IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 1, 2019, accepted December 19, 2019, date of publication January 6, 2020, date of current version March 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964260

Redundancy Analysis and Elimination on Access
Patterns of the Windows Applications
Based on I/0 Log Data

JUN-HA LEE " AND HYUK-YOON KWON"12

! Department of Industrial and Systems Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, South Korea
2Research Center for Electrical and Information Technology, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, South Korea

Corresponding author: Hyuk-Yoon Kwon (hyukyoon.kwon@seoultech.ac.kr)
This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)

(No. 2018R1C1B5084424), and in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (No. 2019R1A6A1A03032119).

ABSTRACT In this paper, we analyze I/O log data monitored in the Windows operating system for
improving the system performance. Especially, we focus on the I/O operations to the Windows registry. As a
result, we identify redundant access patterns of the Windows applications. To find all the possible redundant
patterns from the large-scale log data, we propose the redundancy detection algorithm. Then, we propose
the two-level redundancy elimination method to remove unnecessary redundant operations. We also present
an event-driven method that guarantees that the result of redundancy elimination is equivalent to that of
the original program. Through experiments, we show that the proposed redundancy elimination method
improves the performance of the original program having redundant access patterns by up to 90.25% for
individual access patterns; by 8.93% ~ 26.21% when the multiple programs having combined access patterns
are running concurrently.

INDEX TERMS 1/0O log data, access pattern analysis, redundancy elimination, Windows registry.

I. INTRODUCTION o .

Log data is a collection of recording the events that are e e

occurred from the operating systems or applications or the Y CLRRENT st cometieion Rk s

messages that communicate between applications [1]. There 42 emooooomo. ey Mt o et sHboesigt core

have been many research efforts for utilizing various types of
log data. Mafrur et al. have used event log data generated in
smartphones to build the human behavior model [2]. Kankane
and Garg have used Web log data to analyze the usage pat-
terns to the Web sites [3]. Chung et al. have used life-log data
collected from the patients to better understand the patient
values [4]. In this paper, we analyze I/O log data monitored
in the Windows operating system. Especially, we focus on

FIGURE 1. The registry keys and values.

Fig. 1 shows the registry keys and registry values mon-
itored by Registry Editor [8], which is a built-in registry
editor in Windows. In the left panel, the registry keys are
stored in a form of the tree; in the right panel, the registry
) ; . - keys and values are stored. In Fig. 1, we have a registry key,
I/O operations to the Windows registry, which has not yet “Computen HKEY_LOCAL_MACHINE\SOFTWARE\Git-

been considered in the previous work. The Window registry  gorwindows\InstallPath,” and its associated registry value,
is a database that stores crucial information for the Windows “C:\Program Files\Git.”

operating systems and the Windows applications [5]-[7]. The
Windows registry is structured in a tree format; each node in
the tree stores information in a form of the key and value pair.

The Windows applications store necessary information
in the registry and use them by calling registry operations
provided by the Windows operating system. The example
registry operations are RegOpenKey, which opens a reg-

The associate editor coordinating the review of this manuscript and istry key to use, RegCloseKey, which closes a registry key,
approving it for publication was Bijoy Chand Chand Chatterjee . and RegQueryValue, which obtains the registry value for
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ApplicationDestinations  #MonitorRegistry REG_DW  0x00000001 (1)

(a) The value stored in a Windows registry key.
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Process Name ~ Operation Path
ExplorerEXE  &RegOpenkey HKL Desktop!
Explorer.EXE  ®RegQueryValue HKLM\SOFTW, D
Explorer.EXE  #RegCloseKey HKLM\SOFTW; \Di

(b) The registry operations to access to a Windows registry key.

FIGURE 2. A use case of the Windows registry.

a specific registry key. Fig. 2 shows a use case of the Windows
registry. Fig. 2 (a) shows an actual value stored in a registry
key; Fig. 2 (b) shows a sequence of registry operations to
access to the value stored in a registry key, which is observed
by Program Monitor [9]. Specifically, a Windows application,
“Explorer.exe,” is trying to obtain the value, ““0x00000001,”
stored in a registry key, “Compute\HKEY_LOCAL_
MACHINE\Software\Microsoft \Windows\CurrentVersion
\Explorer\Desktop\NameSpace \MonitorRegistry,” by call-
ing RegOpenKey, RegQueryValue, and RegCloseKey in
turn.

sersWITMWDovnloads ProcessMonitortiLogfle PML

Help.
[EEAREFLBE &5 HELDE

Process Name  Operation Path

[FExplorerEXE #RegOpenkey  HKLM o WExplorerwD

Explorer.EXE  #RegQueryValue HKLM#SOFT! i |
|ExplorerEXE_ #RegClosekey  HKLMWSOFTWAREMMicrosoft#WindowsWCurrentVersion#Explorer#D e
ExplorerEXE  #RegOpenKey  HKLM¥:
Explorer.EXE  #RegQueryValue HKLM#SOFT!
ExplorerEXE__ #RegClosekey  HKLMWSOFT

[FExplorer EXE BRegOpenKey  HKLMWSoftwareWMicrosorth HExplorerwD
ExplorerEXE  #RegQueryValue HKLM#SOFT
ExplorerEXE__ #RegCloseKey  HKLMWSOFTWAREWMicrosoft#Windows#CurrentVersion#Explorer#Desktop#NameSpace

FIGURE 3. An example of redundant access patterns to a registry.

WExplorer#D

In this paper, we analyze access patterns of Windows
applications to the registry and identify redundant access
patterns. Fig. 3 shows an example of redundant access pat-
terns. It shows that the same access pattern (i.e., a pattern
of RegOpenKey, RegQueryValue, and RegCloseKey) is
repeated for a registry key (i.e., HKLM\Software\Micros
oft\Windows\Current Version\Explorer\Desktop\NameSpace\
MonitorRegistry). This implies that a Windows application,
Explorer.exe, utilizes the data retrieved from the registry
repeatedly. Here, we note that the repeated accesses to the
same registry are not required because we can retrieve it once
and utilize it repeatedly.

In this paper, we propose the redundancy elimination
method that removes redundant access patterns while guar-
anteeing the equivalent results. Fig. 4 shows a flow chart to
describe the concept of the redundancy elimination method.
Fig. 4 (a) is a flow chart that describes the repeated access
patterns observed in the original access patterns to the reg-
istry; Fig. 4 (b) is a flow chart that removes the repeated
access patterns. In Fig. 4 (a), both the operations to the
registry (e.g., a sequence of RegOpenKey, RegQueryValue,
and RegCloseKey) and the main operation (i.e., utilizing
the data retrieved from the registry) are repeated; however,
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(a) Original access patterns to the registry.
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(b) Redundancy elimination of the access patterns to the registry.

-| MainOperation I

FIGURE 4. Original redundant access patterns and the redundancy
elimination.

in Fig. 4 (b), only the main operation is repeated, and the
operations to the registry are performed once.

Now, we need to guarantee that the result of redundancy
elimination is equivalent to that of the original access pattern.
For this, we should consider the case of updating the registry
values while we are utilizing them repeatedly in the main
operation. In the original access patterns, the main operation
is able to utilize the updated data because the updates could
be caught by the repeated registry access. However, in the
redundancy elimination method, the updates that are occurred
after we retrieve the data from the registry could not be
reflected. To solve this problem, we investigate a method to
detect if the updates are occurred. Specifically, we present
an event-driven method that is able to catch the updates on
a specific registry as soon as the target registry is updated.
For this, we have to register an event handler to catch the
updates on a target registry. Then, if the updates to the registry
are occurred, the registered event handler will read newly
updated value from the registry. Consequently, the proposed
event-driven method can completely remove the side effect
of the redundancy elimination method.

The contributions of the paper are summarized as follows.

1) We analyze I/O log data of the Windows operating
system and identify the redundant access patterns to the
Windows registry. Especially, we verify it in the level
of assembly codes by disassembling an actual Win-
dows application. Then, we classify redundant access
patterns into the internal redundancy and the outer
redundancy.

2) We propose the redundancy detection algorithm that
finds all the possible redundant patterns from the large-
scale log data. By identifying all the redundant patterns
by the proposed algorithm, we show that the internal
redundancy is about 59.21% and the outer redundancy
is about 57.50%, which implies that we can improve
the performance of accessing to the registry.

3) We propose the two-level redundancy elimination
method to remove the internal and outer redundancy.
Especially, the proposed method enhances the effect
of the outer redundancy elimination by eliminating the
outer redundancy after eliminating the internal redun-
dancy first. We also present an event-driven method
that guarantees the correctness of the redundancy elim-
ination method by catching the updates on the registry
instantly.
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4) Through experiments, we show that the proposed two-
level redundancy elimination approach improves the
performance of the original program having redundant
access patterns by up to 90.25% for individual access
patterns; by 8.93% ~ 26.21% when the multiple pro-
grams are running concurrently.

The organization of the paper is as follows. In Section II,
we introduce the Windows registry and Process Moni-
tor, which is used to monitor I/O operations occurred in
the Windows operating system, as the background of the
paper. In Section III, we analyze redundant access pat-
terns and verify them in the level of assembly codes.

8 Registry Etor
File Edit View Favorites Help

ComputerttHKEY_LOCAL_MACHINE#SOFTWARE®#Microsoft#Internet Explorer

Internet Domains “| Name Type Data

¥ Internet Explorer “(Default) REG_SZ (value not set)
AboutURLs “Build REG.SZ 917134
ActiveX Compatibility #lntegratedBrowser ~ REG_DW  0x00000001 (1)
AdvancedOptions #MKEnabled REG.SZ  Yes
Application Compatibility | sisycKBFWLInk REG_SZ https:;//aka.ms/IE1810
AutoComplete “isvcKBNumber REG_SZ  KB4462949
Capabilities “sycUpdateVersion  REG_SZ ~ 11.0.90
Default Behaviors “sycVersion REG.SZ  11.345.17134.0
Document Caching “\ersion REG.SZ ~ 9.11.17134.0
EdgeDebugActivation S\W2KVersion REG.SZ ~ 9.11.171340

(a) Version information of Internet Explorer stored in the registry.

Updating the Version of Internet Explorer

. : (0] y C C
In Section IV, we propose the redundancy detection algo- I RegOpenKey(HKEY LOCAL MACHINE,
. . 2 "SoftWare\Microsoft\Internet Explorer,
rithm. In Section V, we propose the two-level redundancy e
L . i 3 0,KEY ALL ACCESS, &key handle)
elimination method and event-driven method. In Section VI, .
we prgsent the experimental results to 'shf)w 'the perfor- 5 RegSetValue(key handle,
mance improvement of the redundancy elimination method. 6 "Wersion”
In Section VII, we present the related work. In Section VIII, 7 0, REG SZ,
we conclude the paper. 8 "9.12.17134.0",0) };
9
TABLE 1. Registry operations for accessing the Windows registry [10].
BISHy op & gistry [10] 10 RegCloseKey(key handle);
[ Operations [ Description |
RegOpenKey Open a specified registry key (b) The source code of updating the registry value using registry
RegCloseKey Close the handle to a specified registry key operations.
RegCreateKey Create a specified registry key. If the key exists, . 3 i
RegOpenKey is called. FIGURE 5. The registry and updating the registry.
RegDeleteKey Delete a specified key with its subkeys and values e oot
RegQueryValue | Retrieve the registry value associated with an speci- o imcotony " Dutston ocess Name D opeaton b Rl Deti
fied regis[ry key 1030036546352 PM 00000000 wsuchostexe 3164 aThread Create Success Thvesi 103913
. . 5 PM  0.0000060 ExplorerEXE  36603QueryStandardint.. C:\Users\junha\AppData\Local... SUCCESS AllocationSize: 3,145,728, EndOfFile:
RegSetValue Set a specified value for a registry key 03005770876 M 00000 emnomese  SHORegopeny KU\l Appl. NAVENOTFOUND  Oesred Aces Masimum Al
RegDeleteValue | Delete the registry value associated with a specified 1030057704020 PM 00000000 eome e E316AUDPReeie 32400951353 > 1020312, SUCCESS Length 12 seqpum: 0, comi 0
. 10:3005.7704248PM  0.0000144 »suchostexe  960#RegQueryValue  HKCR\AppID\(ABBI02B4-09CA..NAME NOT FOUND  Length: 12
registry key
RegEnumKey Enumerate the subkeys of a specified registry key FIGURE 6. Windows 1/0 log data monitored by Process Monitor.
RegEnumValue | Enumerate the values for a specified registry key

Il. BACKGROUND

A. WINDOWS REGISTRY

Table 1 shows the registry operations to access to the Win-
dows registry [10]. Let us consider an example to update
the version information of Internet Explorer stored in the
registry. Fig. 5 (a) shows a version information of Internet
Explorer stored in the Windows registry; Fig. 5 (b) illustrates
a source code that updates the version using the registry
operations. First, we open the registry key representing
the version of Internet Explorer by executing the operation
RegOpenKey. Second, we update the current version to
a new value, “9.11.17134.0,” for a registry key, “Com-
puten\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft
\Internet Explorer\Version,” by executing the operation
RegSetValue. Third, we close the handle to the registry key
by executing the operation RegCloseKey.

B. PROCESS MONITOR

In this paper, we use Process Monitor [9] to collect I/O log
data generated in the Windows operating system. Process
Monitor is a tool provided by Microsoft for monitoring
Windows I/O events that are occurred on the registries, file
systems, processes, and networks [9]. Fig. 6 shows a sample
of log data on I/O activities monitored by Process Monitor.
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The specific operations are as follows: 1) operations on the
file system such as creating files (i.e., CreateFile), writing
a value into the file (i.e., WriteFile), and reading a value
from the file (i.e., ReadFile), 2) operations on the network
such as sending and receiving data based on TCP/UDP
(i.e., TCPSend / UDPSend and TCPReceive / UDPRe-
ceive), 3) operations on the process such as creating pro-
cesses or threads (i.e., ProcessCreate and ThreadCreate)
and starting or stopping processes (i.e., ProcessStart and
ProcessExit).

The types of data to be monitored by Process Monitor are
as follows: 1) Time of Day (i.e., time to call the operation),
2) Duration (i.e., elapsed times spent to conduct the oper-
ation), 3) Process Name (i.e., the name of the process that
calls the operation), 4) PID (i.e., the ID of the process),
5) Operation (i.e., the called operation), 6) Path (i.e., the path
on which the operation is conducted), 7) Result (i.e., the result
of calling the operation), and 8) Detail (i.e., the details of the
result).

Ill. ANALYZING OF ACCESS PATTERNS TO THE
WINDOWS REGISTRY

A. LOG DATA ON WINDOWS I/0O OPERATIONS

In this paper, we analyze the log data for optimizing the
registry accesses. The reason why we are using the log data
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TABLE 2. The characteristics of the collected Window 1/0 log data.

TABLE 3. The occurrence and duration by the operation type.

Windows Number of | Number of | Total collection | Dataset [ Operation types | Occurrences [ Duration (seconds)
versions events information | time (seconds) | size Registry 11,463,692 (76.43%) 824.25 (31.42%)
Windows 10 | 5,000,000 |8 856.48 666.7MB File System 3,426,005 (22.84%) 1799.22 (68.58%)
Windows 8.1 | 5,000,000 |8 954.27 645.9MB Network 93,651 (0.62%) 0.0001 (0.000004%)
Windows 7 | 5,000,000 |8 752.04 622.6MB Process 16,652 (0.11%) 0.0003 (0.00001%)

[ Total [15,000,000]8 [2562.79 [19352MB | [ Total [ 15,000,000 (100.00%) [2.623.47 (100.00%)

instead of using source codes or binary codes is summarized
as follows. First, most Windows applications do not disclose
source codes. This requires the reverse engineering for ana-
lyzing and optimizing the binary codes. Second, if we have
source codes, coding styles are quite various even if they are
equivalent. Third, the goal for the optimization in this paper is
a quite specific. That is, we focus on optimizing of the registry
accesses. All the registry accesses can be caught as the system
events and can be collected. Thus, we can easily analyze the
log data compared to analysis on the binary codes or source
codes. Fourth, we can clearly predict the effect of redundancy
elimination by using the log data, which will be actually
shown in this paper later.

We collect all the I/O operations occurred in the Win-
dows operating system using Process Monitor. To cover
various environments, we collect the log data from var-
ious Windows versions on the most popular three ones:
Windows 10, Windows 7, and Windows 8.1. Accord-
ing to the statistics for Windows version market share,!
those three versions occupy about 95.42%. To build a
common workload environment in the Windows operating
system, we execute 10 common user processes, i.e., iex-
plorer.exe, notepad.exe, explorer.exe, taskmgr.exe, calcula-
tor.exe, mspaint.exe, regedit.exe, word.exe, powerpoint.exe,
and excel.exe while the default system processes such as
svchost.exe, and searchindexer.exe are running. From each
version of Windows, we collect 5 million events. Totally,
we collect 15 million events from three different Windows
versions; total sizes are almost about 2GB; total time for
collection takes about 42.7 minutes. Table 2 shows the char-
acteristics of the collected log data. The information for the
eight columns is the same as explained in Fig. 6.

Table 3 is a result of analyzing the entire I/O log data by
the I/O type, i.e., registry, file system, process, and network.
It shows the occurrences and duration of the operations by
the I/O type. Here, we note that all the operations are con-
centrated on the registry and file system. Moreover, the oper-
ations for the registry occupy about 76.43% in occurrences
and 31.42% in duration. This implies that we can improve
the overall system performance only if we make the registry
accesses efficient.

Table 2 and Table 3 imply that I/O operations occupy most
of the total time for the processes. That is, the total duration
of the I/O operations in Table 3 is almost close to the total

1 https://gs.statcounter.com/os-version-market-
share/windows/desktop/worldwide
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collection time in Table 2. The reason why the total duration
of the I/O operations is even greater than the total collection
time is as follows. In this paper, we analyze redundancy in
the I/O operations by a group of operations, e.g., starting
from RegOpenKey ending to RegCloseKey. Thus, if some
operations in a group are included in the collected operations,
then we include the entire operations in the group. Here,
the important thing is that I/O operations occupy most of the
total time of the process, and the registry operations occupy
significant portion out of the entire I/O operations. As aresult,
we can significantly improve the process performance by
making the registry access of the process efficient.

TABLE 4. The occurrences and duration of the registry operations.

[ Operations [ Occurrences [ Duration (seconds) |
RegOpenKey 3,398,806 (29.65%) | 460.35 (55.85%)
RegQueryKey 2,057,266 (25.80%) | 94.42 (11.46%)
RegQueryValue 2,127,163 (18.56%) | 85.58 (10.38%)
RegCloseKey 1,878,538 (16.39%) |48.98 (5.94%)
RegSetInfoKey 394,141 (3.44%) 8.64 (1.05%)
RegEnum Value 337,098 (2.94%) 51.70 (6.27%)
RegEnumKey 229,246 (2.00%) 8.12 (0.99%)
RegCreateKey 92,557 (0.81%) 18.54 (2.25%)
RegSetValue 39,739 (0.35%) 19.24 (2.33%)
RegDeleteValue 3,329 (0.03%) 0.72 (0.09%)
RegQueryKeySecurity 2,906(0.03%) 0.03 (0.004%)
RegDeleteKey 1649 (0.01%) 0.52 (0.06%)
ReglLoadKey 705 (0.01%) 22.89 (2.78%)
RegQueryMultiple ValueKey| 383 (0.003%) 0.16 (0.02%)
RegSetKeySecurity 142 (0.00%) 0.08 (0.01%)
RegFlushKey 22 (0.00%) 4.25 (0.52%)
RegRenameKey 2 (0.00%) 0.04 (0.01%)

[Total (11,463,602 [824.25 \

Table 4 is a result of analyzing the registry opera-
tions. It shows the occurrences and duration of the registry
operations. We can indicate that the top-4 registry opera-
tions with the highest occurrences are RegOpenKey, Reg-
QueryKey, RegQueryValue, and RegCloseKey. Especially,
RegOpenKey and RegCloseKey occupy about 46.04% of
the total occurrences and about 61.79% of the total duration.
We can expect a considerable improvement of the overall per-
formance only if we can reduce the calling of RegOpenKey
and RegCloseKey. We also note that the portion of read
operations such as RegQueryKey and RegQueryValue is
much higher than that of write operations such as RegCre-
ateKey and RegSetValue. That is, the read operation occu-
pies about 49.34% in the occurrences and about 31.90% in
the duration; the write operation occupies about 4.64% and
about 6.31%.

40643



IEEE Access

J.-H. Lee, H.-Y. Kwon: Redundancy Analysis and Elimination on Access Patterns of the Windows Applications Based on 1/0 Log Data

B. CASE STUDY OF REDUNDANT ACCESS PATTERNS

In this section, we introduce inefficient access patterns that
have redundant accesses to the registry, which could be elim-
inated. The basic structure for accessing to the registry con-
sists of the following three steps: 1) RegOpenKey, 2) a series
of read/write operations to the registry, and 3) RegCloseKey.
Thus, we classify the overall inefficient access patterns
into two categories: 1) internal redundancy, which occurs
within the basic structure, and 2) outer redundancy, which
occurs between the basic structures. Specifically, in the inter-
nal redundancy, the same operation is repeated in multiple
times between RegOpenKey and RegCloseKey; in the outer
redundancy, the whole structure starting from RegOpenKey
ending to RegCloseKey is repeated.

1) INTERNAL REDUNDANCY

The access patterns in the internal redundancy retrieve or list
the same registry keys or values repeatedly. They do not need
to be repeated unless the target registry keys or values are not
updated. However, in most cases, regardless of updating of
the registry keys or values, most Windows applications are
accessing them repeatedly according to the analysis of log
data.

FProcess Name

e Explorer,EXE
s Explorer,EXE
s Explorer,EXE
s Explorer,EXE
s Explorer,EXE
e Explorer,EXE

Operation

£ RegGuervkey
£ RegQuerykey
£ Regluerykey
£ Regluerykey
& RegCuerykey
&% RegQuerykey

Path

HECU#Software®Clazses
HECUWSoftware'®WClasses
HECUWSoftwareWClasses
HECUWSoftwareWClasses
HECUWSoftwareWClasses
HECU#Software®Clazses

FIGURE 7. Internal redundancy of RegQueryKey in a consecutive way.

We introduce the observed three cases for the internal
redundancy. Fig. 7 represents a case of the internal redun-
dancy. It is a redundancy of RegQueryKey, and it is rep-
resented in a consecutive way, i.e., there are no operations
between two consecutive RegQueryKey operations. We note
that no operations to update the registry key have been called
while RegQueryKey is repeated. This means that the opera-
tions from the second RegQueryKey are not necessary in this
case, and only main operations that utilize the registry key
retrieved from the first RegQueryKey need to be repeated.

Process Name

r Explorer,EXE
r Explorer EXE
r Explorer,EXE
s Explorer EXE

Cperation

& Reglueryvalue
& Reghueryvalue
£ Reglueryvalue
& RegQueryvalue

Path

HELM® Sy stemW CurrentControlSet#®Contral
HEKLM¥®System® CurrentControlSet® Control
HELM® Sy stem® CurrentControlSet# Contral
HKLM#SystemWCurrentControlSet#wControl

FIGURE 8. Internal redundancy of RegQueryValue in a consecutive way.

Fig. 8 represents another case of the internal redundancy

where RegQueryValue is redundant in a consecutive way.
Again, no operations to update the registry key have been
called while RegQuery Value is repeated. Thus, we can elim-
inate the operations from the second RegQueryValue.

Fig. O represents the last case of the internal redundancy
where RegQueryKey is redundant in an inconsecutive way.
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Process Name Operation Path
 Explorer,EXE # RegOpenkey HKCRWCL! 0245-4DF 3-8 14

s Explorer EXE 'y HKCR#CL

v Explorer,EXE ﬁ 9 HKCR#WCL! 1 er

i Explorer,EXE RegQueryValue  HKCRWCL b 780 1 24 Default)
" Explorer,EXE X Reg HKCR#CLSIDW & 7 1y 52

' Explorer,EXE = HKCRWCL: -0245-4d13-b 7 1

¥ Explorer EXE #{RegClosek HKCRWCL! 1}

FIGURE 9. Internal redundancy of RegQueryKey in an inconsecutive way.

That is, RegQueryKey is repeated in multiple times between
RegOpenKey and RegCloseKey, but the other operation,
i.e., RegQueryValue, is interleaved with RegQueryKey.
Again, no operations to update the registry key have been
called while RegQueryKey is repeated. Thus, we can elim-
inate the operations from the second RegQueryKey. The
other operation RegQueryValue, which is performed while
RegQueryKey is repeated, does not affect the result of Reg-
QueryKey because both are read operations.

2) OUTER REDUNDANCY

In the outer redundancy, the whole pattern starting from
RegOpenKey and ending to RegCloseKey is repeated.
Between RegOpenKey and RegCloseKey, any series of reg-
istry operations could be placed. In this case, we note that
RegOpenKey and RegCloseKey do not need to be repeated
because the closed registry key will be opened again; only the
registry operations between RegOpenKey and RegCloseKey
are needed to be repeated. Here, a very complicated com-
bination of the registry operations could be placed between
RegOpenKey and RegCloseKey. Thus, we focus on the
elimination of RegOpenKey and RegCloseKey in the outer
redundancy because the elimination for the combination of
complex registry operations could incur unexpected side
effects. Moreover, most redundancy between RegOpenKey
and RegCloseKey could be handled when we eliminate the
internal redundancy.

Process Name Operation Path

s Explorer EXE & RegOpenkey HELM#SystemWCurrentControlSet#Control#%Session Manager
 ExplorerEXE &% RegCloseKey HELM®SystemWCurrentControlSet#Control#%Session Manager
s Explorer,EXE £ RegOpenKey HKLM#System#CurrentControlSetwControl#®Session Manager

& RegCloseKey
£ RegOpenkey
4 RegClosekey

s Explorer EXE
'+ Explorer,EXE
= Explorer EXE

HKLM#SystemWCurrentControlSet#Control#Session Manager
HKLM#%System@CurrentControlSet#WControl#Session Manager
HKLM#System CurrentControlSet#®Control#®Session Manager

FIGURE 10. Outer redundancy of RegOpenKey - RegCloseKey.

We will introduce three cases for the outer redundancy.
Fig. 10 represents the simplest case of the outer redun-
dancy. It is a redundant access pattern of RegOpenKey -
RegCloseKey. Even if there are no registry operations
between RegOpenKey and RegCloseKey, we observe that
RegOpenKey and RegCloseKey are repeated in many times,
which may be incurred from careless programming without
considering the efficiency of accessing to the registry. Here,
we can eliminate the redundancy by performing the first
RegOpenKey and the last RegCloseKey.

Fig. 11 represents another case of the outer redundancy
where an access pattern of RegOpenKey - RegQueryValue -
RegCloseKey is redundant. This is similar to the previous
case, but a read operation RegQueryValue is called between
RegOpenKey and RegCloseKey, which is a more general
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Process Name Operation Path

rExplorerEXE  #RegOpenKey HKCUWSoftwareWMicrosoft¥OneDriveWAccounts
rExplorerEXE  #RegQueryValue HKCUWSoftwareWMicrosoft#OneDriveWAccounts¥lastUpdate
rExplorerEXE  #RegCloseKey HKCUWSoftwareWMicrosoft#OneDriveWAccounts
rExplorerEXE  #(RegQueryKey — HKLM

~ ExplorerEXE  #RegOpenKey HKCUWSoftwareWMicrosoftWOneDriveWAccounts

~ ExplorerEXE  #{RegQueryValue HKCUWSoftwareWMicrosoft#OneDriveWAccounts¥LastUpdate
rExplorerEXE  #RegCloseKey HKCUWSoftwareWMicrosoft#OneDrive¥Accounts

FIGURE 11. Outer redundancy of RegOpenKey - RegQueryValue -
RegCloseKey.

Process Name Operation Path
m Explorer EXE # RegOpenKey HKCR#Excel CSY
s Explorer EXE £ RegQueryKey HKCRWExcel.CSY

& RegQueryKey
£ RegQueryValue
& RegQueryValue
& RegClosekey
&% RegOpenKey
#4 RegQuerykey
&% RegQueryKey
ﬂ RegQueryValue
ﬂ RegQueryValue
£ RegCloseKey

s Explorer,EXE
r Explorer, EXE
e Explorer.EXE
s Explorer EXE
s Explorer, EXE
s Explorer EXE
m Explorer,EXE
m Explorer,EXE
m Explorer, EXE
v Explarer EXE

HEKCR#WExcel,CSY
HKCR#®Excel CSV%sShortcut
HKCRWExcel.CSV#IsShortcut
HKCR#Excel CSY
HKCRWExcel,CSY
HECR®#Excel CSY
HKCRWExcel CSY
HKCR#Excel CSV¥IsShortcut
HKCR#WExcel CSV¥IsShortcut
HKCRWExcel.CSV

FIGURE 12. Outer redundancy of RegOpenKey - RegQueryKey -
RegQueryKey - RegQueryValue - RegQueryValue - RegCloseKey.

case to access to the registry. Here, we can eliminate the
redundancy by repeating only RegQueryValue while per-
forming the first RegOpenKey and the last RegCloseKey.

Fig. 12 represents the last case of the outer redundancy
where an access pattern RegOpenKey - RegQueryKey -
RegQueryKey - RegQueryValue - RegQueryValue - Reg-
CloseKey is redundant. This is a quite complex pattern com-
pared to the previous two patterns. Even this complex access
pattern is redundant in many times. That is, according to
the result of our redundancy detection algorithm presented
in Section V, the number of redundancy for this pattern
is 51,379.

When we detect the redundancy in access patterns, we need
to consider very complex cases including the case as
in Fig. 12. All the possible cases of the access patterns
between RegOpenKey and RegCloseKey can be obtained
by Eq. (1) if we simply assume that at most one operation
could appear in the pattern. According to Table 4, 15 opera-
tions have been observed between RegOpenKey and Reg-
CloseKey, i.e., n = 15 in Eq. (1). This implies that it is
impossible to manually detect all the redundant access pat-
terns. Consequently, we need an automatic method to detect
the redundancy completely including even complex cases.

> P, i) (1)
i=1

3) DISCUSSION TO WRITE OPERATIONS

We can also observe the redundant patterns on write oper-
ations to the registry such as RegCreateKey and RegSet-
InfoKey even if their portions are not significant. We can
consider its redundancy similarly. However, we exclude the
case involving the write operations because the elimination
of its redundancy may incur the side effects in the internal
redundancy. Specifically, even the same registry operation
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may change the registry state into different one. For exam-
ple, two operations of RegSetInfoKey may change the key
information into a different key.

However, in the outer redundancy, we allow the write
operations between RegOpenKey and RegCloseKey when
we eliminate the redundancy because our targets to eliminate
the redundancy are RegOpenKey and RegCloseKey, not the
write operations, which will be explained in Section I'V.

C. VERIFICATION OF THE REDUNDANT ACCESS PATTERNS
In this section, we verify the redundant access patterns iden-
tified in Section III-B by disassembling the binary of the
Windows program to check if they actually exist in the level
of assembly codes. To disassemble the binary of the Windows
application, we use IDA [11], which is a representative static
analysis disassembler for binaries. We choose Explorer.exe as
a Windows application to disassemble, which has been used
to show redundant access patterns in Section III-B.

Fig. 13 introduces two assembly codes having redundant
access patterns that have been identified in Section III-B.
Fig.13 (a) is assembly codes corresponding to the inter-
nal redundancy in Fig. 8. That is, the access pattern Reg-
QueryValue is redundant for the registry key “SYSTEM\
Setup”. Fig. 13 (b) is assembly codes corresponding to
the outer redundancy in Fig. 11. That is, the access pat-
tern RegOpenKey - RegQueryValue - RegCloseKey is
redundant for the registry key “SOFTWARE\WMicrosoft\
Windows\CurrentVersion\Policies.”

IV. REDUNDANCY DETECTION ALGORITHM

In this section, we propose the redundancy detection algo-
rithm that automatically detects all the possible redundant
access patterns from the large-scale log data. Redundancy is
detected on the internal and outer duplication, respectively.

A. INTERNAL REDUNDANCY DETECTION

Fig. 14 shows an algorithm for detecting the internal redun-
dancy. We have a function called, data_preprocessing, for
preprocssing the entire log data collected from Process
Monitor. In the function, we extract the associated reg-
istry operations for each process from the entire data. Here,
we assign the identifier for each basic structure (simply,
BS_ID) into each registry operation. Each basic structure is
defined as a sequence of the registry operations starting from
RegOpenKey and ending to RegCloseKey corresponding
to RegOpenKey. We can identify the basic structure using
BS_ID when we eliminate the redundancy. Each element of
the result consists of (BS_ID, Operation, Path), which will be
used for both the internal and outer redundancy.

The algorithm for detecting the internal redundancy is
called by passing the log data for each process, which has
been obtained by the data_preprocessing function, as the
parameter. First, we find the basic structure. In each basic
structure, we identify the internal redundancy and count the
number of the redundancy. Here, we distinguish the paths that
are accessed by the registry operation. That is, we need to
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lea  rax, [rbp+hkey]

pov  rod, 2801sh ; samDesired

xor réd, r8d ; ulOptions

rov  [rspe3ehephiresult], rax ; phkResult
t

p_{
Imov rex, OFFFFFFF 5 hey

onst WCHAR 35yt
Exi aSystemSetup_0: A KRE
test  eax, eax text "UTF-16LE", 'SYSTEM\Setup',®
inz loc_140180974 |

[}

jmov rcx, [ropehkey] ; hKey

lea  rax, [rbprcbbata)

fmov [rsp+38h+lpcbata], rax ; lpcbdata
lea rdx, aOobeinprogress e
lea rax, [rbp+Data]
ov  dword ptr [rbpeData], ebx
1 q fror red, rod

frov [rsp+3gh+phkResult], rax ; lpbata
xor r8d, r8d ; lpReserved
fmov [rbp+cbDa

call  cs:Reg
[test eax, eax

inz short loc_14018096A

[y

rex, (rbp
rax, [rbp: t;
[rsp+30h+: ta], rax ; lpcbData
rdx, alobeinprogress ; ’
rax, [rbpsData]

hKey

2 4 [rbpecbData), & progress: TA XRE!
red, red 1pType -16LE", '00BEInProgress’,@
[rsp+30hephkResult], rax ; lpData
r8d, réd ; lpReserved
eax, sax
short loc_1401B8965

(a) Internal redundancy (RegQueryValue).

— = 1

I

i

o iscremaratiironcae:

all pent

na short loc_14811841C

)
]
call €s:Regl Luef «

19 £ o em

anz short loc_148119412
loc_14011941C:
lea rax, [ropenkey]
short loc 148113484
g
=
—

(b) Outer redundancy (RegOpenKey — RegQueryValue — Reg-
CloseKey).

FIGURE 13. Verification of the redundant access patterns in the level of
assembly codes.

differentiate the same registry operation accessing to different
registry paths. For each identified pattern (i.e., a registry oper-
ation), we obtain (BS_ID, Operation, Path, Count). Fig. 7,
Fig. 8, and Fig. 9 are the examples for the internal redundancy
where the patterns are represented in a consecutive way or an
inconsecutive way. Using this detection algorithm, we can
detect any patterns including those cases.

As discussed in Section III-B, we do not consider the
write operations in the internal redundancy. When both read
operations and write operations are combined in the pat-
tern, the read operations after the write operations cannot
be removed because the write operations could affect the
keys or values for the read operations. Fig. 15 shows the
example of this case. In this example, RegQueryKey is
repeated between RegOpenKey and RegCloseKey. Here,
the registry key is updated by RegSetInfoKey while Reg-
QueryKey is performed. In this case, RegQueryKey after
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Internal redundancy detection

1 def data_preprocessing (process) :

2 data = entire log data collected from ProcessMonitor

3 process_data = [] // each element consists of (BS_ID. Operation. Path)
4 BSID=0

5 for i in range(0. len(data) ) :

6 if (data[i ]['ProcessName'] == process) :

7 if (data[i ]['Operation'] == 'RegOpenKey") :

8 j=i
9 while (! (data[j ]['Operation'] == 'RegCloseKey'
and data[j ]['Path'] == data[i ][Path']) ) :
10 process_data.append((BS_ID. data[j ]['Operation']. data[j ]['Path']))
11 Jj=j+1
12 BS ID=BS ID +1

13 return process_data

15 def detect_internal redundancy (process_data) :
16 internal_redundant patterns = {}
17 i=0

18 while (i <len(process_data) ) :

19 if (process_data[i ]['Operation'] == 'RegOpenKey') :
20 j=i
21 while (! (process_data[j ]['Operation'] == 'RegCloseKey'

and process_data[j ]['Path'] = process_data[i ]['Path'] )
and process_data[j ]['Operation'] !='Reg_WriteOperations') :
22 if (process_data[i ]['Path'] in process_data[j ]["Path']):
23 internal _pattern = (process_data[j ][BS_ID'"]. process_data[j ]['Operation'].
process_data[j ][Path'])

24 if (process_data[j ] not in internal_redundant_patterns.keys()) :

25 internal_redundant_patterns.append(internal_pattern. 1)

26 else :

27 (internal_pattern. count) = internal_redundant_patterns.search(internal _pattern)
28 internal_redundant_patterns.update(internal_pattern. count+1)

29 j=j+1

30 i=i+1

31 return internal_redundant_patterns

FIGURE 14. Internal redundancy detection algorithm.

Process Name Operation Path

s Explorer,EXE #{Regopenkey HKLM#SOFT ache

™ Explorer,EXE '3 HKLMWSOFT ache
&« HKLMWSOFT

s ExplorerEXE & RegSetinfoKey HKLM#SOFT ache

s Explorer EXE #(RegQueryKey HKLMWSOFT!

™ Explorer.EXE X RegQuerykey HKLMWSOFT ache

" Explorer.EXE £ RegQuerykey HKLM#SOFT ache

s Explorer.EXE 3 HKL

s Explorer EXE £ RegClosekey HKLM##SOFT:

FIGURE 15. The case where both the read and write operations are
combined.

RegSetInfoKey is necessary because the key updated by
RegSetInfoKey should be reloaded by RegQueryKey. But,
to maximize the effect of eliminating the redundancy,
we detect the redundant read patterns before the write oper-
ations appear. In Line 21 of the algorithm, we have the
condition for this.

B. OUTER REDUNDANCY DETECTION

Fig. 16 shows an algorithm for detecting the outer redun-
dancy. The basic logic of the outer redundancy detection
is similar to that of the internal redundancy detection. The
main difference is that we define the pattern for the outer
redundancy as a sequence of all the operations between
RegOpenKey and RegCloseKey as in Lines 8~11 and check
if the defined patterns are redundant as in Lines 12~16.
Fig. 10, Fig. 11, and Fig. 12 are the examples of this case.
Using this algorithm, we can detect any complex patterns
including those examples.

VOLUME 8, 2020



J.-H. Lee, H.-Y. Kwon: Redundancy Analysis and Elimination on Access Patterns of the Windows Applications Based on 1/0 Log Data

IEEE Access

TABLE 5. All the access patterns having the internal redundancy (Occurrences).

Patterns Total (Portion) Consecutive Inconsecutive Total redundancy Portion of
redundancy redundancy redundancy
RegOpenKey 3,398,806 (29.65%) 83,922 1,813,408 1,897,330 55.82%
RegQueryKey 2,957,266 (25.80%) 669,249 1,666,708 2,335,957 78.99%
RegQueryValue 2,127,163 (18.56%) 332,372 764,171 1,096,543 51.55%
RegCloseKey 1,878,538 (16.39%) 4,950 937,221 942,171 50.15%
RegEnum Value 337,098 (2.94%) 269,906 45,535 315,441 93.58%
RegEnumKey 229,246 (2.00%) 84,882 113,461 198,343 86.52%
RegQueryKeySecurity 2,906 (0.03%) 1,189 774 1,963 67.55%
RegLoadKey 705 (0.01%) 12 192 204 28.94%
RegQueryMultipleValueKey | 383 (0.00%) 94 134 228 59.53%
Others (Write Operations) 531,581 (4.64%) 0 0 0 0.00%
[Total [ 11,463,692 [ 1,446,576 [5,341,604 [6,788,180 [59.21% ]

Outer redundancy detection

1 def detect_outer redundancy (process_data) :
2 outer_redundant patterns =[]
3 i=0

4 while (7 < len(process_data) ) :

5 if (process_data['Operation][7 ] == '"RegOpenKey") :
6 outer_pattern =[]
7 j=i
s while (! (process_data['Operation'][j] == RegCloseKey'
and process_data['Path][j ] = process_data['Path][i]) ) :
9 if (process_data['Path'][/] in process_data['Path'][7]):
10 outer_pattern.append((process_data[BS_ID'][/ ],

process_data['Operation'][/]. process_data["Path'][/]))

11 j=j+1

12 if (outer_pattern not in outer_redundant_patterns.keys()):

13 outer_redundant patterns.append(outer_pattern, 1)

14 eke :

15 (outer_pattern, count) = outer_redundant patterns.search(outer_patter:
16 outer_redundant_patterns.update(outer_pattern, count+1)

17 i=i+l1

18 return outer_redundant patterns

FIGURE 16. Outer redundancy detection algorithm.

C. ANALYSIS ON THE REDUNDANCY DETECTION

Now, we summarize the results of the redundancy detection
algorithm. Table 5 shows the results of all the access patterns
having the internal redundancy. Due to the redundancy detec-
tion algorithm, we can efficiently and effectively detect the
redundancy from large-scale log data. We note that all the pat-
terns we have observed in Section I1I-B, i.e., RegQueryKey
and RegQueryValue are included in the detected patterns.
In addition, we find all the other patterns that have the internal
redundancy. To see the effects of both consecutive and incon-
secutive redundancy, we count them separately. As shown
in the table, the patterns with the high occurrences are
RegOpenKey, RegQueryKey, RegQueryValue, and Reg-
CloseKey, which occupy about 90.40%. In addition, we note
that they have many redundancies of 50.15%~78.99%. The
total internal redundancy for all the patterns is about 59.21%.
We can eliminate them only if we consider the case where the
updates to the registry are occurred by the other processes.
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In Section V-C, we will discuss it and present the method to
remove the side effects completely according to the redun-
dancy elimination.

Table 6 shows the top-10 access patterns having the outer
redundancy. In the detected patterns, all the patterns we have
observed in Section III-B such as RegOpenKey - RegQuery-
Value - RegCloseKey and RegOpenKey - RegQueryKey
- RegCloseKey are included. In addition, we find all the
other patterns that have the outer redundancy. We indicate that
many various patterns are detected because the others except
for the top-10 access patterns still occupy about 22.21%.
As shown in the table, the top-3 patterns with the high occur-
rences are RegOpenKey - RegSetInfoKey - RegQuery-
Value - RegCloseKey, RegOpenKey - RegCloseKey, and
RegOpenKey - RegQueryValue - RegCloseKey, which
occupy about 43.48%. In addition, we note that they have
many redundant patterns of 43.43%~69.19%. The total
redundancy for all the patterns is about 57.50%. We can effec-
tively eliminate the redundancy without the side effects by
eliminating the redundant pattern of RegOpenKey and Reg-
CloseKey while we remain the registry operations between
RegOpenKey and RegCloseKey.

Table 7 shows the analyzed result for the top-10 processes
frequently accessing to the registry to check the I/O operation
portion by the process. The table shows the portion by the
I/O operation type of the processes. The result indicates
that I/O operations are concentrated on the registry and file
system in terms of both occurrences and duration; occur-
rences and duration for network and process are negligible.
The occurrences for the registry operation occupy 35.83% ~
96.55%, and 76.92% on average; the duration for the registry
7.11% ~ 79.54%, and 32.06% on average. The portion of
redundancy is 47.70% ~ 82.41%, and 71.49% on average.
As aresult, we conclude that we can improve the performance
of the process by eliminating the redundant accesses to the
registry.

V. REDUNDANCY ELIMINATION ON THE ACCESS
PATTERNS TO THE WINDOWS REGISTRY

A. TWO-LEVEL REDUNDANCY ELIMINATION METHOD

In this section, we propose a two-level redundancy elim-
ination method for eliminating redundant and unnecessary
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TABLE 6. Top-10 access patterns having the outer redundancy (Occurrences).

Pattern No. | Patterns Total (Portion) Redundancy Portion of
redundancy
Outery RegOpenKey-RegSetInfoKey-RegQuery Value-RegCloseKey 181,253 (15.08%) | 105,425 58.16%
Outera RegOpenKey-RegCloseKey 181,178 (15.07%) | 125,353 69.19%
Outers RegOpenKey-RegQuery Value-RegCloseKey 160,261 (13.33%) | 69,600 43.43%
Outery RegOpenKey-RegQueryKey-RegOpenKey-RegQuery Value- 107,535 (8.95%) | 82,468 76.69%
RegCloseKey
Outers RegOpenKey-RegOpenKey-RegCloseKey 85,109 (7.08%) 64,090 75.30%
Outerg RegOpenKey-RegQueryKey-RegQueryKey-RegQuery Value- 66,781 (5.56%) 51,379 76.94%
RegQueryValue-RegCloseKey
Outery RegOpenKey-RegQueryKey-RegOpenKey-RegCloseKey 58.197 (4.84%) 48,241 82.89%
Outersg RegOpenKey-RegQuery Value-RegQuery Value-RegCloseKey 56,020 (4.66%) 2,565 4.58%
Outerg RegOpenKey-RegSetInfoKey-RegCloseKey 19,943 (1.66%) 14,610 73.26%
Outer10 RegOpenKey-RegQueryKey-RegQueryKey-RegCloseKey 18,820 (1.57%) 6,326 33.61%
Others 267,052 (22.21%) | 121,158 45.37%
[ Total [1,202,149 [691,215 [57.50%
TABLE 7. Analysis on 1/0 operation portion for the top-10 processes frequently accessing to the registry.
Processes Registry File system Network Process
- Occurrences | Duration Redundancy | Occurrences | Duration Occurrences | Duration Occurrences | Duration
(Portion) (Portion) (Portion) (Portion) (Portion) (Portion) (Portion) (Portion) (Portion)
trustedinstaller.exe || 2,831,412 203.58 secs | 1,780,305 1,067,219 160.29 secs | O 0 secs 21 0.00 secs
(72.63%) (26.65%) (62.88%) (27.37%) (73.35%) (0.00%) (0.00%) (0.00%) (0.00%)
explorer.exe 2,123,175 152.66 secs | 1,698,110 | 305,209 160.29 253 0.00 912 0.00
(87.39%) (48.78%) (79.98%) (12.56%) (51.22%) (0.01%) (0.00%) (0.04%) (0.00%)
iexplorer.exe 1,687,270 121.32 secs | 1,390,553 472,062 24791 secs | 81,720 0.00009 secs | 2,302 0.00004 secs
(75.21%) (32.86%) (82.41%) (21.04%) (67.14%) (3.64%) (0.00%) (0.10%) (0.00%)
excel.exe 830,263 121.32 secs | 607,116 153,792 80.77 secs 1,168 0.00 secs 1,003 0.00001 secs
(84.19%) (32.86%) (73.12%) (15.59%) (57.50%) (0.12%) (0.00%) (0.10%) (0.00%)
winword.exe 694,664 49.95 secs 518,767 273,044 143.39 secs | 735 0.00 secs 665 0.00001 secs
(71.68%) (25.83%) (74.68%) (28.17%) (74.17%) (0.08%) (0.00%) (0.07%) (0.00%)
powerpnt.exe 694,075 49.90 secs 519,134 142,322 74.74 secs 1,063 0.00 secs 810 0.00001 secs
(82.80%) (40.04%) (74.80%) (16,98%) (59.96%) (0.13%) (0.00%) (0.10%) (0.00%)
svchost.exe 563,521 40.52 secs 272,043 149,403 78.46 secs 6,012 0.00001 secs | 2,189 0.00004 secs
(78.14%) (34.05%) (48.34%) (20.72%) (65.95%) (0.83%) (0.00%) (0.30%) (0.00%)
mspaint.exe 219,108 15.75 secs 171,557 24,646 12.94 secs 0 0.00 secs 302 0.00001 secs
(89.78%) (54.90%) (78.30%) (10.10%) (45.10%) (0.00%) (0.12%) (0.00%)
sihost.exe 176,700 12.70 secs 102,697 6,222 3.27 secs 0 0.00 secs 87 0.00 secs
(96.55%) (79.54%) (58.12%) (3.40%) (20.46%) (0.00%) (0.00%) (0.05%) (0.00%)
msmpeng.exe 170,113 12.23 secs 81,151 304,474 159.90 secs |23 0.00 secs 181 0.00 secs
(35.83%) (7.11%) (47.70%) (64.13%) (92.89%) (0.00%) (0.00%) (0.04%) (0.00%)
RegOpenKey() In the two-level redundancy elimination method, the order
Reg_Operation, () RegOpenKey()

Reg_Operation, ()
RegCloseKey()

Reg_Operation, ()

RegCloseKey() RegOpenKey()

Reg_Operation, ()
RegCloseKey()

RegOpenKey()
Reg_Operation,()
Reg_Operation,()
RegCloseKey()

RegOpenKey()
Reg_Operation,()
Reg_Operation,()
RegCloseKey()

RegOpenKey()
Reg_Operation, ()

- [ -

Internal Outer Reg_Operation,()
Redundancy Redundancy Reg_Operation,()

RegOpenKe; RegOpenKe: .
op y0 Elimination Bos ¥0 Elimination Reg_Operation,()

Reg_Operation, ()
Reg_Operation,()
Reg_Operation,()
RegCloseKey()

Reg_Operation, ()
Reg_Operation,()
RegCloseKey()

RegCloseKey()

FIGURE 17. The concept of the two-level redundancy elimination method.

access patterns effectively. Fig. 17 shows the concept of the
two-level redundancy elimination method. The basic idea
is applying the redundancy elimination in two-level: 1) to
the internal redundancy (i.e., internal redundancy elimina-
tion) and 2) to the outer redundancy (i.e., outer redundancy
elimination).
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of applying the internal and outer redundancy elimination
is important because each one affects the other. To enhance
the effect of the redundancy elimination, we first apply
the internal redundancy elimination, and then, the outer
redundancy elimination based on the result of the internal
redundancy elimination. We call this order of redundancy
elimination internal-then-outer redundancy elimination. This
stems from the fact that the internal redundancy elimination
converges the multiple different original patterns into the
same pattern. As a result, we can enhance the effect of the
outer redundancy elimination. Fig. 18 represents the actual
example that shows this effect. Here, we have two differ-
ent patterns RegOpenKey - RegQueryValue - RegQuery-
Value - RegQueryValue - RegQueryValue - RegCloseKey
and RegOpenKey - RegQueryValue - RegCloseKey. If we
apply the internal redundancy elimination to the first pattern,
then it becomes the same pattern as the second one. Then,
we can eliminate the outer redundancy.
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Process Name  Operation Path

AExplorerEXE  #RegOpenKey — HKLMWSOFT yptograph der Types#Type 001
1ExplorerEXE  #RegQueryValue HKLMWSOFT! i ptograp Types#Type 001%Name
\ExplorerEXE  #RegQueryValue HKLMWSOFT) icrosoftwCryptograph der Types#Type 001#%Name
+Explorer.EXE  #RegQueryValue HKLMWSOFT Yyptograp Types#Type 001#%Name
ExplorerEXE  #{RegQueryValue HKLMWSOFT icrosoftwCryptograph: Types#Type 001%Name
\ExplorerEXE  #RegCloseKey ~ HKLMWSOFT) i yptograph der Types#Type 001
~ExplorerEXE  #{RegOpenKey ~ HKLMWSOFT! yptograpl TypesWType 001
+ExplorerEXE  #RegQueryValue HKLMWSOFT) Yyptograp Types#Type 001#%Name
1ExplorerEXE  #RegCloseKey ~ HKLMWSOFT) icrosoftWCryptographyWD der Types#Type 001

FIGURE 18. The example of the improved effect of the redundancy
elimination due to the internal-then-outer redundancy elimination.

Original pattern Internal redundancy elimination

1 //Perform both registry operations and 1 //Performregistry operations once

2 //main operation for » times 2 RegOpenKey()

3 RegOpenKey() 3 Reg_Operations()

4 4

5 foriinn: 5 //Perform only main operations for » times
6 Reg_Operations() 6 foriinn:

7 MainOperations() 7 MainOperations()

8 8

9  RegCloseKey() 9  RegCloseKey()

10 10

FIGURE 19. The algorithm of the internal redundancy elimination.

From now on, let us explain the internal and outer redun-
dancy elimination algorithm, respectively. Fig. 19 shows
the algorithm of the internal redundancy elimination. Here,
we define the registry operations in Table 5 (e.g., Reg-
QueryKey or RegEnumKey) as Reg_Operations. We can
easily eliminate redundancy on Reg Operations by per-
forming Reg_Operations once. This redundancy elimination
will not incur any side effects if updates on the registry are
not occurred by other processes while main operations are
repeated. However, if updates are occurred on the registry,
this could make a different result from the original access
pattern. We will discuss this case in Section V-C and present
a method that eliminates side effects completely.

Original pattern Outer redundancy elimis
1 //Perform both registry operations and 1 //Perform RegOpenKey once
2 //main operation for » times 2 RegOpenKey()
3 3
4 foriinn: 4 //PerformReg_Operations and
5 RegOpenKey() 5 //main operations for » times
6 Reg_Operations() 6 foriinm:
7 MainOperations() 7 Reg_Operations()
8 RegCloseKey() 8 MainOperations()
9 9

// Perform RegCloseKey once
RegCloseKey()

- o
- o

FIGURE 20. The algorithm of the outer redundancy elimination.

Fig. 20 shows the algorithm of the outer redundancy
elimination. Here, we define a sequence of the patterns
in Table 6 as Reg_Operations. As shown in Section III-B,
RegOpenKey and RegCloseKey are not necessary to
be repeated. Therefore, we can remove all the repeated
RegOpenKey operations except for the first one and all the
repeated RegCloseKey except for the last one. As presented
in Fig. 20, all the registry operations are repeated in the orig-
inal access patterns while RegOpenKey and RegCloseKey
are performed once in the outer redundancy elimination.
Because RegOpenKey and RegCloseKey occupy much por-
tion as presented in Table 4 (i.e., 61.79% in the duration),
we can significantly improve the performance of the program
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TABLE 8. The effect of the internal redundancy elimination (Occurrences).

Patterns Original pattern | Unique pattern | Portion of
redundancy
RegOpenKey 3,398,806 1,501,476 55.82%
RegQueryKey 2,957,266 621,309 78.99%
RegQueryValue 2,127,163 1,030,620 51.55%
RegCloseKey 1,878,538 936,367 50.15%
RegEnum Value 337,098 21,657 93.58%
RegEnumKey 229,246 30,903 86.52%
RegQueryKey- 2,906 943 67.55%
Security
RegLoadKey 705 501 28.94%
RegQuery- 383 155 59.53%
MultipleValueKey
Others (Write Oper- | 531,581 531,581 0.00%
ations)
[ Total [ 11,463,692 [4,675,512 [5921% |

by this redundancy elimination strategy while it does not
incur side effects at all.

B. ANALYZING THE EFFECT OF THE TWO-LEVEL
REDUNDANCY ELIMINATION METHOD

In this section, we analyze the effect of the two-level redun-
dancy elimination method. Table 8 shows the effect of the
internal redundancy elimination. It shows the occurrences of
original patterns having redundancy, occurrences of unique
patterns, and the portion of the redundancy. From the por-
tion of the redundancy for each pattern, we know the effect
of the redundancy elimination. For instance, in the case of
RegOpenKey, the occurrences in the original pattern with
the redundancy were 3,398,806. They can be reduced into
1,501,476 after the internal redundancy elimination. That is,
by the redundancy elimination, we can remove the redun-
dancy about 55.82%. In Table 8, we can obtain the effect
of the internal redundancy elimination on all the patterns
identified in Section IV. The overall effect of the internal
redundancy elimination on all the patterns is about 59.21%.

Table 9 shows the effect of the outer redundancy elimi-
nation. It shows the occurrences of original patterns having
redundancy, unique patterns, and the portion of the redun-
dancy. For instance, in the case of Outer;, the occurrences
in the original pattern were 181,253. They could be reduced
into 75,828 after the outer redundancy elimination. That is,
by the redundancy elimination, we can remove the redun-
dancy about 58.16%. In Table 9, we can obtain the informa-
tion on all the patterns identified in Section IV. The overall
effect of the outer redundancy elimination on all the patterns
is about 57.50%.

Table 10 shows the effect of the internal-then-outer
redundancy elimination. The internal redundancy elimina-
tion tends to convert the original pattern into a simplified
one. Consequently, it enhances the effect of the outer redun-
dancy elimination. For example, Outerig, RegOpenKey -
RegQueryKey - RegQueryKey - RegCloseKey, could be
reduced into Outers, RegOpenKey - RegQueryKey - Reg-
CloseKey. Then, those access patterns, which have been
different originally, are converged into the same pattern, and
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TABLE 9. The effect of the outer redundancy elimination (Occurrences).

TABLE 11. The final effect of the two-level redundancy
elimination (Occurrences).

Pattern No. | Original pattern Unique pattern Portion of
redundancy Operations Original Internal Outer Effect of
Outery 181,253 75,828 58.16% pattern redundancy | redundancy | two-level
Outers 181,178 55,825 69.19% elimination | elimination |redundancy
Outers 160,261 90,661 43.43% elimination
Owutery 107,535 25,067 76.69% RegOpenKey 3,398,806 1,501,476 940,219 72.34%
Outers 85,109 21,019 75.30% RegQueryKey 2,957,266 621,309 621,309 78.99%
Outerg 66,781 15,402 76.94% RegQueryValue |2,127,163 1,030,620 1,030,620 51.55%
Outery 58,197 9,956 82.89% RegCloseKey 1,878,538 936,367 384,443 79.53%
Outers 56.020 53.455 2.538% RegEnumValue | 337,008 21,657 21,657 93.58%
Outerg 19,943 5,333 73.26% RegEnumKey 229,246 30,903 30,903 86.52%
Outerio 18,820 12,494 4537% RegQ}leryKey- 2,906 943 943 67.55%
Others 267,052 145,894 4537% Security
RegLoadKey 705 501 501 28.94%
[ Total [1,202,149 [510,934 [57.50% ] RegQuery- 383 155 155 39539
MultipleValueKey
TABLE 10. The effect of the internal-then-outer redundancy Others' (Write | 531,581 531,581 531,581 0.00%
elimination (Occurrences). operations)
lTotal [ 11,463,692 [4,675,512 [ 3,562,331 [68.93% ‘

Pattern | Original Outer Internal-then- | Improved effect
No. pattern redundancy | outer of internal-
elimination | redundancy then-outer
elimination redundancy

Outery | 181,253 75,828 13,880 81.70%
Outery | 181,178 55,825 26,738 52.10%
Outers | 160,261 90,661 50,371 44.44%
Outery | 107,535 25,067 1,504 94.00%
Outers | 85,109 21,019 14,154 32.66%
Outerg | 66,781 15,402 19 99.88%
Outery | 58,197 9,956 3,759 62.24%
Outersg | 56,020 53,455 8,167 84.72%
Outerg | 19,943 5,333 3,757 29.55%
Outeryo | 18,820 12,494 1,167 90.66%

Others |267,052 145,894 110,795 24.06%

[ Total [1,202,149 [510,934 [234311 [54.14% |

they can be eliminated from the outer redundancy. Overall,
the internal-then-outer redundancy elimination improves the
effect of the redundancy elimination by about 54.14%.

Table 11 shows the final effect of the two-level redun-
dancy elimination method. It first eliminates the internal
redundancy, which reduces the redundancy by about 59.21%;
then it eliminates the outer redundancy, which reduces the
redundancy additionally by about 23.81%. Here, we note that
the outer redundancy elimination affects only two operations
RegOpenKey and RegCloseKey. Overall, we can expect
that 68.93% of redundancy is eliminated by the two-level
redundancy elimination method.

C. EVENT-DRIVEN METHOD FOR CATCHING

UPDATES ON THE WINDOWS REGISTRY

In Section III-B, we discussed the case where the redundancy
elimination method could incur the side effect due to the
updates of the registry. That is, the redundancy elimination
method performs the registry operation once, and then, uses
the retrieved value repeatedly in the main operations. Here,
if the updates on the Windows registry occur after we retrieve
the data from the registry, it could use out-of-date values.
To prevent this case, we present an event-driven method.
The basic idea is that we register an event handler to catch the
updates on a target registry and read a newly updated value
from the registry when the registered event occurs.
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Main Thread
// Perform registry operations once
Reg_Operations()
// Call event handler in the other thread
CreateEventHandlerThread()

Event Handler Thread
J// Register event to catch the updates

//for a target registry
RegNotifyChange KeyValue()

/I Perform only main operations for n times
fori inn

while (1) :
// Wati wntil the registered event is caught

1
2
3
4
5 // Work infiitely to catch the registered event
6
7
8 WaitForSingle Object()
9

©C o a o e W —

MainOperations()

0 //Read updated registry values
1 RegC 0

==

FIGURE 21. The event-driven internal redundancy elimination.

Fig. 21 shows pseudo codes that apply the event-driven
method when we eliminate the internal redundancy. It con-
sists of two threads: 1) main thread and 2) event handler
thread. The main thread performs registry operations once,
which is the same as in the redundancy eliminated access
patterns. Then, it calls an event handler that will catch the
event whenever the target registry is updated. Last, it per-
forms the main operations repeatedly. The event handler
thread registers an event to catch the updates for a target
registry. We use the RegNotifyChangeKeyValue()? as the
event handler to catch the updates on the target registry. Then,
it will work infinitely to catch the registered event. We note
that, if the registered event is caught, we can read the updated
registry value instantly. Specifically, while processing the
main operations in the main thread, we read newly updated
values by the event handler thread as soon as the updates are
occurred in the target registry.

By using the event-driven method, we can completely
remove the case where the programs read out-of-date values.
It could occur to read out-of-date values even in the original
access patterns with the internal redundancy, which read the
registry keys or values repeatedly, due to the time difference
between iterations in the loop. However, in the event-driven
method, the programs can read newly updated values right
after the updates are occurred on the registry. As a result,
the event-driven method achieves 1) efficient processing due

2https ://docs.microsoft.com/en-us/windows/desktop/api/winreg/nf-
winreg-regnotifychangekeyvalue
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(b) Overall flow for applying the redundancy elimination to the Windows applications.

FIGURE 22. Overall framework for redundancy analysis and the
application of the redundancy elimination.

to the redundancy elimination and 2) guaranteeing to instantly
read the newly updated data.

D. OVERALL FRAMEWORK

Fig. 22 shows the overall framework for redundancy anal-
ysis and the application of the redundancy elimination.
Fig. 22 (a) shows redundancy analysis on access patterns.
First, we detect the redundancy of access patterns from I/O
log data of Windows applications. Next, to remove them
without side effects, we propose the redundancy elimination
method. We can apply the proposed redundancy elimina-
tion method into actual Windows applications by combining
the existing work and the proposed redundancy elimination
method. However, in this paper, we do not cover the applica-
tion to the actual Windows applications because the automatic
translation of the source code is out of the scope of this
paper in which we focus on the redundancy analysis on access
patterns and the redundancy elimination.

In this paper, we only present the overall flow for applying
the proposed redundancy elimination into the actual Windows
applications as shown in Fig. 22 (b). The whole process
consists of three steps: 1) decompilation, 2) redundancy elim-
ination, and 3) compilation. For applying the redundancy
elimination, we first need to convert a given Windows appli-
cation in the binary to the compilable source code. For this,
we can adopt the existing methods that convert from the
platform-dependent binary to the platform independent high-
level source code [12], [13]. Next, we convert the high-level
source code to the redundancy eliminated source code using
the redundancy elimination method proposed in Section V-A
and Section V-C. Finally, we generate the Windows applica-
tion without redundancy in access patterns by compiling the
redundancy eliminated source code.

VI. EXPERIMENTAL RESULTS

A. EXPERIMENTAL ENVIRONMENTS

In this section, we show the effectiveness of the redundancy
elimination method by conducting three kinds of experi-
ments. We measure the performance of the original access
patterns and that of redundancy eliminated access patterns.
First, we measure the performance of the program consisting
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of each individual pattern having the internal redundancy.
We use the event-driven method that removes the side effect
of the internal redundancy elimination. Here, we also measure
the overhead of the event-driven method under the update
intensive environments to the registry. Second, we measure
the performance of the program consisting of each individual
pattern having the outer redundancy. Here, we also measure
the effect of the internal-then-outer redundancy elimination.
Third, we measure the performance when the multiple pro-
grams having combined access patterns are running concur-
rently. This aims to simulate real Windows environments that
run multiple programs simultaneously where each process
accesses to the Windows registry.

For the first and second experiments, we determine n of
the pseudo code for each pattern (i.e., Fig. 19, Fig. 20, and
Fig. 21) based on analyzing of log data. Thus, we use the
average number of redundancy on each pattern in Table 8 and
Table 9 as n. We fix the number of operations to be performed
for all the patterns because the patterns have different occur-
rences as shown in Table 8 and Table 9. For this fixed number,
we use 10,000. In addition, we define the MainOperations
as an operation that retrieves a registry value.

For the third experiment, we define a program to run all
the patterns (i.e., 9 patterns) having the internal redundancy
and top-10 patterns having the outer redundancy once and
execute multiple programs concurrently. Then, as the number
of the programs increases, we measure the performance of the
program consisting of the original access patterns and that of
the program consisting of the redundancy eliminated access
patterns.

To implement each pattern, we use the APIs provided by
MSDN (Microsoft Developer Network).> Our experiments
are conducted on the machine running Windows 10 64bit,
equipped with Intel Core 17-7820 @ 2.90 GHz CPU and
16GB RAM. All the source codes were implemented with
C++ using Microsoft Visual StudioMSVC) 2017.

B. EXPERIMENTAL RESULTS

1) EXPERIMENTS FOR THE INTERNAL REDUNDANCY

a: THE RESULTS ON THE PATTERNS HAVING

THE INTERNAL REDUNDANCY

Fig. 23 represents the comparison results between the original
and internal redundancy eliminated patterns. For the internal
redundancy elimination, we use the event-driven method to
exclude side effects when the updates are occurred on the
registry we are accessing. To check the overhead of the event-
driven method, we compare the case where the event-driven
method is not used and the case where the event-driven
method is used. In the event-driven method, the time for
registering an event handler is added, but it is negligible as
shown in Fig. 23. Finally, the result shows that the internal
redundancy elimination improves the performance of the
original access patterns by 33.95% ~ 90.25%. This stems

3 https://msdn.microsoft.com
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FIGURE 23. The comparison results of the access patterns in the internal
redundancy elimination.

from the fact that we remove unnecessary repeated registry
operations.

b: THE OVERHEAD OF THE EVENT-DRIVEN METHOD

WHEN THE UPDATES ARE OCCURRED

In the previous experiment, we measure the overhead
of the event-driven method, but actual updates for the
registry are not occurred. To check the overhead when
actual updates are occurred, we simulate the environments
where the update operations are periodically repeated based
on the statistics of write operations. Out of 9 patterns for
the internal redundancy, we have 7 patterns that require
the event-driven method: RegQueryKey, RegEnumKey,
RegQueryValue, RegEnumValue, RegQueryKeySecurity,
RegLoadKey, and RegQueryMultipleValueKey. The cor-
responding update operation for each operation is as fol-
lows: RegSetInfoKey for RegQueryKey, RegEnumKey,
RegQueryKeySecurity, Regl.oadKey, and RegQuery-
MultipleValueKey; RegSetValue for RegQueryValue and
RegEnumValue. According to the statistics, the average
frequency of RegSetInfoKey is 103.68ms, and RegSetValue
is 2863.86ms. For the experiment, we run another separate
process where the update operation is periodically executed
with a given frequency. Here, we use the frequency according
to the statistics as the base frequency and increase the base
frequency up to five times to check the overhead in update
intensive environments. Fig. 24 shows the elapsed time of
the event-driven method as we increase the frequency of the
update operation. We note that the performance degradation
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FIGURE 24. The performance evaluation of the event-driven method
when update operations are occurred.
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FIGURE 25. The comparison results of the access patterns in the outer
redundancy elimination.

where the frequency is five times of the base frequency is
only 0.38% ~ 1.66% compared to the case where updates are
not occurred at all. That is, even in the update intensive envi-
ronments, the proposed event-driven method is still efficient
while removing the side effects completely.

2) EXPERIMENTS FOR THE OUTER REDUNDANCY

a: THE RESULTS ON THE PATTERNS HAVING

THE OUTER REDUNDANCY

Fig. 25 represents the comparison results between the orig-
inal and outer redundancy eliminated access patterns. The
result shows that the outer redundancy elimination method
improves the performance of the original access patterns by
1.44% ~ 5.31%. This stems from the fact that we remove
unnecessary repeated registry operations of RegOpenKey
and RegCloseKey.

b: THE EFFECT OF THE INTERNAL-THEN-OUTER
REDUNDANCY ELIMINATION

In this experiment, to see the effect of the internal-then-outer
redundancy elimination, we compare the result of applying
the outer redundancy elimination directly into the original
patterns and the result of applying the internal-then-outer
redundancy elimination. Fig. 26 represents the results of
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FIGURE 26. The comparison results to check the effect of applying the
internal-then-outer redundancy elimination.

comparison of original, direct outer redundancy elimina-
tion, and the internal-then-outer redundancy elimination. The
result shows that applying the internal-then-outer redundancy
elimination improves the performance of direct outer redun-
dancy elimination by 0.55% ~ 2.34%. This stems from the
fact that we converge multiple different patterns into the same
one by the internal redundancy elimination, and it enhances
the effect of the outer redundancy elimination.

3) EXPERIMENTS FOR MULTIPLE PROGRAMS HAVING
COMBINED ACCESS PATTERNS

Fig. 27 shows the comparison results of the original and
two-level redundancy elimination method when the mul-
tiple programs, which combine access patterns of all the
access patterns having the internal redundancy (i.e., 9 access
patterns) and top-10 access patterns having the outer redun-
dancy, are running concurrently. When the multiple programs
run, they will access to the registry concurrently. As the
competition to the registry becomes severe, we can expect
that the performance improvement of the programs where the
redundancy is eliminated will be increased. The experimental
results show that the performance improvement according to
the redundancy elimination is increased by 8.93% ~ 26.21%
when the number of multiple programs is increased from
1 to 20. We note that this result shows the effectiveness of
the redundancy elimination method because the redundancy
elimination method not only improves the performance of
the individual program but also solves the bottleneck of the
system to the registry.

VII. RELATED WORK

In this paper, we propose a method to improve the per-
formance of Windows applications by analyzing I/O log
data. Especially, we eliminate the redundant access patterns
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FIGURE 27. The performance improvement of the two-level redundancy
elimination method compared to the original program as the number of
programs running is increased.

to the Windows registry, which has not been considered in
the previous work. We classify existing related work into
the following five categories: 1) Windows registry forensics
and access analysis, 2) redundancy elimination, 3) pattern-
based code transformation, 4) source code transformation and
optimization, and 5) binary transformation and optimization.

A. WINDOWS REGISTRY FORENSICS

AND ACCESS ANALYSIS

The existing researches for Windows registry forensics and
access analysis have been mostly focused on the detection of
malicious software. Dollan-Gavitt et al. presented techniques
that can extract data in Windows registry from the memory
dumps [5]. Apap et al. presented an intrusion detection sys-
tem that monitors anomalous accesses to the Windows reg-
istry [14]. They trained a model of normal registry accesses
and used this model to detect abnormal registry accesses.
Saidi et al. analyzed the Windows registry to trace the artifacts
left by the attacker [15]. Roy et al. demonstrated how to track
data theft from the system via USB devices by analyzing
Windows registry [16].

B. REDUNDANCY ELIMINATION

Komondoor and Horwitz modeled the entire source code as a
program dependence graph and identified duplicated nodes in
the graph [17]. Ducasse et al. detected duplicated codes after
transforming the source codes into the language-independent
form [18]. Lopez et al. defined equivalent mutants that are
functionally equivalent to the original programs and found
equivalent and improved mutants [19]. Briggs et al. improved
the effectiveness of the partial redundancy elimination in
the source code by overcoming the limitation that only rec-
ognizes lexically-identical expressions [20]. Mayfield et al.
proposed an automatic memoization method, which refers to
a method that transforms an ordinary function into one that
caches its results to avoid repeating of the calculation, for Al
applications [21].

C. PATTERN-BASED CODE TRANSFORMATION

There have been some researches for transforming the source
code based on the pattern matching. Cai et al. proposed a
pattern-based code transformation for migrating the appli-
cation into the cloud environment [22]. They applied the
pattern matching method based on the regular expression
into the source code and transformed the original code
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automatically to the target code. Preissl er al. detected bot-
tleneck patterns in the message passing interface and guided
the optimized source codes for them [23]. Kartsaklis et al.
designed a code transformation system, called HERCULES,
aiming to improve the code maintenance and to optimize
the performance [24]. HERCULES transformed the source
code according to pattern-based transformation scripts.
Kessler et al. proposed a system that can automatically
parallelize the code for distributed memory systems using
the pattern-recognition tool [25]. Sangwan et al. proposed
a method for performance tuning in the real-time imaging
system through pattern-based code transformation [26].

D. SOURCE CODE TRANSFORMATION

AND OPTIMIZATION

There have been many researches of source code transfor-
mation and optimization for improving the performance of
the software. Chung improved the energy consumption of
softwares by applying loop unrolling and loop blocking tech-
niques to source codes [27]. Cooper et al. applied some
optimizations more than once and found the best sequence
of the optimizations for minimizing code spaces [28].
Zhao et al. transformed the source codes so as to maximize
the parallelism for multicore architectures of new proces-
sors [29]. There have been many researches to transform
the source codes for optimizing the energy consumption in
embedded environments. Sushko et al. transformed the loop
in the source codes by designing the block in the loop as
the cache size [30]. Simunic et al. profiled the bottleneck
of energy consumption in embedded systems and optimized
them [31]. Fei et al. transformed source codes while con-
sidering the interaction between the processes and the oper-
ating system, not only for the optimization of the single
process [32]. Falk et al. transformed the loop for the energy
optimization in embedded multimedia devices [33].

E. BINARY TRANSFORMATION AND OPTIMIZATION

We can consider the binary transformation and optimization
to improve the performance of Windows applications even
if it is not the target of this paper. Most existing methods to
improve the program performance on binaries are based on
the transformation of binary codes into the intermediate rep-
resentation (IR) codes or source codes. Pradelle et al. trans-
formed the binary into the C source code while extracting
high-level information and applied the existing parallelizer
to the C source code for parallelization of binary codes [34].
Kotha et al. adapted the existing parallelization methods for
source codes into binary codes for automatic paralleliza-
tion of binary codes [35]. Sato et al. dynamically generated
improved binaries by transforming the input binary into the
IR code and by optimizing the IR code [36]. Shigenobu ef al.
transformed the binary code based on ARM machine code
into the IR code for the optimization [37]. Bondhugula et al.
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decompiled loop nest regions in binaries into IR codes and
applied the optimization technique to the IR codes [38].

VIIl. CONCLUSION

In this paper, we have analyzed I/O log data monitored in the
Windows operating system. Especially, we have focused on
I/O operations to the Windows registry. As a result, we have
made the following four contributions. First, we have identi-
fied redundant patterns and classified them into the internal
and outer redundancy. We have verified them in the assembly
codes by disassembling an actual Windows application. Sec-
ond, we have proposed the redundancy detection algorithm
that finds all the possible redundant patterns from the large-
scale log data. By identifying all the redundant patterns by the
proposed algorithm, we have shown that the internal redun-
dancy is about 59.21% and the outer redundancy is about
57.50%, which implies that we can improve the performance
of accessing to the registry. Third, we have proposed the two-
level redundancy elimination method to remove the inter-
nal and outer redundancy. Especially, the proposed method
enhances the effect of eliminating the outer redundancy by
eliminating the outer redundancy after eliminating the inter-
nal one first. We have also presented an event-driven method
to remove the side effect of the redundancy elimination
method, which could be occurred in the case of updating the
Windows registry. It guarantees the correctness of the redun-
dancy elimination method by instantly reading newly updated
data as soon as the updates are occurred. Fourth, through
experiments, we have shown that the two-level redundancy
elimination method improves the performance of the original
program having inefficient access patterns by up to 90.25%.
In addition, as the number of programs running is increased,
the performance improvement of the redundancy elimination
method compared to the original program becomes large from
8.93% t0 26.21%.

In this paper, we have analyzed the access pattern of the
Window applications to the registry. The important result is
that the identified access patterns are not specific for individ-
ual programs, but affect the overall system performance. That
is, the Windows applications tend to access to the Windows
registry repeatedly, and consequently, the Windows registry
could be a significant bottleneck due to the inefficient access
patterns. Therefore, by applying the redundancy elimination
method to individual programs, we can improve the overall
system performance.

In this paper, we have focused on the redundancy anal-
ysis and the effect of eliminating of the redundancy. As a
future work, we plan to apply the proposed redundancy
elimination into the actual Windows application as presented
in Fig. 22 (b). Consequently, we will develop an automatic
translation system of the original Windows application into
the redundancy eliminated one, which consists of three steps:
1) decompliation of Windows application (in binary) into
the source code, 2) redundancy elimination in the source
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code, and 3) redundancy eliminated Windows application that
makes the same result with the original Windows application.
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