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ABSTRACT The random sample consensus (RANSAC) based algorithm is widely used in estimating the
two-view geometry from image point correspondences. However, it often becomes extremely slow when the
data is contaminated by a large percentage of incorrect matches. To address this problem, the paper proposes a
new modification of RANSAC called LP-RANSAC that is robust to varying inlier ratios and achieves large
computational savings without deterioration in accuracy. LP-RANSAC integrates the locality preserving
constraint into the universal RANSAC framework, which prunes most of the unreliable correspondences
before the hypothesize-and-verify loop and guides non-uniform sampling to generate and verify promising
models earlier. Unlike other guided sampling strategies, the proposed method is simple to implement and
does not require any prior information. Extensive experiments performed on the publicly available datasets
reveal that LP-RANSAC can achieve more accurate and stable solutions at much lower computational cost
(in milliseconds on standard CPU) than state-of-the-art methods, particularly when handling problems with
low inlier ratios.

INDEX TERMS Robust estimation, RANSAC, outlier removal, image matching, two-view geometry.

I. INTRODUCTION
Two-view geometry estimation means fitting a geometric
model (e.g., a homography or fundamental matrix) from point
correspondences between two images of the same scene.
It is one of the most basic tasks in computer vision, which
plays a significant role in many applications such as image
registration [1]–[3], three-dimensional reconstruction [4], [5]
or camera calibration [6]–[8]. The putative point correspon-
dences for two-view geometry estimation typically come
from the feature extractors [9]–[11]. As the local descriptor
is unlikely to differentiate true and false matches clearly,
there are inevitably numerous false matches in the set of data
points. This matching problem will be even worse when the
image pairs suffer from substantial viewpoint changes, strong
occlusion, repeated textures, etc. If the geometric model is
directly estimated by some least-squares fittingmethods from
a set of correspondences that contains even few mismatches,
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the obtained model may be far away from the true model.
Consequently, robust estimation is indispensable for the mis-
match removal and estimation of model parameters from
perceived data in the presence of measurement noise and
outliers (correspondences that are not consistent with the true
model).

Due to its simplicity and robustness, the RANSAC [12]
algorithm has become the most popular robust estimator to
address the outlier removal problem. RANSAC is an iter-
ative approach based on the classic hypothesize and verify
paradigm. In brief, standard RANSAC operates by repeat-
edly generating models estimated from the smallest possible
subsets randomly sampled from the set of putative corre-
spondences, and then the model with the highest support
is returned after testing each estimated model for support
against the entire set of correspondences. In RANSAC the
support is the number of inliers, i.e., correspondences within
a given error tolerance of the estimated model. The set of
obtained inliers is called the consensus set. The hypothesize-
and-verify loop is terminated when the probability of finding
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a consensus set that is compatible with an incorrect model
falls below a manually set confidence value or the maximum
number of iterations is reached.

The RANSAC algorithm is very easy to implement and
has a high success rate to find the correct model under
extreme conditions, which lead to its widespread adoption
in practice. Moreover, compared to statistical regression
methods [13]–[16] (e.g., M-estimators), RANSAC is capa-
ble of finding the correct model when the correspondences
contain a tremendous percentage of outliers even more than
half the data. But, the vanilla RANSAC algorithm has a few
drawbacks as well. A prior mathematical model needs to
be selected to determine the two-view geometric relations,
which may not work for (quasi-)degenerate data that do
not provide sufficient constraints to compute the relation
uniquely. The cardinality of the consensus set relies too
much on the inlier-outlier threshold. If the threshold is set
too low, not enough inliers are found. Furthermore, if the
threshold is set too high, a number of outliers are mistakenly
taken as inliers. In addition, RANSAC tends to severely
degrade and be time-consuming as the level of outliers greatly
increases. To ensure that the true model is estimated, all
putative hypotheses should be generated and testified, which
is obviously unrealistic. Therefore, there is always a trade-off
between accuracy and efficiency.

In applications, the greatest challenge for the estimation of
model parameters in RANSAC stems from outliers. Detecting
and eliminating outliers is an intractable yet important prob-
lem. A large amount of outliers not only brings about the fail-
ure of the convergence to the right solution of the RANSAC
algorithm, but also dramatically aggravates the computational
burden, which limits its use in real-time tasks. Thus, it is
really justifiable and necessary to decrease the number of
outliers before performing RANSAC based estimators.

The purpose of this paper is to first briefly review the
previous RANSAC-like approaches and then propose an effi-
cient modification of RANSAC for significantly improving
the performance of model estimation and outlier removal,
especially when the inlier ratio is low. The initial point
correspondences for estimating the two-view geometry are
obtained relying on feature extractors. The similarity between
the descriptors of the detected keypoints from two images
is utilized to establish the match candidates. Nevertheless,
to safely judge whether the match is correct, only comparing
individual feature information is not enough and often results
in plentiful false matches. It will bring great difficulties to
following robust model estimation, provided that the feature
point correspondences that includes false matches are not
well pruned. Unfortunately, to the best of our knowledge,
no previous work has adequately solved it.

Inspired by Ma et al. [17], we use the locality preserving
constraint of those potential matches to remove most of the
outliers while barely discarding inliers. Then RANSAC can
generate and testify hypotheses on the smaller set of point
correspondences with a higher inlier ratio, which can con-
siderably reduce the runtime. Besides, the locality preserving

scores can be used to guide sampling matches for generating
models. The putative match with the higher score has more
chances to be selected. The RANSAC algorithm will con-
verge faster to a correct model by taking advantage of this
guided non-uniform sampling strategy instead of sampling
uniformly at random. Unlike other guided sampling methods
reported in literature, the proposed method does not rely on
prior information, meaning that no assumptions are needed
to be made about the input data. Experimental results show
that the proposed method performs much better than other
state-of-the-art methods including RANSAC and its various
variants. Since our modification of RANSAC is mainly based
on this locality preserving constraint, we name the proposed
method LP-RANSAC.

More concretely, the main contributions of this paper can
be summarized as follows:

• The locality preserving constraint is integrated into the
universal RANSAC framework, resulting in discarding
most of the bad correspondences without adding appre-
ciably to the computational cost before performing the
RANSAC procedure. The reduced set of more reliable
correspondences with a higher inlier ratio is suitable for
accelerating hypothesis generation and verification in
RANSAC.

• A new non-uniform sampling strategy based on the
locality preserving scores is proposed. Compared to
other existing guided sampling strategies, it does not
require any prior information, such as matching scores.

• The proposedmethod is applied to both homography and
fundamental matrix estimation, which is quantitatively
evaluated on a variety of challenging datasets and com-
pared with state-of-the-art methods.

The remainder of this paper is organized as follows. The
following section discusses the related work. In Section III,
the details of the proposed modification of RANSAC are
shown. Section IV provides experimental results and the
performance evaluation of the proposed method on different
well-known datasets. Finally, the paper is concluded with a
summary in Section V.

II. RELATED WORK
In this section, we give an outline of the related work,
emphatically discuss RANSAC and its extensions. Since its
publication, RANSAC has overtaken the statistical regres-
sion algorithms and heuristics as the most widely used
and powerful tool for robust estimation in computer vision.
In recent forty years, numerous modifications have been
proposed aimed at enhancing the performance of the original
RANSAC algorithm in different aspects, consisting of accu-
racy, robustness and efficiency. As previously mentioned,
RANSAC works in a hypothesize-and-verify framework.
Raguram et al. extend this simple framework to a generaliza-
tion of RANSAC-like robust estimators, which is termed as a
universal RANSAC (USAC [18]) framework, as illustrated
in Fig. 1. The USAC framework is mainly composed of
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FIGURE 1. The universal RANSAC framework. The framework has the following main steps: data preprocessing,
hypothesis generation, hypothesis verification, and model refinement.

data preprocessing, hypothesis, verification andmodel refine-
ment. RANSAC and a majority of its variants are allowed
for the incorporation into the universal framework, which
can induct researchers to modify RANSAC specifically and
evaluate RANSAC variants systematically. In the following,
we survey and discuss most of the important and relevant
RANSAC-like methods proposed previously according to the
four components of the universal framework.

Considering that the inlier ratio of the correspondence set
has a dramatic effect on the runtime of RANSAC, a few
efforts have been made to increase the quality of the input
data, i.e., detect and remove some outliers. Strictly speaking,
this step can be considered as a step of data preprocessing
before the RANSAC algorithm commences. Spatially consis-
tent random sample consensus (SCRAMSAC [19]) improves
the efficiency of RANSAC by applying a spatial consistency
filter to the initial set of point correspondences. This spatial
consistency check results in a reduced set of matches with a
higher inlier ratio, in turn accelerating the convergence of the
remaining iterative process. Similarly, the spatial consistency
on RANSAC (SC-RANSAC [20]) algorithm utilizes spatial
relations between extracted feature points in two images.
A few reliable point correspondences are selected as the
base-points to make decisions about the correctness of other
matches. This method does not require any prior knowledge
about initial data points contrary to SCRAMSAC.

There have been a number of recent efforts that attempt
to use guided sampling for minimal set generation rather
than uniformly selecting the samples at random, potentially
yielding considerable computational savings. The N adjacent
points sample consensus (NAPSAC [21]) algorithm assumes
that inliers are generally closer to one another than outliers.

NAPSAC samples sets of adjacent points lying on a hyper-
sphere of a defined radius under this assumption. The
progressive sample consensus (PROSAC [22]) algorithm
semi-randomly draws samples from progressively larger sets
containing top-ranked matches by a quality measure of tenta-
tive correspondences. The group sampling (GroupSAC [23])
algorithm separates data points into several groups where
each group has either a high or a low inlier ratio. In Group-
SAC, the groups with high inlier ratios have more participa-
tion in hypothesis generation based on a binomial mixture
model. Another important innovation of the guided sam-
pling algorithm is RANSAC based on extreme value theory
(EVSAC [24]). As the name implies, EVSAC models the
statistics of the best matching scores and computes a confi-
dence value for each candidate match with extreme value the-
ory. Then the computed confidence values can be applied to
form a discrete distribution over the putative correspondences
for sampling and hypothesis generation.

Partial evaluation is an alternative solution for speeding
up the RANSAC-based model fitting algorithms as well as
guided sampling. In partial evaluation, the model estimated
from a minimal sample will not be tested on the complete
set of data points unless the model passes the test on a small
number of data points. Consequently, partial evaluation can
filter out bad hypotheses and reduce the time complexity by
decreasing the number of data points for hypothesis verifi-
cation. In randomized RANSAC (R-RANSAC [25]), model
verification is first performed on a few randomly selected
points. The remaining points are evaluated only if the first
selected points are all inliers. This work was further extended
by Capel [26] with an effective bail-out test. This bail-out
test permits the scoring process for the consensus set to be
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FIGURE 2. Overall flow diagram of the proposed method. Green and red lines represent inliers and outliers respectively.

terminated early. In a general sense, neither of these partial
evaluation methods is optimal. Hence, an optimal hypothe-
sis evaluation method based on Wald’s theory of sequential
decision theory was presented, which is known as Wald-
SAC [27]. WaldSAC replaces the Td,d test in the hypothesis
evaluation stage of R-RANSAC by sequential probability
ratio test. How to choose an accurate measurement of model
quality is another problem to consider in the verification
stage. The maximum likelihood estimation sample consensus
(MLESAC [28]) algorithm takes the model support as the
log likelihood of the solution instead of just the number
of inliers in standard RANSAC. The RANSAC for (quasi-
) degenerate data (QDEGSAC [29]) algorithm uses a model
selection technique for dealing with degeneracy to estimate
the correct model.

In general, the model estimated from the minimal sam-
ple is not quite accurate because data points are cor-
rupted with noise. Thus, a model refinement procedure is
adopted to achieve acceptable accuracy. The locally opti-
mized RANSAC (LO-RANSAC [30]) algorithm embeds an
optimization process into the plain RANSAC using the cur-
rent best model as a starting point to improve the quality of
the solution. The graph-cut RANSAC (GC-RANSAC [31])
algorithm applies the graph cut technique by exploiting the
spatial coherence in the local optimization step when a cur-
rent best model is found.

The RANSAC-like methods typically rely on a pro-
vided parametric model, which will fail when the underly-
ing image transformation is unknown in advance. A vari-
ety of non-parametric robust feature matching methods
have recently been developed to address this problem,
including vector field consensus (VFC [32]), learning for
mismatch removal (LMR [33]), robust feature matching
using spatial clustering method of applications with noise
(RFM-SCAN [34]), locality preservingmatching (LPM [17]),
etc. VFC interpolates a vector field to estimate a consensus of
inliers following the non-parametric geometrical constraint.
From a novel perspective, LMR and RFM-SCAN respec-
tively cast the feature matching into a two-class classification
problem and a spatial clustering problem with outliers by
exploiting machine learning techniques. LPM attempts to
remove the outliers from given putative point correspon-
dences by preserving the spatial neighborhood relationship
among feature points.

LPM has great advantages in terms of speed (more than
one order of magnitude faster) in comparison with other
non-parametric matching methods, which can accomplish
the mismatch removal from over 1000 putative matches in
only a few milliseconds. It is beneficial for many real-time
tasks and can quickly provide a proper initialization for
more sophisticated matching problems. However, LPM pri-
marily concentrates on the outlier identification and removal
for robust feature matching, regardless of the transforma-
tion model between two images, which is not suitable for
model estimation. Since LPM maintains high speed, it can
be employed to provide a quick prefiltering for RANSAC to
recover the two-view relation.

III. LP-RANSAC
This section provides the proposed LP-RANSAC for fast
and robustly estimating the geometric relations between two
images. To achieve this goal, we begin with an introduction
of the locality preserving constraint (LPC) for filtering out
most outliers in the initial set of putative matches. Then
this constraint is seamlessly integrated into the universal
RANSAC framework, leveraging the score of each corre-
spondence obtained from the locality preserving matching
to guide sampling. We finally explain the implementation of
the proposed algorithm. The flow diagram of the proposed
method is depicted in Fig. 2. In the following, the key steps
of the proposed method are described in detail.

A. LOCALITY PRESERVING CONSTRAINT
The initial point correspondences are usually provided by
feature-based methods, which involve three main steps: fea-
ture detection, feature description, and feature matching.
Given an image pair comprised of a query image and a
reference image, the feature points on both images can be
detected and described using a bunch of famous feature
extractors [9]–[11], e.g., the scale invariant feature transform
(SIFT [9]). Correspondences between two images are then
established by associating each match with a minimum dis-
tance between the query descriptor and each of the reference
descriptors. By design, these descriptors are normally invari-
ant to scale changes, rotation or illumination, to some extent,
affine transformations. However, the abovematching process,
solely exploiting the feature descriptors described based on
the photometric information, will inevitably produce many
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FIGURE 3. Schematic illustration of the locality preserving constraint. An inlier (xi , yi ) will preserve local
neighborhood structures (consensus of neighborhood elements and topology), whereas an outlier will not.

false matches. These ambiguities could arise from several
factors such as repetitive structures in the scene, image degra-
dation, changes of viewpoint, and others.

It is evident that spatial consistencies and topology rela-
tionships among point correspondences can offer stronger
constraints to tell correct and incorrect matches apart.
Recently, some methods [17], [35]–[38] have been devoted to
finding reliable matches by applying this idea to the match-
ing problem. Technically, the locality preserving matching
method belongs to this category. LPM is able to yield high
quality matches and provide a correctness confidence value
for each putative correspondence in a few milliseconds.
As a result, it is chosen as a preprocessing step for our
LP-RANSAC rather than other similar methods that exploit
physical constraints.

In [17], Ma et al. observed that for two images of the same
object or scene taken under different viewing conditions,
the absolute distance between two feature points may change
dramatically, but the relative location among feature points is
generally well preserved owing to physical constraints. Based
on this observation, a mathematical model for the general
feature matching problem was defined, which aimed to con-
strain the unknown inliers to preserve the local neighborhood
structures, as illustrated in Fig. 3.

Suppose that a set of N putative feature correspondences
S = {(xi, yi)}Ni=1 has been extracted from a query image
I1 and a reference image I2, where xi and yi are 2D vec-
tors denoting the coordinates of feature points. The goal of
correspondence pruning is to remove bad correspondences
contained in S to establish reliable matches. To this end,
Ma et al. designed an objective function to exploit the con-
sensus of neighborhood elements and topology, which can
embrace both rigid and non-rigid deformations, defined as

C(l) =
N∑
i=1

li(ci − λ)+ λN , i ∈ {1, 2, · · · ,N }, (1)

where λ is a parameter balancing the terms, l =

[l1, l2, · · · , lN ] is a binary vector of N labels li ∈ {0, 1}
representing the match correctness of the i-th correspondence

(xi, yi), and ci measures if (xi, yi) satisfies the geometric
constraint of preserving the local neighborhood structure,
which can be calculated as

ci =
M∑
m=1

1
MKm

(∑
j|xj∈NKm

xi
d
(
yi, yj

)
+

∑
j|xj∈NKm

xi ,yj∈N
Km
yi
d
(
vi, vj

))
, (2)

where d represents a certain distance metric such as
Euclidean distance, vi =

−→xiyi denotes a displacement vector,
NKm

xi denotes the neighborhood of point xi composed of its
Km nearest neighbors, K = {Km}Mm=1 is sizes of a set of
neighborhoods for the multi-scale neighborhood representa-
tion, as demonstrated in Fig. 3. A detailed derivation of (2)
can be found in [17], which will not be discussed here. Our
focus is to highlight the importance of the locality preserving
constraint and to propose a new modification of RANSAC
with this constraint.

Since the cost values, or locality preserving scores, {ci}Ni=1
can be computed in advance, the only unknown variable in
(1) is li. Clearly, the value of the objective function will
decrease if ci is smaller than λ, whereas it will increase if
ci is larger than λ. Therefore, the optimal solution of l to this
optimization problem is trivially determined by

li =

{
1, ci ≤ λ
0, ci > λ, i ∈ {1, 2, · · · ,N }.

(3)

After calculating each cost value of the point correspon-
dences, the putative matches can be categorized as inliers and
outliers by comparing its corresponding cost value with the
predefined value λ according to (3). That is to say, the inlier
set is determined depending only on a threshold value of λ.
LPMworks well as a preprocessor to RANSAC-like methods
due to the following reasons. First, the LPM algorithm has
linearithmic time complexity, which can satisfy the needs of
real-time applications. Specifically, LPM is able to accom-
plish the outlier removal from over 1000 correspondences in
only a few milliseconds. Second, LPM can eliminate most of
the outliers and simultaneously preserve most of the inliers,
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which considerably increases the inlier rate. Third, LPM can
remove false matches near epipolar lines when estimating
the fundamental matrix, which greatly improves the preci-
sion of model fitting. Therefore, the proposed method uses
the matches pruned by LPM and their cost values as new
inputs into the following RANSAC framework to improve the
efficiency as well as the accuracy of RANSAC.

B. GUIDED SAMPLING WITH LOCALITY PRESERVING
SCORES
Vanilla RANSAC generates minimal samples by drawing
uniformly at random from the full set of putative correspon-
dences. This implies that no assumptions are made about the
putative matches and all point correspondences are treated
equally. Model estimation has to be accomplished as quickly
and efficiently as possible for many real-world tasks. How-
ever, RANSAC becomes exponentially slower employing
this uniform sampling strategy as the inlier ratio drops. It is
obviously contrary to the primary intention of finding a min-
imal sample composed of all inliers early in the sampling
process of RANSAC. Thus, the guided non-uniform sampling
strategy is proposed to bias the selection of correspondences
to generate models with more likelihood of being correct
preferentially.

The previous guided sampling methods generally mod-
ify the sampling strategy by exploiting not only location
information but also various types of prior information such
as matching scores to speed up RANSAC. For instance,
PROSAC sorts the putative matches in descending order with
respect to their qualities. However, the reliance on additional
matching information restricts the wide application of these
methods. Fortunately, as a by-product of match pruning by
the LPM algorithm, the locality preserving score can replace
the matching score to guide the sampling procedure due to its
capability of differentiating outliers and inliers. In addition,
the proposed guided sampling strategy requires no extra prior
information, leading to its broad application prospects.

Let S ′ = {(xi, yi)}N
′

i=1 denote a reduced set of N ′ pruned
correspondences with high qualities, and let {ci}N

′

i=1 be the
set of locality preserving scores for every correspondence.
To some extent, the score ci indicates that what degree the
putative match (xi, yi) will be an inlier. Therefore, these
scores can be used as correctness confidence values to gen-
erate a probability distribution for guided non-uniform sam-
pling. The probability of each putative match in the reduced
set being drawn is given by the discrete distribution as follows

p(wi) = P(i|w1,w2, · · · ,wN ′ )

=
wi∑N ′
j=1 wj

, i ∈ {1, 2, · · · ,N ′}, (4)

where

wi = exp
(
−
ci2

2σ 2

)
with σ =

√√√√√ 1
2N ′

N ′∑
j=1

cj2 (5)

is a weight which is assigned to each match pair (xi, yi)
according to its locality preserving score. The higher the
weight assigned to the putative match, the greater the prob-
ability of this match being selected. These weights can be
then applied to randomly sample matches for generating
hypotheses by using (4).

Note that when the prior information (e.g., matching scores
or geometrical cues) of the putative correspondences is avail-
able, it can also attach to the calculation of the weights.
Given the set of matching scores produced by some classic
feature matching methods, we can similarly assign a weight
to each match with respect to its matching scores using (5).
In this case, the result of multiplying this weight by the former
weight obtained from the locality preserving score will be a
new weight to assess the correctness of a correspondence.

The use of locality preserving scores alleviates the depen-
dence on the prior information, resulting in no need for
assumptions of the distributions of true and false matches in
the putative correspondences. The proposed method, as well
as the standard RANSAC, can be applied to many fields
because of this characteristic of making no assumptions about
the data points. Besides, since locality preserving scores
are kind of geometric constraints, the proposed method still
performs well in the case of richly textured scenes where
correct and incorrect matches are assembled in the local
region. In comparison to other guided sampling methods,
the proposed one has an advantage that it provides higher
robustness to degenerate configuration.

C. ALGORITHM
The structure of the proposed method is simple. To seek a
reduced set of correspondences with a higher inlier percent-
age, we first remove the gross outliers in the set of tentative
correspondences using the locality preserving constraint as a
preprocessing step. Subsequently, this constraint can be easily
incorporated into the RANSAC procedure. We additionally
assign a correctness confidence for each remaining corre-
spondence, which is used to guide non-uniform sampling,
resulting in promising models being generated and verified
earlier.

However, the preprocessing procedure will also lead to a
reduction in the number of true matches. The true match that
is removed by mistake cannot be retrieved in the subsequent
RANSAC procedure without additional remedies. Clearly,
missing parts of the true matches will degrade the precision
of the geometrical model estimation. To address this issue,
a generalization of LPM named GLPM [39] has recently
been published. GLPM designs a guided matching strategy
based on LPM, using the matching result on a small putative
set with a high inlier ratio to guide the matching on the
whole putative set. The RANSAC procedure can provide an
estimated geometric model, unlike the LPM method, which
can categorize the correspondences into inliers and outliers.
Thus, after the termination of RANSAC, we first use the
current optimal model to seek the true matches in the original
putative set S instead of the reduced set S ′. In general,
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Algorithm 1 The LP-RANSAC Algorithm
Input: S− putative set, {K, λ}− parameters in (2) and (3),

ε− inlier-outlier threshold, η− confidence
Output: I∗− inlier set, θ∗− model parameters

Match pruning:
1: S ′, {ci}N

′

i=1← Prune matches with LPC;
RANSAC using guided sampling:

2: wi← Calculate weights using (5);
3: p(wi)← Determine the discrete distribution using (4);
4: kmax, k, s∗←∞, 0, 0;
5: while k < kmax do
6: Draw a minimal subset Sk ⊂ S ′ by the distribution

p(wi), |Sk | = m;
7: θk ← Estimate model parameters using Sk ;
8: Ik , sk ← Compute the inlier set and the support of θk

on S ′;
9: if sk > s∗ then

10: θ∗, s∗, I∗← θk , sk , Ik ;
11: Update kmax = log (1− η)/ log (1− εm) with ε =

|I∗|/N ′;
12: end if
13: k = k + 1;
14: end while
15: I, s← Compute the inlier set and support of θ∗ on S;
16: if s > s∗ then
17: s∗, I∗← s, I;
18: end if
19: θ∗← Least squares model fitting using I∗.

this new inlier set obtained from S will cover the missing
inliers in the preprocessing procedure. Then, a more pre-
cise geometric model is estimated from the whole inliers by
implementing the least squares model fitting technique. This
post-processing strategy can comparatively increase the inlier
number and improve the precision of model estimation in
comparison with GLPM, but with much less computational
time.

The whole procedure of our LP-RANSAC has been sum-
marized in Algorithm 1. Let | · | denote the cardinality of
a set and kmax be the maximum iteration number. Note that
the proposed method is very flexible, which can be also
combined with other modification strategies of RANSAC
such as local optimization.

While the proposed method may sound like a simple
idea, it is able to surprisingly improve the time efficiency
of the estimated results. There are two main reasons for
this outcome. On the one hand, both hypothesis generation
and verification are only operated on a far smaller set of
putative correspondences with a higher inlier ratio instead
of against the full set with a lower inlier ratio. On the other
hand, outlier-free minimal samples for estimating promising
models can be drawn earlier due to the guided non-uniform
sampling. LP-RANSAC is able to find the correct geometric
model from the initial set of correspondences without adding
extra input information or prior knowledge. It also does not

interfere with modifications on other stages of RANSAC, that
is to say, LP-RANSAC can be combinedwith other RANSAC
modifications to improve the efficiency or accuracy. Besides,
easy implementation is another advantage of the proposed
method over other RANSAC variants.

IV. EXPERIMENTAL RESULTS
In this section, the proposed LP-RANSAC is extensively
validated on a number of publicly available datasets of real
images for estimation of the two-view relations (homography
and epipolar geometry) and compared with the following
classic and state-of-the-art methods to further demonstrate its
superiority:

• RANSAC [12]: The standard RANSAC is considered as
a baseline method for comparison.

• PROSAC [22]: It is the most efficient non-uniform sam-
pling method based on known quality function for every
point, which is compared with the proposed guided sam-
pling strategy without any prior information.

• GC-RANSAC [31]: It is the best modification of
RANSAC in the local optimization stage, which repre-
sents the most accurate solution.

• VFC-RANSAC: It is a kind of combination of the outlier
removal approach and RANSAC similar to the proposed
method. VFC-RANSAC first uses VFC [32] as an alter-
native to LPM for filtering out outliers in the prepro-
cessing step, and then performs the standard RANSAC
procedure. The same post-processing strategy as our
LP-RANSAC is also utilized to retrieve the inliers as
many as possible.

• RFM-RANSAC: It is analogous to VFC-RANSAC, only
replacing VFC with the RFM-SCAN [34] algorithm to
remove part of outliers in advance.

• LP-RANSAC∗: LP-RANSAC without the prefiltering
stage, which just employs the locality preserving score
of each correspondence in the putative set derived from
the LPC for guided sampling.

All algorithms are implemented in C++ based on the
publicly available codes without parallel computing. The
termination probability of all RANSAC variants is set to 0.01,
whereas the inlier-outlier threshold is set to different values
for different cases as will be introduced later. Parameters of
other competitors are set to be the default values as suggested
in the literature to achieve their best performances. The values
of K and λ in LP-RANSAC are empirically fixed as K =
[4, 6, 8] and λ = 0.9 for all subsequent experiments. The
experiments are performed on a laptop with a 2.6 GHz Intel
Core i7 processor and 16 GB memory, which are repeated
500 times to produce statistically meaningful results.

A. DATASETS
To test homography estimation, we adopted VGG [9]
(44 pairs), homogr [31] (16 pairs) and EVD [40] (15 pairs)
datasets. Each dataset contains image pairs of different sizes
with manually annotated ground truth. The VGG dataset
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FIGURE 4. Examples of test images from the benchmark datasets including (a) VGG, (b) homogr, (c) EVD, (d) AdelaideRMF, and (e) kusvod2.

provides mostly short-baseline stereo images captured under
varying imaging conditions, whilst EVD and homogr offer
more challenging image pairs for wide-baseline matching.
In addition, AdelaideRMF [41] (23 pairs) and kusvod2 [31]
(16 pairs) datasets were downloaded for fundamental matrix
estimation. The AdelaideRMF dataset consists of image pairs
with point correspondences that are manually labeled as out-
liers or inliers. The kusvod2 dataset provides image pairs with
point correspondences and ground truth fundamental matri-
ces. Fig. 4 shows examples of test images in these benchmark
datasets.

B. EVALUATION METRICS
To quantitatively evaluate the performance of the proposed
method, we use the following metrics:
• The processing time tm is measured in milliseconds
(ms).

• The required number of samples Ns and the number of
detected inliers |I∗| are counted.

• The standard deviation of the inliers σI∗ for evaluating
the accuracy is defined by

σI∗ =

√
1
|I∗|

∑
i∈I∗

e2i , (6)

where e2i is the distance error associated with the i-th
inlier. The symmetric transfer error [42] is chosen as the
distance measure for homography estimation, and the
Sampson error [42] for fundamental matrix estimation.
The smaller σI∗ is, the higher the accuracy of the algo-
rithm is.

• The balanced F-score F that combines precision P and
recall R is calculated by F = 2PR/(P + R). Precision
and recall are defined as

P =
Ntp

Ntp + Nfp
, R =

Ntp
Ntp + Nfn

, (7)

where Ntp denotes the number of true matches, Nfp
denotes the number of false matches, and Nfn denotes
the number of matches that are not correctly detected.
The bigger F is, the better the algorithm is.

FIGURE 5. Image pairs chosen to test the robustness of the proposed
method for homography (a) and fundamental matrix (b) estimation. For
concise exhibition, only a small part of inliers and outliers are plotted.
Green and red lines represent inliers and outliers respectively.

C. PERFORMANCE EVALUATION
In general, the inlier ratio is the most important factor that
directly determines the efficiency and success of model esti-
mation and outlier removal. Thus, in this section we first test
the robustness of the proposed method to putative correspon-
dences with varying inlier ratios for two typical image pairs.
Afterward, the performance of the proposed LP-RANSAC
tested on the benchmark datasets of more complicated sce-
narios for the tasks of homography as well as fundamental
matrix estimation are demonstrated and compared with that
of other competitors. Finally, the limitations of the proposed
LP-RANSAC are discussed.

1) ROBUSTNESS TEST
As discussed previously, the performance of two-view geom-
etry estimation strongly depends on the inlier ratio of point
correspondences. To evaluate the robustness of the pro-
posed method over varying inlier ratios, we apply it to two
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FIGURE 6. Performance of model estimation for homography (top row) and fundamental matrix (bottom row) w.r.t. varying inlier ratios. The runtime,
the number of inliers found |I∗|, the standard deviation of the inliers σI∗ , and the F-score F for each algorithm are shown from left to right.

typical image pairs (see Fig. 5) chosen from the datasets.
For homography and fundamental matrix estimation, we test
on the pkk scene from the EVD dataset and the wall scene
from the kusvod2 dataset, respectively. The inlier ratios of
these two sets of correspondences are varied by adjusting
the number of outliers, whereas the number of inliers is
fixed. The inlier ratio is gradually increased from 0.05 to
0.9 with a constant inlier number of 24 for the pkk scene,
whereas the inlier number is fixed to 50 with the inlier ratio
ranged from 0.1 to 0.9 for the wall scene. In both cases,
we use evaluation metrics as defined above to assess the
robustness of the proposed method and compare the results
to those of the aforementioned six representative methods,
including three RANSAC variants (RANSAC, PROSAC, and
GC-RANSAC) and three combined methods based on
the outlier removal and RANSAC (VFC-RANSAC,
RFM-RANSAC, and LP-RANSAC∗).
The top and bottom rows in Fig. 6 show the results of

this experiment for homography and fundamental matrix esti-
mation, respectively. From left to right, the plots measure
runtimes, the number of inliers, the standard deviation of
inliers and the balanced F-score of LP-RANSAC and the
competitive methods.

To explore the role that the locality preserving con-
straint plays on the proposed LP-RANSAC, we compare
our proposed LP-RANSAC with standard RANSAC and
LP-RANSAC∗. From the results, we see that LP-RANSAC∗

is faster than RANSAC on fundamental matrix estimation but
slower on homography estimation. This is probably because
the consuming time the preprocessing step takes is relatively
considerable when the estimated model is simple. In view
of the number of inliers, the standard deviation of inliers

and the F-score, LP-RANSAC and LP-RANSAC∗ achieve
comparable and satisfying performance, but marginally better
than RANSAC. This can be explained by the guided sampling
with the LPC. These results indicate that the improvement
of efficiency is mainly due to the match pruning using the
LPC, and the improvement of precision probably arises from
the guided sampling according to locality preserving scores.
In conclusion, the use of the LPC in both the preprocessing
procedure and the RANSAC procedure contributes to the
robustness of our LP-RANSAC on different degrees of outlier
ratios.

As Fig. 6 shows, the performance of all the seven methods
degrades with the decrease of the inlier ratio. It is clear
that, in terms of runtime, LP-RANSAC performs equiva-
lent or even marginally faster than PROSAC, while only
consuming a fraction of runtime of both RANSAC and
GC-RANSAC. Among all combinations of outlier removal
methods and RANSAC, LP-RANSAC still has the best effi-
ciency. When the inlier ratio of the putative correspondence
set is low, the effect of reducing computational overhead
by using LP-RANSAC is more significant than the cases of
high inlier ratios. In terms of solution quality, LP-RANSAC
remains robust up to large changes of inlier ratios and
achieves a comparable result as RANSAC andGC-RANSAC,
whereas significantly outperforming PROSAC. Note from
the graphs that the number of inliers, the standard deviation of
inliers and the balanced F-score of LP-RANSAC are similar
to those of RANSAC and GC-RANSAC. Thus the obtained
solutions are of the same quality. Compared to PROSAC,
it can also be seen that LP-RANSAC yields more accurate
and stable results at a comparable runtime in view of the
above three metrics. This is due to the fact that the locality
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FIGURE 7. Sample qualitative results of LP-RANSAC for homography
estimation tested on (a) EVD, (b) homogr, and (c) EVD datasets. For
concise exhibition, only parts of inliers and outliers are plotted. Green
and red lines represent detected inliers and outliers respectively.

preserving constraint used in LP-RANSAC can filter out lots
of outliers, thus resulting in faster convergence to the right
solution. Note that LP-RANSAC performs slightly better
than VFC-RANSAC and RFM-RANSAC in terms of preci-
sion. The reason is that VFC-RANSAC and RFM-RANSAC
falsely remove a large portion of true matches in the prepro-
cessing stage and lack the guided non-uniform sampling in
the RANSAC procedure used in our LP-RANSAC. There-
fore, taking both runtime and solution quality into consider-
ation, LP-RANSAC has stronger robustness to varying inlier
ratios than the competitive estimators.

2) HOMOGRAPHY RESULTS
In this experiment, we assess the performance of
LP-RANSAC for the problem of homography estimation by
using VGG, homogr and EVD datasets. These datasets have
different levels of inlier ratios and deformation, making the
estimation of homographies challenging. A putative corre-
spondence is considered as an inlier if the symmetric transfer
error of the homography is less than 3 pixels for VGG and
homogr datasets, whilst 7 pixels for EVD dataset since each
mage pair in this dataset has a very large angular difference
between views.

Fig. 7 displays sample qualitative results of LP-RANSAC
for homography estimation. The quantitative results of this
experiment are summarized in Table 1, reporting the quality
of homography estimation on each dataset. The table lists the
runtime tm, the required number of samplesNs, the number of
detected inliers |I∗|, the standard deviation of the inliers σI∗ ,
and the F-score F for each method. The values are averaged
over 500 executions of each estimator on all tested image
pairs of each dataset. The best results are highlighted in bold.

It can be seen that LP-RANSAC has the lowest runtimes
and generates fewest samples for most image pairs. This is
due to the outlier removal and non-uniform sampling in the
algorithm. Note that PROSAC is unexpectedly slower than
RANSAC for the VGG dataset, as most image pairs in this
dataset have many repetitive structures, resulting in PROSAC
struggling to converge to the correct model. LP-RANSAC
delivers solutions that are almost the most accurate in
terms of the standard deviation of inliers, which capture the

TABLE 1. Comparison of various robust estimators for homography
estimation on real-world datasets.

second most inliers after GC-RANSAC. This is because the
local optimization technique exploited in GC-RANSAC is
not incorporated in LP-RANSAC on consideration of run-
time. For the same reason, LP-RANSAC reaches approxi-
mately similar results as RANSAC in terms of the balanced
F-score, slightly inferior to GC-RANSAC. VFC-RANSAC
and RFM-RANSAC do not achieve satisfying performance
in speed as LP-RANSAC, because outlier removal in both
two methods takes too much time, especially when the num-
ber of putative feature matches is large. Compared to full
LP-RANSAC, the performance of LP-RANSAC∗ is compa-
rable but many orders of magnitude slower in the cases where
the inlier ratio in the putative set is very small. This result
gives a further verification on the idea that the reduced set
with a higher inlier ratio can significantly speed upRANSAC.
Given the above discussion, LP-RANSAC is thus able to
return more accurate and stable results than the competitive
methods at an affordable cost, in particular when the inlier
ratio is low.

3) FUNDAMENTAL MATRIX RESULTS
In this experiment, we evaluate the performance of
LP-RANSAC in estimating fundamental matrices by adopt-
ing AdelaideRMF and kusvod2 datasets. These datasets cover
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FIGURE 8. Sample qualitative results of LP-RANSAC for fundamental
matrix estimation tested on (a) AdelaideRMF and (b) kusvod2 datasets.
For concise exhibition, only parts of inliers and outliers are plotted. Green
and red lines represent detected inliers and outliers respectively.

a wide range of challenging scenarios, where the inlier ratios
ranged from 23%–94%. Correspondences are considered to
be inliers if the Sampson error of the fundamental matrix is
smaller than 3 pixels.

Sample qualitative results of LP-RANSAC are shown
in Fig. 8, and the averaged results calculated using all the
image pairs of the two datasets are shown in Table 2. The
same statistics are presented as in the homography experi-
ment. As before, it can be clearly seen that LP-RANSAC
consistently obtains accurate and stable results with a low
computational cost. LP-RANSAC tends to require in general
much fewer samples and lower runtimes than the other meth-
ods to generate a correct model, save for PROSAC, which
can sometimes be slightly faster than LP-RANSAC. How-
ever, compared to standard techniques, PROSAC typically
delivers inaccurate solutions with much fewer inliers, larger
standard deviations of inliers and smaller balanced F-score,
whereas the corresponding values for LP-RANSAC are com-
parable or even preferable as RANSAC and GC-RANSAC.
This again indicates that the proposed method is superior
to the other competitive RANSAC-like methods. Similar to
the homography case, LP-RANSAC’s performance is much
higher than other combinedmethods like VFC-RANSAC and
RFM-RANSAC in both speed and precision, and is compa-
rable to LP-RANSAC∗ which is many orders of magnitude
slower. Interestingly, LP-RANSAC∗ returns more inliers,
lower standard deviations of inliers and higher F-score than
full LP-RANSAC on the kusvod2 dataset. This is due to that
LP-RANSAC improperly removes a portion of inliers, which
may not be successfully retrieved by the post-processing
strategy, leading to an inaccurate solution to the fundamental
matrix estimation.

4) LIMITATIONS
Because of the nature of RANSAC, our LP-RANSAC will
also suffer from the problem of the inlier-outlier threshold

TABLE 2. Comparison of various robust estimators for fundamental
matrix estimation on real-world datasets.

FIGURE 9. Example of failure cases of LP-RANSAC. For concise exhibition,
only 100 putative matches are plotted. As can be seen, there are barely
any inliers that are correctly detected.

setting as other RANSAC variants, which strongly influences
the outcome of featurematching ormodel estimation. In addi-
tion, the outlier removal as a preprocessing filter for the
subsequent RANSAC will not always bring benefit to the
performance of the proposed method. LP-RANSAC might
fall behind the standard RANSAC in speed when the putative
correspondence set has sufficient inliers and a high inlier
ratio, as the prefiltering unnecessarily takes some time in
this case. Another potential limitation of our LP-RANSAC is
that the LPC does not guarantee only outliers are eliminated
but probably also eliminate inliers. This may be problematic
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when both the number of inliers and the inlier ratio in the
putative set are quite small, leading to the convergence to the
wrong solution in the RANSAC procedure. Such a case is
most likely to occur with extreme viewpoint changes. How-
ever, the performance of LP-RANSAC is still satisfactory for
most cases. Typical failure cases are presented in Fig. 9.

V. CONCLUSION
In this paper, we have presented a very fast and accu-
rate robust estimator named LP-RANSAC for recovering
the two-view geometry. Our central idea is to integrate
the locality preserving constraint within the framework
of hypothesize-and-verify without any prior information.
By exploiting this constraint, most of the bad matches are
pruned and the corresponding locality preserving scores of
the remaining matches are obtained in the preprocessing step.
Furthermore, these scores are used to guide the non-uniform
sampling on the smaller set of more reliable correspon-
dences with a higher fraction of inliers, resulting in seeking
the correct model earlier without any deterioration in accu-
racy. As shown in our experiments, the proposed method
is able to provide significantly better solutions to both the
homography and fundamental matrix estimation problems in
almost all cases than the state-of-the-art methods. Our future
work includes combining other modification strategies for
RANSAC with our method and extending LP-RANSAC to
other applications in computer vision, such as pose estima-
tion, motion segmentation or multi-model fitting.
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