x, vx , ax);
4) determine the lateral safety corridor; and 5) plan the lateral
trajectory (e.g., y, vy, ay). A simplified schematic diagram of
the intelligent vehicle LC control system is shown in Figure 1.
The algorithm is based on the following assumptions:

A1 The ego vehicle (E) is equipped with a sensor system,
that can monitor the motion state and position (e.g.,
x, vx , ax , y, vy, ay) of E and the relative positions
and motion states (e.g., xsj, vsj, ysj, vsj, road) of the
surrounding traffic participants and objects;

A2 E is equipped with a prediction system that estimates
the trajectory of the surrounding traffic participants and
objects over time;

A3 E is equipped with a control system used to track the
planned trajectory;

A4 E is equipped with a decision-making system that pro-
vides the required manoeuvring commands.

FIGURE 1. Schematic architecture of the LC manoeuvre system for
intelligent vehicles.

Based on the LC direction, an LC can be considered one
of two types, i.e., a ‘‘left-to-right LC’’ or a ‘‘right-to-left
LC’’ [33]. Taking a right-to-left LC as an example, the LC

FIGURE 2. Schematic diagram of LC process phase division.

process on a straight road is illustrated in Figure 2. Where E
is the ego vehicle, P, R, TP, and TR are the preceding vehicle
in the original lane, the rear vehicle in the original lane, the
preceding vehicle in the target lane, and the rear vehicle in the
target lane, respectively. Regarding the interaction between
the car and the road, the distances (dR and dL) between the ego
vehicle and the left and right lane lines will change according
to certain rules during the LC process, and these changes
directly reflect the changes in the driving behaviour of the
vehicle.

From the perspective of the road structure, most road sec-
tions have a certain degree of curvature. Taking a right-to-
left LC on a right-turn road scenario as an example, the LC
process is shown in Figure 3. Compared with straight road
scenarios, curved road sections have road curvatures, so the
curvature needs to be measured first. In this study, the fol-
lowing methods are used to measure road curvatures online
during vehicle driving, as defined in (1).

C =
ω

v
=

1
R

(1)

FIGURE 3. Schematic diagram of an LC in a curved road scenario.

where C is the curvature of the road, v is the velocity of
the vehicle moving around the circumference, ω is the yaw
angular velocity measured by a vehicle-mounted gyroscope,
and R is the radius of the road curvature; v = Rβ/t , where t
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is the time and β is the centre angle of the vehicle passing the
arc length at time t .
The motion of the vehicles satisfies the kinematic and

dynamic laws. Therefore, the historical motion state of the
vehicle can be used to infer its possible future state [12], [18],
[34]–[36]. Based on the above analysis of the road structure in
straight and curved sections, the distances dL and dR between
the ego vehicle and the left and right lanes, respectively,
vehicle speed vx , acceleration ax , lateral velocity vy, lateral
acceleration ay, yaw angular velocity ω, and yaw angle ϕ
are utilized as the input features in the prediction model to
identify the vehicle driving behaviours, determine the start
and end time points of an LC and extract the decision-making
data.

B. VEHICLE LCD ANALYSIS
The driver’s decision-making behaviour in the stage in which
the LC intention is generated is a comprehensive cognitive
process that integrates the driver’s environmental perceptions,
analyses, judgements, and decision-making processes. The
driver’s decision-making behaviour is also a comprehensive
reflection of the ‘‘driver-vehicle-road’’ interaction. In this
work, the external factors affecting vehicle lane changes
under expressway conditions are divided into the following
categories: 1) physics-based features, 2) interaction-aware
features, and 3) road structure-based features. The physics-
based features mainly relate to the motion states (e.g., loca-
tion, velocity, acceleration, etc.) of the surrounding vehicles.
The interaction-aware features indicate how the vehicle’s
movements are affected by traffic interactions. To avoid col-
liding with the surrounding vehicles during an LC, the dis-
tances between the ego vehicle and the surrounding vehicles
must be considered, and the trajectory of the surrounding
vehicles must be predicted while the correlation between
the vehicles is analysed. The road structure-based features
mainly include the road topologies, road signs, and traffic
rules.

The work presented in [37] defines the vehicle LC execu-
tion process as follows: the ego vehicle takes the adjacent gap
in the target lane as the acceptable gap and enters the target
gap through a lateral movement. After the characteristics and
influencing factors of a vehicle’s free LC behaviours on the
expressway are analysed, ego vehicle E and the other three
vehicles closely related to the LC behaviours, i.e., the current
lane preceding vehicle P, target preceding vehicle TP, and
target lane rear vehicle TR, are collectively regarded as a
driving unit (the four vehicles), as shown in Figure 4.

As it is a microscopic traffic behaviour, vehicle LC is
closely related to the surrounding traffic environment. Fig-
ure 4 shows that ego vehicle E’s LC decision is affected by
the surrounding vehicles (i.e., P, TP, and TR), but how these
vehicles affect the ego vehicle in making the LCD requires
further research. Gipps’ LC model considers the following
three main factors influencing the LC decision-making pro-
cess: benefit factors, safety condition and necessity degree.

FIGURE 4. Schematic diagram of an LCD scenario. VE , VTR , VTP , and
VP – the longitudinal velocity of E , TR, TP, and P , respectively; GTR , GTP ,
GP – the longitudinal gap distance between E and TR, TP, P , respectively.

Therefore, free lane changes are analysed in this study from
the aspects of the benefits, safety, and necessity.

1) LANE CHANGE BENEFIT
In a multi-lane environment, a driver’s LCDs are to improve
the driving speed or to obtain greater space ahead of the
vehicle [38].When the speed of an adjacent preceding vehicle
in the current lane is low and the ego vehicle cannot reach
the ideal speed for a long time, an LC motive occurs. Thus,
the speed benefit can be expressed as follows:

vbenefit = min(videal − vP, vTP − vP) (2)

where videal represents the optimal driving speed of the vehi-
cle under this condition. The factors directly causing the
driver to generate an LCmotivemainly come from the driving
state and the spatial relationship between the ego vehicle and
the surrounding vehicles. When the distance between the ego
vehicle E and the preceding vehicle P of the current lane is
small, the ego vehicle aims to obtain more space by perform-
ing an LC. Thus, the distance benefit can be expressed as
follows:

Gbenefit = GTP − GP (3)

Thus, the driving benefit model can be established as follows:

fbenefit = f (vbenefit,Gbenefit) (4)

2) SAFETY
To avoid a collisionwith the rear vehicle in the target lane dur-
ing an LC, the safe distance between the ego vehicle and the
rear vehicle in the target lane must be considered in judging
the feasibility of an LC. This factor is essentially a component
of the driver’s spatial perception. Obviously, a larger gap and
faster relative speed between E and TR lead to a safer LC
process. In addition, lane changes require a minimum safety
gap. Thus, the safety model can be established as follows:

fsafety =

{
−∞, TR < GTRmin

f (GTR,1vTR), GTR ≥ GTRmin
(5)

where GTRmin is the minimum safety gap between E and TR,
which must satisfy GTRmin > 0. 1vTR is the relative speed
of the ego vehicle E and the target lane rear vehicle TR, and
1vTR = vE − vTR.
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3) NECESSITY
The above analysis indicates that the decision variables of
the internal operation’s state transition are the driving factors
of an LC, and the feasibility conditions are the constraints
of an LC. However, if an LC is performed whenever the
two conditions are satisfied, it might cause the AV to fre-
quently change lanes. Therefore, a necessity model must be
established. When the distance between E and P is quite
large, the ego vehicle will follow the leading vehicle P in
the adaptive cruise control (ACC) mode. The ideal following
distance is determined by the speed and time headway. Thus,
the necessity model can be established as follows:

fnecessity = f (GP − vE · tTHW ) (6)

where tTHW is the time headway and tTHW > 0. However,
LC decision-making is a multi-parameter and nonlinear prob-
lem for which a rule-based mathematical model is difficult to
establish. Therefore, the LCD model of the vehicle should be
expressed as follows:

fdecision = f (vincome,GTP − GP,GTR, vE − vTR,

GP − vE · tTHW ) (7)

To deal with the abovementioned problems, we propose a
novel LCD model for AVs based on a DAE and XGBoost.
First, a DAE is utilized to monitor the vehicle’s driving
behaviours online and to collect new samples in real time.
Then, a human-like LCD method based on an optimized
XGBoost is proposed to address the multi-parameter and
nonlinear problems in the AVs’ LC decision-making process.
In parallel, the new independent samples are applied to update
the XGBoost-based LCD model. Thus, the model has an
adaptive online update capability, which further enhances its
robustness and generalization. The schematic of the proposed
method in this paper is shown in Figure 5.

FIGURE 5. Schematic of the proposed method in the paper.

III. REFERENCE MODEL LEARNING
A. DAE ALGORITHM
At present, the emerging machine learning and deep learn-
ing methods provide us with new approaches to deal with
the LCD problem. However, the analytical or data-driven
research on LCD still has limitations, which are probably
caused by the difficulties in collecting large-scale LCD data.

Therefore, in this section, we present a deep learning-based
LCI model to collect training data to enable the LCD model
to be fully trained with a large-scale dataset.

The starting point of an LC executed by drivers is usually
the starting point of a trajectory change. The most accurate
method for determining the starting point is to calibrate the
position at which the change occurs according to each trajec-
tory. However, such data processing is cumbersome, and it
is difficult to obtain a large amount of LC data for machine
learning model training. Therefore, we propose a DAE-based
LCI model to identify the LC behaviour of the vehicle and
automatically extract the training data in real time. A DAE
consists of several restricted Boltzmann machines (RBM)
[39], [40]. An RBM is an undirected graph model consisting
of a visible layer and a hidden layer. No internal connections
exist between the units in the layer, and the layers of the units
are externally connected. In this study, a standard RBM with
a neuron value of 0 or 1 is used to construct the DAE.

The output of each lower-level RBM in the DAE is used
as the input of the higher-level RBM to realize a layer-by-
layer transmission of network learning and deep mining of
the feature information [41]. Figure 6 shows that the deep
autoencoder network includes an encoding process and a
decoding process. The encoding process obtains the output
value (Y ) or encoding result, which is abstract and has a
characteristic representation ability; the decoding process is
the inverse of the encoding process, and the data stream is
transferred back to obtain the reconstructed value (X̂). The
reconstructed value is similar to the vehicle motion state
estimate, which has the same physical meaning as the input
value.

FIGURE 6. The layer-wise learning process of the DAE model.

The DAE model is trained by selecting the system data
related to the long-term lane-keeping (LK) state of the vehi-
cle. X t is the motion state dataset associated with the vehicle
at time t , which is generalized as follows:

X t = [xt,1, xt,2, · · · , xt,n, · · · , xt,m] (8)

where xt,n is the value of the n-th variable in the dataset of
the state of the automobile at time t and m is the number of
variables in the state dataset.
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The reconstructed value (X̂ t ) of the DAE network output
is expressed as follows:

X̂ t = [x̂t,1, x̂t,2, · · · , x̂t,n, · · · , x̂t,m] (9)

where x̂t,n is the reconstructed value of the n-th variable at
time t in the motion state dataset of the vehicle.

The reconstruction error (γRE) of the original input and the
reconstructed value at time t are defined as the Euclidean
norm of the difference between the respective normalized
values, which is expressed as follows:

γRE =

∥∥∥X t − X̂ t

∥∥∥ (10)

In the normal LK state, a stable relationship exists between
the various state variables of the vehicle. When the vehicle
starts to change lanes, the correlation between variables is
disrupted, and the reconstructed values deviate greatly. As the
motion state changes further, an ascending or jittery recon-
struction error occurs. Therefore, by analysing the changing
trend of the reconstruction error, the changes in the driving
behaviour of the vehicle can be detected, and the execution
point of the LC can be identified. When the reconstruction
error exceeds the alarm threshold, the vehicle begins to enter
the LC state from the stable LK state, and this point is the
boundary that divides the following two states: LK and LC.

B. XGBoost ALGORITHM
To enable AVs to change lanes in a human-like manner,
we propose an LCDmodel based on XGBoost. XGBoost [42]
is a supervised algorithm that consists of multiple base learn-
ers superimposed onto strong learners. The proposed LCD
model trains the model on dataset D = {(X i, yi)} contain-
ing n samples and m lane change decision variables, where
X i ∈ Rm, yi ∈ R, and Rm is an m-dimensional vector
space. The vehicle lane change decision (ŷi) is predicted by
the trained model. yi is the target value corresponding to X i,
i.e., the decision category of vehicle LC; X i is the decision
data variable when t = i in Equation (8), X= [X1,X2,. . . ,Xn].
The basic learner of XGBoost chooses a classification and

regression tree (CART). A single CART is often excessively
simple to make effective vehicle LCDs. K CART functions
are added together to form an ensemble tree model for pre-
dicting the classification target value, and the formula is
expressed as follows:

ŷi =
K∑
k=1

fk (X i) fk ∈ 0 (11)

where 0 = {fk (X) = ωq(x)}, (ω ∈ RT , q:Rm
→{1, 2,. . . , T})

is a function space composed of a classification regression
tree. ω is the leaf weight. T is the number of leaf nodes on
the tree. q is the structure of each tree, i.e., the mapping of
the sample instances to the corresponding leaf node indexes.
Each fk corresponds to an independent tree structure (qk ) and
a leaf weight (ωk ).

To learn the set of functions in the model, the learning
objective function of XGBoost is expressed as follows:

L =
n∑
i=1

l(ŷi, yi)+
K∑
k=1

�(fk ) (12)

where l is a differentiable convex function, which is used to
measure the difference between the predicted classification
value (ŷi) and the real category (yi), which is called the loss
function; the � function represents the regular term used to
punish the complexity of the model and prevent the model
from overfitting. Equation (12) cannot be solved by tradi-
tional methods. Thus, the greedy method is used to learn fk
and minimize the objective function.

Let ŷ(t)i be the predicted value of the i-th instance at the t-th
iteration. Then, we add a new function (ft ) in each iteration,
i.e., we adopt the step-by-step forward additive model to
minimize the objective function, as follows:

L(t) =
n∑
i=1

l(yi, ŷ
(t−1)
t + ft (X i))+�(ft ) (13)

Taylor series expansion is performed on the loss function
in Equation (13). Then, the constant term is removed and
retained to the second-order term. Its expression is written
as follows:

L̃
(t)
≈

n∑
i=1

(
gift (X i)+

1
2
hif 2t (X i)

)
+�(ft ) (14)

where gi =
∂l(yi,ŷ

(t−1)
i )

∂ ŷ(t−1)i

and hi =
∂2l(yi,ŷ

(t−1)
i )

∂(ŷ(t−1)i )2
.

Let I j = {i|q(X I ) = j} be the index number of the
instance corresponding to the j- th leaf node where the model
complexity can be written as �(f ) = γT + 1

/
2λ
∑T

j=1 ω
2
j .

γ and λ are the normalization coefficients. Thus, the model
objective function is rewritten as follows:

L̃
(t)
=

T∑
j=1

ωj∑
i∈Ij

gi +
ω2
j

2

∑
i∈Ij

hi + λ

+ γT (15)

For a certain structure (q(X i)), the optimizationweight (ω∗i )
of leaf node j and the corresponding optimization objective
function values are expressed as follows:

ω∗j =

−
∑
i∈Ij

gi∑
i∈Ij

hi + λ
(16)

L̃
(t)
(q) = −

1
2

T∑
j=1



(∑
i∈Ij

gi

)2

(∑
i∈Ij

hi + λ

)
+ γT (17)

Equation (17) can be utilized as a score function tomeasure
the quality of the tree structure. Typically, all possible tree
structures cannot be fully enumerated. Therefore, a greedy
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algorithm that repeatedly adds branches from a leaf node is
used. Assuming that IL and IR are examples of left and right
sub-nodes, respectively, after splitting and I = IL ∪ IR, then
the structural loss after splitting is expressed as Equation (18),
which can be used to determine whether to split the nodes and
the candidate points for splitting the nodes.

Ls=
1
2



(∑
i∈IL

gi

)2

(∑
i∈IL

hi+λ

)+
(∑
i∈IR

gi

)2

(∑
i∈IR

hi+λ

)−
(∑
i∈I
gi

)2

(∑
i∈I
hi+λ

)
−γ

(18)

One of the key problems in tree learning is finding
the optimal splitting condition, as shown in Equation (18).
To this end, the split search algorithm enumerates all pos-
sible splits on all features. We call the split search algo-
rithm the exact greedy algorithm, and it is computationally
demanding to enumerate all the possible splits for contin-
uous features. Thus, to perform this operation effectively,
the algorithmmust first rank all data according to each eigen-
value and access the data in the order of ranking to accu-
mulate the gradient statistics of the structural scores shown
in Equation (18). In many practical situations, input X i is
often sparse. Therefore, to ameliorate the robustness of the
model, it is necessary to improve the algorithm, as shown in
Algorithm 1.

Algorithm 1 Sparsity-Aware Split Finding [42]
Input: I , instance set of current node
Input: Iκ = {i ∈ I |xiκ 6= missing}
Input: d,feature dimension
Also applies to approximate setting, only collect
statistics of non-missing entries into buckets
gain← 0
G←

∑
i∈I , gi,H ←

∑
i∈I hi

for κ = 1 to m do
// enumerate missing value goto right
GL ← 0, HL ← 0
for j in sorted(Iκ , ascent order by xjκ ) do

GL ← GL + gj, HL ← HL + hj
GR← G− GL , HR← H − HL
score← max(score, G2

L
HL+λ

+
G2
R

HR+λ
−

G2

H+λ )
end
// enumerate missing value goto left
GR← 0, HR← 0
for j in sorted(Iκ , descent order by xjκ ) do

GR← GR + gj, HR← HR + hj
GL ← G− GR, HR← H − HR
score← max(score, G2

L
HL+λ

+
G2
R

HR+λ
−

G2

H+λ )
end

end
Output: Split and default directions with max gain

Sparseness has many possible causes (e.g., due to the com-
plexity and uncertainty of the driving environment, some data
may be lost during detection). Therefore, the algorithm must
consider the sparse patterns in the data. Thus, we recommend
adding a default orientation to each tree node.When a value is
missing from a sparse matrix (X i), the sample is classified as
the default direction. Each branch has two default direction
choices, and the best default direction is learned from the
data. The key improvement is to only visit the non-missing
entries (Ik1). The proposed algorithm regards the empty val-
ues as missing values and learns the best direction to deal with
the missing values.

IV. VEHICLE LCI AND LCD ALGORITHM
A. ALGORITHM FRAMEWORK
The success of machine learning demonstrates that with
larger-scale datasets, the network can learn a more com-
plex non-linearity function to project the feature into a
higher dimensional space and, thus, obtain a better perfor-
mance [43]. Vehicles accumulate a large quantity of motion
state data during driving, which is of great value to improve
the model’s performance and stability. Therefore, the vehicle
can apply the newly accumulated data for online training, uti-
lize system resources fully and avoid the state detection errors
that are caused by the long-term application of themodel after
one round of training. To train our LCD model with large-
scale datasets, we propose an online learning strategy that
can update the model parameters by data batches, resulting
in a new online LCD algorithm. First, the initial decision-
making model is established based on an XGBoost algorithm
and offline historical multivariate data. Meanwhile, the DAE-
based LCI model can monitor the vehicle driving behaviour
online and collect new samples in real time. Then, the online
model is obtained by updating the identified historical model
with new samples according to the approximate linear depen-
dence (ALD) [44] condition. The proposed integrated deci-
sion framework includes the following three steps:
Step 1: Initialization of the LCI and LCD models. In the

offline learning phase, an initial LCD model is generated
offline based on the historical trajectory data. More specif-
ically, the DAE-based LCI model is trained offline using the
long-term LK driving data. The trained DAEmodel is applied
to separate the LK and LC period data from the trajectory
data to determine the demarcation points (i.e., the starting and
ending points) of an LC. Then, the LC decision-making data
are extracted at the optimal time window length (w), and the
XGBoost classification model is trained with multiple known
LC label data.
Step 2: Real-time application of the LCI and LCD models.

In this phase, the sensor system collects data in real time.
For the new incoming testing data, we first apply the fixed
time window with the optimal length used in the training
phase to obtain the test vector as the input to the trained
XGBoost algorithm. Then, the XGBoost-based LCDmodel is
used tomake safe and reasonable LCDs. In parallel, the newly
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observed data are input into the trained DAE model to obtain
their reconstruction error. The reconstruction errors are then
compared with their corresponding control threshold given
by the offline modelling stage to determine if LC behaviours
have occurred. In addition, a DAE is also used to automat-
ically extract training data during the operation of AVs and
update the training datasets.
Step 3: Online updating of the XGBoost-based LCD

model. To further enhance the performance of the LCD
model, we designed an online training strategy to update
the LCD model’s parameters with data batches. The update
strategy integrates the LCI module and the LCD module,
which includes the following three sub-steps: 1) the LCI
model monitors the driving behaviour of a vehicle online and
collects new sample data in real time; 2) when a batch of
new samples arrives, a comparison of the online monitoring
results and the approximate linear dependence conditions is
performed to determine whether to update themodel; 3) when
the new sample deviates considerably from the original data,
the updated datasets are used to train the XGBoost model,
and the historical model is updated. Then, the updated model
replaces the previous model. Thus, we extend the XGBoost-
based LCD model to an online update decision-making algo-
rithm so that it is able to better address challenging decision
tasks.

B. DATA DESCRIPTION
The data employed in this work were obtained by the next
generation simulation (NGSIM) research programme initi-
ated by the US Federal Highway Administration (FHWA) for
studying microscopic traffic simulations [45]. The NGSIM
data provide the motion information (e.g., speed, accelera-
tion, position, etc.) of each vehicle on the surveillance road
sections at a 0.1 s interval. It is an ideal dataset for parameter
calibration and behaviour analysis of an LC model. Although
the data were collected by the US Federal Highway Admin-
istration, the vehicle’s LC characteristics are generic and are
influenced very little by the populations in specific regions
because the traffic parameter data were collected from typical
environments. Therefore, this dataset has attracted significant
attention from scholars and has also been used by researchers
in many countries in research studies on LC theory. This
study uses the US-101 and I-80 data in the NGSIM dataset as
the original data when building the model. The two datasets
contain six 15-min acquisition trajectory subsets (recorded as
(I), (II),. . . , (VI)). Since the original data has a certain amount
of error and noise [46], the Kalman filter [47] is first used to
filter the original data.

C. EVALUATION CRITERION OF LCD
To quantitatively evaluate the rationality of the decision
results made by the LCD model, based on the driver’s LC
decision mechanism, the expected velocity satisfaction, risk
perception coefficient, and LC feasibility coefficient are pro-
posed as the evaluation criteria. According to the conclusion
of Section II, one of the triggers is the driver’s desire for a

speed advantage. When the average speed of the traffic in the
current lane is lower than that in the target lane, drivers are
likely to change lanes [48]. This study quantified a vehicle’s
expected velocity satisfaction by using the velocity ratio (RV)
of the adjacent lanes, which is expressed as follows:

RV =
Vomean
Vdmean

(19)

where Vomean represents the average speed of the traffic in the
original lane and Vdmean represents the average speed of the
traffic in the target lane.

The second trigger is the driver’s expectation of the driving
space advantage. When the preceding vehicle in the original
lane decelerates, the distance between the ego vehicle and the
preceding vehicle becomes shorter, and a demand for an LC is
generated to avoid a collision or to obtain greater space ahead
of the ego vehicle. According to the analysis of the driver’s
LC decision mechanism, we can know that the time headway
(tTHW ) and the inverse of time-to-collision (TTCi) are highly
correlated with the driver’s final LC decision. Therefore,
the risk perception (RP) is selected to quantify the degree of
the risk perception and LC demand under current driving con-
ditions. RPwas first proposed by the Nissan Company, which
is calculated by linearly combining the inverse of tTHW with
TTCi, as shown in Equation (20) [49], where the weighting
coefficients a and b are taken as 1 and 5, respectively.

RP =
a

tTHW
+ b · TTCi (20)

where tTHW is the time headway, which is obtained by divid-
ing the relative distance by the vehicle speed. TTC (i.e., time-
to-collision) refers to the time that remains until a collision
between two vehicles would have occurred, which is obtained
by dividing the relative distance by the relative velocity. TTCi
is the inverse of the TTC.

Obviously, the LCmotivation is a necessary but inadequate
condition for making an LC decision. In terms of the safety
factors, the safety of an LC is most closely related to the state
of the rear vehicle in the target lane [50]. Therefore, the safety
of an LC is quantified by the ratio (RS) of the actual distance
and the safe distance between the ego vehicle and the rear
vehicle of the target lane, which is expressed as follows:

RS =
d

dsafeness
(21)

where d is the actual distance between the ego vehicle and
the rear vehicle of the target lane and dsafeness is the critical
safety distance. In our study, the safety distance defined in
reference [51] is used as the critical safety distance.

D. PARAMETER SETUP AND MODEL TRAINING
1) TRAINING OF THE DAE-BASED LCI MODEL
The training input of the DAE includes a number of variables
that can represent the motion states of vehicles. Based on
the analysis in Section II, we select the following eight vari-
ables as characterization parameters: the distances dL and dR
between the ego vehicle and left and right lanes, respectively,
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vehicle speed vE , acceleration aE , lateral velocity vy, lateral
acceleration ay, yaw angular velocity ω, and yaw angle ϕ.
The DAE network consists of seven hidden layers, and the
number of nodes per layer in the encoding process are 1000,
500, 250, and 50. The collected raw data are filtered using the
Kalman filter by considering the smoothness of the road and
the various interferences in the external environment [52].
First, training is performed using the NGSIM dataset. After
constructing the DAE for the self-driving vehicle, the DAE
can be applied to identify the LC behaviour of the vehicle.
The initial training and online identification process are pre-
sented in Figure 7.

FIGURE 7. Flowchart of the proposed algorithm.

In this study, we first build the DAEmodel, which captures
the nonlinear correlations among multiple sensor variables
while providing a robust signal reconstruction. Normally,
in the LK status, the reconstruction error (Re) is very small
and remains within a stable range. When an LC behaviour
occurs, the reconstruction error jitters or increases dramati-
cally. Therefore, by analysing the trend of the reconstruction
error and its situation beyond the threshold, we can monitor
the vehicle’s motion state to identify an LC behaviour of
an AV and to extract the LC samples. However, the vehicle
driving process is dynamic and non-stationary, and the recon-
struction error of the motion state data is also dynamic.

Thus, setting a fixed threshold may lead to misidentifica-
tion. Therefore, the adaptive threshold of Re is introduced as
a judgment condition for identifying the LC behaviour.

The parameter confidence interval idea used in statistics is
applied to the design of the adaptive threshold. The mean and
variance of Re are expressed as follows:

µ(Rej, tk ) =
1
n

n∑
i=1

ri(tk )|Rej (22)

σ 2(Rej, tk ) =
1

n− 1

n∑
i=1

[
ri(tk )− µ(Rej, tk )

]2 ∣∣∣
Rej

(23)

where Rej is the corresponding Re at different times.

The confidence interval with a confidence degree of (1−α)
mean can be expressed as follows:

P{µ̄− zα < µ < µ̄+ zα} = 1− α (24)

where α is the confidence level and z is the coefficient asso-
ciated with the confidence level. In practical applications, the
confidence (1 − α) is usually chosen as 95% − 99%. In this
work, the confidence is 96%, z is 2.06, and the threshold is
obtained through Equation (24).

Jth = µ(Rej, tk )± 2.06σ 2(Rej, tk ) (25)

Thus, the decision criteria for identifying the LC behaviour
of AVs are obtained as follows:{

J ≤ Jth, lane-keeping
J > Jth, lane-changing

(26)

Figure 8(a) and (b) shows the principle of our proposed
DAE-based LCI model. In Figure 8(a), the vehicle’s recon-
struction error Re begins to fluctuate abnormally near time tB,
and the trend deviates from the original steady state and
gradually approaches the upper control limit. After a period
of time, Re crosses the upper limit and remains above the
threshold for a period of time, so the LC behaviour can be
accurately detected when a fixed threshold is set. However,
the LC occurs at time tB when a fixed threshold (red line
in Figure 8(b)) is set, misidentification occurs at time tA, and
the LC behaviour at time tB cannot be detected. When the
adaptive threshold (green line in Figure 8(b)) ofRe is adopted,

FIGURE 8. Principle of the DAE-based LCI model. (a) Principle of the fixed
threshold; (b) principle of the adaptive threshold.
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the LC behaviour at time tB can be detected without misiden-
tification, as shown in Figure 8(b). The results illustrate that
the proposed deep learning-based LCI model combined with
the adaptive threshold can significantly enhance the robust-
ness of the model.

2) TRAINING OF THE XGBoost-BASED LCD MODEL
In real-world traffic, many factors affect the driver’s LC
behaviour. In addition to the microscopic running states
of the subject and the adjacent vehicles, a driver with an
LC motivation needs to immediately make the optimal LC
decision according to the other related factors [53]. In this
study, we selected 17 candidate features based on the experi-
ence [20], [29] of researchers in feature selection, as shown
in Table 1. The vehicle motion parameters are directly trans-
formed into vectors as the model input, which might result
in data redundancy. Therefore, the dimensions of the training
samples must beminimized to improve the training efficiency
without losing important data. In this section, the statistical
descriptions (e.g., correlation coefficient, feature importance
score, etc.) are employed as evaluation indicators to select the
key features from the candidate features.

TABLE 1. Candidate features of the XGBoost-based LCD model.

To determine whether the information among the selected
features is redundant, the Spearman correlation coeffi-
cient [54] is utilized to analyse the correlation between every
two features. Spearman’s correlation coefficient is a statistical
measure of the strength of a monotonic relationship between
paired data. The correlation matrix between the features is
shown in Figure 9, where the values are correlation coeffi-

FIGURE 9. Correlation matrix between features.

cients (c). The values of c range from −1 to 1. The closer c
is to ±1, the stronger the linear correlation between the two
random variables fi and fj. If |c| > 0.59, it indicates that the
two features have a strong correlation. When two variables
have extremely high correlation magnitudes, indicating that
they contain similar information, and the redundant variables
need to be removed by correlation filtering. In our approach,
if a pair of variables has high correlations (|c| > 0.59), one
of the two will be removed to speed up the training process
of the model.

First, the classification model considers all the candidate
features to establish a classifier. During the training process,
the LK and LC states of the driving behaviour are expressed
as ‘‘1’’ and ‘‘2’’, respectively. Then, the Bayesian optimiza-
tion algorithm [55] and k-fold cross-validation [56] with k
equal to 5 are conducted to determine the optimal parameters
of the XGBoost classifier. The main parameters of the model
are as follows: the number of decision trees (DTs) is 200,
the learning rate is 0.1, the maximum depth of the DT is 4,
the weighted sum of the minimum leaf node samples is 0.5,
the random and feature samplings are 0.8, and the penalty
coefficients of L1 and L2 are 0.1 and 0.5, respectively.

The evaluation criteria of the model parameters are used
with the logarithmic loss function [57] to evaluate the proba-
bility output of the classifier. The smaller the loss function
is, the better the corresponding parameters are. The target
parameters of XGBoost are multi-classified, and the logarith-
mic loss is as follows:

Llog(Y ,P(Y |X)) = −
1
N

N∑
i=1

M∑
j=1

yij log pij (27)

where N is the number of samples and M is the number of
categories, which are the two states of the vehicle mentioned
above. yij indicates the i-th sample, which is 1 when it belongs
to category j; otherwise, it is 0. pij indicates the probability of
the i-th sample being classified in category j.

The complexity of the XGBoost classifier increases after
training. The 120th DT in the XGBoost model is taken as
an example, as shown in Figure 10. In this DT, variables
f14 and f4 are split many times. The training model is based
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FIGURE 10. The 120th decision tree.

on the two lane-changing decisions mentioned above. The
change in the velocity difference f4 between the ego vehicle
and the preceding vehicle of the current lane affects the
changes in the other parameters. Therefore, f14, f4, and f3
are split several times. The XGBoost model gives the rel-
ative importance scores of the input features, as shown in
Figure 11.

FIGURE 11. Feature importance scores.

The higher the importance score of a variable is, the larger
its effect on the classification results. Therefore, f10 is
indispensable and should be emphasized. By comparison,
f9 and f16 are not necessary features in the model. In addition
to the correlation coefficient and importance score, the impact
on model performance is also a vital factor in the feature
selection. To further enhance the generalization ability of
the decision model, a feature selection experiment was con-
ducted. According to the relative importance score of the
features in Figure 11, the features are added one by one
from high to low and the corresponding prediction accuracy
is calculated. The process of feature selection is shown in
Figure 12.

As is observed, when the number of features reaches 11, the
prediction performance tends to be stable, and the accuracy
can reach 97%. Compared with the LCD model established

FIGURE 12. Feature selection process of the XGBoost-based LCD model.

by all 17 features, the prediction accuracy is slightly reduced,
but the complexity of the model is significantly reduced after
feature selection, and the generalization ability and efficiency
of the model are also improved. Based on the above anal-
ysis, the key features are selected according to the feature
correlation coefficients, feature importance scores and pre-
diction performance to remove redundant variables. Finally,
11 features, i.e., f1, f3, f4, f6, f7, f8, f10, f11, f13, f14, and
f17, are selected as input variables for the XGBoost-based
LCD model. Taking advantage of the powerful data feature
extraction capabilities of the machine learning method, the
information existing in decision data is fully mined. Then,
a socially compliant decision, i.e., LK or LC, is made. The
binary decision expression is written as follows:

Dec =

{
1, lane-keeping
2, lane-changing

(28)

V. MODEL EVALUATION
A. EVALUATION OF THE DAE-BASED LCI MODEL
For a randomly selected vehicle changing lanes in the DAE
model test data, the identified driving behaviour is reflected
in the trajectory diagram, as shown in Figure 13. To verify
the performance of the DAE model, 506 groups of LC points
identified by the DAE algorithm were compared with the
manual extraction results, and the time error distribution is
shown in Figure 14. Most of the data for the LC execution

FIGURE 13. Trajectory of lane-changing vehicles.
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FIGURE 14. Time error distribution.

point extracted by the DAE model are concentrated near the
ordinate origin. This result demonstrates that our proposed
extraction approach is close to the manual pick method.
Therefore, this method can be applied to identify the vehicle
LC behaviour, determine the execution point of an LC, and
extract training data for online updating of the XGBoost-
based LCD model.

The LC decision data used in this study are pre-processed
and filtered from the US-101 and I-80 segments of the
NGSIM dataset, which included 540 LC data points and
845 counter-examples, representing a total of 1385 sample
data points. Then, 80% of the cases are selected randomly
from the sample data as training samples for the decision-
making model, and the remaining 20% are used as testing
samples.

In an actual driving environment, most of the vehicles
remain in the original lane when there is no need to change
lanes. Therefore, the number of LK vehicles in the dataset is
more than that of LC vehicles, which is in accordancewith the
actual data distribution. There is no serious sample imbalance
in the two parts of the data set, and the proportion of positive
and negative samples is close to 1:2. In [58], researchers
studied the impact of classification errors caused by sam-
ple imbalances of different proportions on multiple datasets.
The results showed that the classification errors were very
close when the positive and negative sample proportions were
1:1 and 1:5 in different data sets. It can be concluded that
smaller sample imbalances do not lead to significant changes
in the classification results. In addition, the study also com-
pares the classification error when using the over-sampling
and under-sampling methods to sample the data at different
scales. The results show that the optimal classification effect
can be obtained when the proportion of positive and negative
samples is different from 1:1. Based on the above analysis,
this study chooses to retain the distribution proportion of the
original data, and not balance the samples.

B. EVALUATION OF THE XGBoost-BASED LCD MODEL
In this study, to improve the recognition accuracy and effi-
ciency of the proposed LCD model, we use a fixed time
window with an optimal length to segment the data. Because
more traffic conflicts occur after the vehicle crosses the
lane, identifying the LC state before the vehicle crosses the
lane provides a warning to eliminate conflicts and prevent a

dangerous LC. In addition, the intention recognition module
also needs to identify the LC state of the vehicle as early
as possible. If the distance from the ego vehicle to the lane
is equal to 0, the vehicle has crossed the lane. Therefore,
discerning the LC state after vehicles have crossed the lanes
using the identification model is insignificant [59]. In sum-
mary, the time window should be less than the average time
required for the vehicle to cross the lane.

XGBoost provides an intuitive and effective method
to determine the complex nonlinear mapping relationship
between the LC state of AVs and the motion parameters.
The model can detect the LC status of AVs in a given time
window based on the data characteristics. According to the
above analysis of the LC decision-making mechanism, this
study introduces the parameter selection method reported
in reference [28] and divides the decision-making variables
representing the vehicle motion state, road environment and
states of the surrounding vehicles into the following three
types: benefit factors (BF), safety condition (SC) and neces-
sity degree (ND). To further explore the influence of different
variables on the free LC decision, an experiment comparing
different input combinations was conducted. The different
input combinations are shown in Table 2. Finally, the pre-
diction accuracy of the XGBoost model under different input
combinations was evaluated to determine the optimal input
combination.

TABLE 2. Combinations of input parameters.

Based on the LC events in 1385 samples, the average time
required for an LC is 7.42 s, and the average time required for
lane crossing is 2.03 s. To improve the real-time performance
and the accuracy of the decision-making model, the detection
time should be as short as possible. Therefore, the upper limit
of the time window is determined to be 2.0 s. In this work,
we calculated the accuracy of the XGBoost models with
different input parameters for time windows of 0.6, 0.8, 1.2,
1.4, 1.6, 1.8 and 2.0 s. The results are shown in Figure 15 and
Table 3.

As seen from Table 3, when the combinations of the input
parameters are (BF, SC, ND) and (BF, SC), the recognition
model achieves a high recognition accuracy. The reason is
that the relevant vehicles in the traffic flow form an inter-
dependent whole, and their respective behaviours influence
the decisions of the others. The decision module receives not
only the state information of the ego vehicle but also the
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FIGURE 15. Accuracies of different input parameters and different time
windows.

TABLE 3. Accuracies of different input parameters and different time
windows.

state information of the surrounding vehicles, so the model
can learn the correlation of multi-vehicle behaviour from the
interactive information between vehicles and make a reason-
able decision. Therefore, considering the effect of vehicle
interactions on vehicle motions, the proposed model uses BF,
SC and ND as the final combination of the input parameters.

Figure 15 demonstrates that the length of the time window
significantly effects the classification performance.When the
length of the time window is shorter than 1.6 s, the decision
accuracy increases with an increase in the length of the
time window. When the window length is longer than 1.6 s,
the recognition accuracy gradually decreases. Although the
decision accuracy is still very high for the time windows
of 1.8 and 2.0 s, the application range of the proposed model
becomes increasingly narrow as the time window increases.
Therefore, synthetically considering the relationships among
promptness, validity, and application range, we determine
that 1.6 s is the optimum time window. As shown in Table 3,
with 1.6 s as the timewindow andBF, SC, andND as the input
parameters, the recognition accuracy can reach 97%, which
meets the accuracy requirements.

When XGBoost is trained with the sample data, the hidden
state is calibrated for each moment. The starting point of an
LC is defined as the time when the vehicle begins to approach
the target lane continuously, and the end point is defined as
the time when the vehicle first crosses the centre line of the
target lane. The process from the starting point to the end

point is defined as the LC state; the remaining time segments
are marked as the LK state. The parameters of XGBoost are
obtained after training. The performance of the algorithm is
validated by the extracted LC data, and the results are shown
in Table 4. The four performance evaluation metrics are as
follows: correct recognition time, which is the number of
times that the model decision results are consistent with the
actual situation; error recognition time, which is the number
of times an LC decision is made during the LK state; the
recognition time interval, which is the time from the starting
point identified by the LCDmodel to the actual starting point;
and the recognition position interval, which is the distance
between the starting point identified by the LCD model to
the actual starting point. A positive value for the time interval
indicates that the identified starting point occurs before the
actual LC starting point, and a negative value indicates the
reverse. A positive value for the position interval indicates
that the vehicle has not crossed the actual LC starting point.

TABLE 4. Accuracy and recognition efficiency of different input
parameters.

Table 4 shows that the algorithm using only BF as the
observation variable can recognize the intention to change
lanes, but it produces multiple false identifications and has
low recognition accuracy. The accuracy and recognition pre-
cision of introducing SC as the second observation variable
have been improved to a certain extent; the introduction of
ND as the third observed variable not only achieved higher
accuracy but also significantly improved the recognition pre-
cision. When the algorithm without the ND input recognizes
an LC intention, the average position interval is 0.75m.When
the input parameters are added with ND, the average position
interval is reduced to 0.32 m, and the recognition accuracy is
further improved, which is beneficial to the driving decision
system for making accurate control decisions. In summary,
the comparison between the human driver’s LC starting point
and the autonomous driving system’s LC starting point can
demonstrate that the LC decision-making process is similar
to that of a human driver [60].

C. PERFORMANCE EVALUATION AND COMPARISON OF
THE INTEGRATION MODEL
In this study, a deep learning-based LCI model is pre-
sented that can accurately identify the LC behaviour of
AVs and address the difficulties of analysing large-scale
collections of LCD data. Then, a novel data-driven LCD
model is purposed to give AVs the ability to make human-
like high-level decisions. It should be noted that both the
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LCD model and the LCI model are simultaneously presented
in a modelling framework. Thus, it is an integrated model.
Obviously, the performance of the LCI model directly affects
the quality of the LCD model. To analyse the comprehensive
performance of the proposed integrated model, we applied
the DAE-based LCI model to extract LC decision data and
then tested the XGBoost-based LCDmodel. In our approach,
the length of the time window w is an important parameter
affecting the performance of the LCD model. Therefore,
based on the above analysis, we trained and tested different
decision algorithms under the following time windows: 0.6,
0.8, 1.2, 1.4, 1.6, 1.8 and 2.0 s. The results are shown in
Figure 16.

FIGURE 16. AUC at different time points.

As shown in Figure 16, for the different algorithms,
the trend of the area under curve (AUC) value changing with
the time window length is basically the same. The advantage
of a larger window is that it produces a larger AUC in all
datasets, which reduces the number of erroneous decisions,
and the prediction is, therefore, more stable. When the length
of the time window reaches 1.6 s, the AUC basically reaches
its maximum value. With an increase in the length of the time
window, the AUC begins to decline slowly. The experimental
results are the basis of the timewindow selection in this study.

Finally, we take BF, SC and ND as the input parameters,
and the length of time window is 1.6 s. To verify the effec-
tiveness of our proposed XGBoost-based LCD approach,
we compared it with other state-of-the-art approaches, which
include a DT-based approach, a BN-based approach, a RF-
based approach, an SVM-based approach, a GBDT-based
approach, and a k-nearest neighbour (KNN)-based approach,
on the six subsets {1,2,3,4,5,6} of the NGSIM dataset. The
results are shown in Figure 17. Figure 17 demonstrates that
when the time window length is 1.6 s, all decision algorithms
have stable performances and can obtain large AUC values.

FIGURE 17. AUC of different data subsets.

In addition, it also illustrates that the DAE-based LCI model
can accurately identify changes in vehicle driving behaviour
and effectively address the problem associated with training
data extraction with the XGBoost-based LCD model to real-
ize online training and parameter updating of the model and
further improve the performance of the decision system.

The receiver operating characteristic (ROC) curve for per-
formance evaluation of the two datasets, the NGSIM US-101
and NGSIM I-80 datasets, using different methods are shown
in Figure 18, where the numbers represent the AUC values
for each method. Figure 18 shows that the performance of
the RF and GBDT algorithms through ensembled training
of the decision tree is much higher than that of the single
decision tree represented by the DT and is obviously better
than those of the SVM, KNN and other distance discriminant
algorithms. With a boosting tree, the XGBoost algorithm has
made further improvements in loss function, regularization
and parallel processing and has better classification perfor-
mance than the other algorithms. Specifically, the XGBoost
model obtains a larger AUCvalue, which is close to 1. In other
words, the performance of our XGBoost- based model is
significantly better than that of other approaches. Among all
approaches, BN has the worst performance due to its limited
capabilities. In summary, this result further demonstrates the
effectiveness and applicability of our approach for the LC
decision-making of AVs.

FIGURE 18. Performance comparison of the different approaches.
ROC curve for each model with the NGSIM US-101 dataset (a) and the
NGSIM I-80 dataset (b).

In this study, we apply the evaluation metrics of pre-
cision (PRE), recall (REC), F1 score (F1), and accuracy
(ACC) to comprehensively measure the prediction (i.e., test)
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performance of different models. The functions of the differ-
ent evaluation metrics are presented as follows:

PRE =
TP

TP+ FP
(29)

REC =
TP

TP+ FN
(30)

F1 =
2(PRE · REC)
PRE + REC

(31)

ACC =
TP+ TN

TP+ TN + FP+ FN
(32)

where TP, FP, TN and FN refer to true positive, false positive,
true negative and false negative, respectively. The average
metrics of each model are presented in Table 5.

TABLE 5. Performance comparison of the different approaches.

Table 5 illustrates that XGBoost has better classification
accuracy than the other classification algorithms, with an
average increase in accuracy by 9.27%. The training times
of the DT, BN and RF algorithms were less than that of
XGBoost. Because the DT and BN algorithms have low
complexity, training their parameters takes a very little time,
but both methods have unsatisfactory accuracy. The training
speed of the RF algorithm is faster than that of XGBoost,
but if we pursue reliable decision accuracy, the GBDT and
RF algorithms are both DT-based algorithms, and their accu-
racy is slightly lower than that of XGBoost. Among all
the approaches, the XGBoost retains the highest recall and
F1 score (97.16% and 97.11%, respectively), which indicates
that the proposed method achieves a more human-like perfor-
mance than the previous methods.

D. SIMULATION EXPERIMENT OF THE XGBoost-BASED
LCD MODEL
To further verify the effectiveness of the XGBoost-based
LCD model in traffic scenarios, we performed simulation
experiments with the model. We used Airsim as the simu-
lation platform and used the TensorFlow framework to build
the model based on the Python programming language. The
simulation platform follows a modular design. The core com-
ponents include an environment model, a vehicle model, a
physical engine, a sensor model, a common API layer and
a vehicle firmware interface layer. The environment sys-

FIGURE 19. Architecture of the system that depicts the core components
and their interactions.

tem architecture for the XGBoost model test is shown in
Figure 19. The test environment is a four-lane expressway
with a lane width of 3.5 m. The test vehicle used in the
experiment is a car. During the experiment, the test vehicle
can obtain data such as the motion state and position of
the vehicle in the current lane and the adjacent lane in real
time through the Airsim platform, and the sectional data are
shown in Table 6. The data includes the time, velocity and
acceleration of the ego vehicle, the relative velocity between
the ego vehicle and the preceding vehicle, the relative dis-
tance between the ego vehicle and the preceding vehicle,
the distance between the ego vehicle and the left lane, and
the distance between the ego vehicle the right lane.

During the experiment, the ego vehicle E travels on a
straight road at a speed of 27.45 km/h, and the ideal speed
is set to be videal = 80 km/h. The preceding vehicle P
travels at 12.97 m ahead of E at a speed of 19.72 km/h.
The experimental results are shown in Figures 20, 21 and 22.
At the beginning, the speed of the ego vehicle was close
to that of the preceding vehicle. At 27.1 s, the test vehicle
began to accelerate, and the relative distance between the two
vehicles continued to decrease. At 29.7 s, the test vehicle

FIGURE 20. Steering wheel angle and vehicle trajectory.
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FIGURE 21. Vehicle speed changes during LC.

FIGURE 22. Relative distance.

speed increased to 58.07 km/h, the relative distance between
the two vehicles decreased to 23.75 m, and the speed of
the preceding vehicle was 54.71 km/h. At this time, the
XGBoost-based LCD model made an LC decision. Then,
the ego vehicle successfully changed lanes by adjusting the
lateral speed (Figure 20), and the vehicle speed gradually
increased to approach the predetermined ideal vehicle speed
(Figure 21), reaching 72.54 km/h. Then, the leading vehicle
became the preceding vehicle in the target lane TP, and
the relative distance from the leading vehicle increased to
29.78 m, as shown in Figure 22. After the vehicle changed
lanes, the speed of the test vehicle increased by 24.92%, and
the relative distance from the preceding vehicle increased by
25.39%. The test vehicle LC decision-making process was
consistent with the analysis of the LC decision mechanism
described in Section II, which further verifies the correctness
and validity of the proposed approach.

The LC behaviours of the 506 groups extracted manually
are calculated and analysed. The results of analysing the real
vehicle test data indicate that the quantitative indicators have
different correlations with the LC decision. Table 7 shows
the correlations between two spatial perception parameters
and the decisions determined by point-biserial correlation
analysis. As shown in Table 7, the correlation coefficient of
RP is slightly higher than that of RS, which was determined
by a quantitative method of assessing the spatial perception
coefficient of the current lane. It is more appropriate to select
RP as the risk perception parameter of the current lane.
For the spatial perception of the target lane, the correlation
coefficient of RS is significantly higher than that of RP, so RS
is chosen as the parameter indicating the LC feasibility.

TABLE 6. Sectional data obtained by the system.

TABLE 7. Comparison of the correlation between RP and RS on decision
making.

The evaluation results of the test vehicle LC decision are
shown in Table 8. It can be seen from Table 8 that the LC
benefit evaluation metrics RV = 0.688, which shows that the
average speed of the target lane is higher than the average
speed of the current lane, and a larger speed advantage can be
obtained after changing lanes. In addition, the value of the risk
perception factor RP is larger, and the system perceives that
the risk of LK in the current lane is higher, and the necessity
for LC increases. The safety factor RS = 2.738. At this
time, the actual distance between the ego vehicle and the
rear vehicle of the target lane is much larger than the critical
safety distance required for an LC, so it is safe to perform an
LC. Therefore, the system decides to change lanes. From the
analysis of the quantitative metrics of an LC decision, it can
be seen that the process is in line with the driver’s judgement
of the potential benefits, safety and necessity of an LC in
a real-world traffic situation. The test results show that the
XGBoost-based LCD model is capable of changing lanes in
a human-like manner.

TABLE 8. Evaluation results for the test vehicle lane change decision.
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VI. CONCLUSION
The LC decision-making system is significant for improving
the safety and comfort of AVs. In this study, we used a DAE
to identify the LC behaviour from actual on-road driving data
and trained the XGBoost model by using the extracted data
to establish a novel LCD model. First, a DAE-based method
is proposed to enable efficient real-time LC behaviour iden-
tification and online model updating. The proposed approach
builds the reference model offline using multivariate normal
data and then identifies the driving behaviours online by
comparing the monitoring indicators derived from the recon-
struction errors. Meanwhile, an adaptive threshold is adopted
to improve the robustness of the model. Then, the XGBoost
algorithm and BOA are employed to establish a data-driven
LCD method for AVs. By learning an initial knowledge base,
the XGBoost-based LCD model can be applied in real time.
In particular, our proposed LC framework integrates LCI
and LCD modules, which enables the XGBoost-based LCD
model to be fully trained with new samples collected by the
DAE-based LCI algorithm and further improves the perfor-
mance of the decision systems. Based on 1385 groups of LC
events recorded during the naturalistic on-road experiment,
the optimal time window length and input parameters of
the LCD model are determined. Finally, both a benchmark
dataset and a simulation experiment are used to evaluate
our proposed approach. The experiments and simulations
illustrate the outstanding performance and practicability of
our approach.

At present, due to the complexity and uncertainty of
real-world traffic, the proposed model is only applicable
to the conventional LC decision-making process in straight
lanes or curved lanes on expressways. In our future work,
we will further extend the application scenarios of the model
to make it suitable for more complex traffic environments.
Additionally, we will also consider applying other pattern
recognitionmethods to establish an LCmodel that can further
improve the prediction accuracy and effectiveness.
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