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ABSTRACT We focus on the Simultaneous Fault Detection and Control (SFDC) in the context of Markov
Jump Linear Systems (MJLS). The main novelty of the paper is the design of H∞ and H2 SFDC under the
MJLS framework considering partial observation of theMarkov chain. Both designs are obtained via Bilinear
Matrix Inequalities optimization problem. As secondary results we provide a Mixed H2/H∞ SFDC under
the same set up, as well as the implementation of a coordinated descent algorithm to solve the optimization
problem formulated as Bilinear Matrix Inequalities (BMI). To illustrate the viability of the proposed solution
a numerical example is provided.

INDEX TERMS Markovian jump linear systems, simultaneous fault detection and control, hidden markov
mode, H∞ norm, H2 norm.

I. INTRODUCTION
Over the last decades, the demand for systems with high reli-
ability has increased, and for that reason, there is an increase
in the demand for control solutions that aim to optimize not
only the performance but also the safety levels. The most
recent control solutions developed under this premise are the
so-called Fault Detection and Isolation (FDI) approach [1],
[13], [25], or Fault-Tolerant Control (FTC) approach [16],
[17], [27]. Both solutions aim to increase the reliability using
completely different methods, therefore, a straightforward
way to increase the reliability would be the implementation of
both approaches in parallel. However, the overall complexity
of implementing two distinct units may be difficult.

As an alternative to overcome this complexity issue,
the design of a single unit that simultaneously works as a
stabilizing controller and residue generator has been studied
in the literature in the form of the so-called Simultaneous
Fault Detection and Control (SFDC). Another aspect that
must be considered to increase the system reliability is the
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communication dropout and communication delay caused by
package collision, which are both inherent phenomena to the
network communication and have a negative impact on the
control system performance.

One strategy to tackle the aforementioned aspects is to use
for modelling a class of stochastic systems named Markov
jump linear systems (MJLS). In this case, the MJLS role
is to model any unpredictable network behavior, with each
possible network behavior assigned to a particular Markov
chain mode and the transition between modes ruled by the
Markov chain.

In this regard, an important premise is that the network
state is instantly accessible, which may not be achievable in
real implementation. A possible way to model this particular
circumstance is the set up presented in [21] and [3], which
deals with a detector based approach when the Markov chain
modes are partially known. These works allow us to design
a SFDC solution that does not depend on the Markov mode,
instead it depends only on a detected mode.

The SFDC problem has received a great deal of atten-
tion recently. There are plenty of works that tackle similar
problems, we can mention [7], [11] for SFDC solutions
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considering the deterministic case, the first using state-
feedback controllers, the second one using affine switched
systems. [15] presented a deterministic solution for the SFDC
based on Linear Matrices Inequalities (LMI). The work [22]
presented a solution based on LMI using the performance
index H−/H∞. The authors in [26] proposed an SFDC for
continuous-time MJLS applied to a forging equipment. [14]
presented an SFDC for continuous-time MJLS considering
uncertain transition rate in the Markov chain. All the afore-
mentioned works consider that the Markov chain is instantly
accessible, hence the development of new techniques that do
not rely on this premise motivated the present paper.

As previously mentioned, in this paper, the SFDC problem
under discrete-time MJLS framework with partial informa-
tion on the jump parameter is investigated. To provide a
solution that works as a controller and a fault detector simul-
taneously the resulting closed-loop system must be stochas-
tically stable, in which two performance criteria are studied:
one regarding the H∞ norm and the other for the H2 norm.
The contributions are summarized as follows:
• Analysis of the H∞ SFDC problem under the discrete-
time MJLS framework with partial information on the
jump parameter, based on Bilinear Matrix Inequalities
(BMI).

• Analysis of the H2 SFDC problem under the discrete-
time MJLS framework with partial information on the
jump parameter, based on BMI.

• Analysis of the Mixed H2/H∞ SFDC problem under the
discrete-time MJLS framework with partial information
on the jump parameter, based on BMI.

• An illustrative example is presented to demonstrate the
usefulness of the proposed approach.

The BMI are solved using a specific type of coordinate decent
algorithm, which is also explained in the present paper.

The remainder of this paper is organized in the following
manner. Section II presents the notation. Section III formu-
lates the SFDC problem and provides some preliminaries.
Section IV introduces the main results. Section V presents
an illustrative example. The final comments are given in
Section VI.

II. NOTATION
The real n-dimensional Euclidean space is represented by
Rn and the space of n × m real matrices, by B(Rm,Rn).
(·)′ indicates the transpose of a matrix, In is the identity
matrix of size n × n, 0n×m is the null matrix of size n × m,
diag(·) is a block diagonal matrix. For partitioned symmetric
matrices, the symbol • is a generic symmetric block. For N ,
a positive integer, we set N , {1, 2, 3, . . . ,N }. The set Hn,m

is the linear space of all N -sequence of real matrices V =
(V1,V2, . . . ,VN ), Vi ∈ B(Rn,Rm), i ∈ N and, for the ease
of notation, Hn , Hn,n and Hn+ , {V ∈ Hn

;Vi ≥ 0, i =
1, . . . ,N }. For P,V ∈ Hn+, we write that P > V if Pi > Vi
for each i = 1, . . . ,N . On a probability space (�,F ,P) with
filtration {Fk}, the expected value operator is represented
by E(·), the conditional expected operator, by E(· | ·), and

the space of all discrete-time sequences of dimension r ,
Fk -adapted processes, such that ‖z‖22 ,

∑
∞

k=0 E(‖z(k)‖
2) <

∞, by lr2 .

III. PRELIMINARIES
Consider the following MJLS in the stochastic space
(�,F ,P) with filtration {Fk},

G :


x(k + 1) = Aθ (k)x(k)+ Bθ (k)u(k)+ . . .

. . . Jwθ (k)w(k)+ Jf θ (k)f (k)
y(k) = Lθ (k)x(k)+ Hwθ (k)w(k)+ Hf θ (k)f (k)
z(k) = Cθ (k)x(k)+ Dθ (k)u(k),

(1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control
input, w(k) ∈ Rr is the disturbance, f (k) ∈ Rf is the
signature of the failure, y(k) ∈ Rs is the measured output,
and z(k) ∈ Rq is the controlled output. We set x(0) = 0 and
define θ (k) as a homogeneous Markov chain taking its values
inNwith θ (0) = θ0, with θ0 a random variable, and transition
probabilities P(θ (k + 1) = j|θ (k) = i) = pij, P , [pij]. It is
considered, without loss of generality, that P has no column
equal to zero, meaning that P is nondegenerate, [19].

We would like to design a type of stabilizing controller
that simultaneously can act as a residual filter as well. The
controller/filter structure is given by

C :


xc(k + 1) = Acθ̂ (k)xc(k)+ Bcθ̂ (k)y(k)

u(k) = Ccθ̂ (k)xc(k)

f̂ (k) = Cf θ̂ (k)xc(k)+ Df θ̂ (k)y(k),

(2)

where xc ∈ Rn is the controller state and f̂ (k) ∈ Rf is an
estimate of the signature signal f (k).
One of the main premises in this work is that θ (k) is not

directly accessible but, rather a detector provides an esti-
mation of θ (k), denoted by θ̂ (k). The estimation θ̂ (k) takes
its values on the set Mi, when θ (k) = i. Mi is a subset
of M = {1, . . . ,M}, where M represents all the possible
values of the detector θ̂ (k). We consider that the signal θ̂ (k)
emitted from the detector depends only on θ (k). Let F̂0 be
the σ -field generated by {x(0), θ (0)} and F̂k be the σ -field
generated by {x(0), θ(0), θ̂ (0), . . . , x(k), θ(k)}. We consider
that θ̂ (k) ∈ {1, . . . ,M} is associated to θ (k) as in

P(θ̂ (k) = l |F̂k ) = P(θ̂ (k) = l|θ (k)) = αθ (k)l, l ∈M (3)

with
∑M

l=1 αil = 1 for each i ∈ N.
Consider Fk as the σ -field generated by {x(t), θ(t), θ̂ (k);

t = 0, . . . , k}. We have that

P(θ (k + 1) = j|Fk ) = P(θ (k + 1) = j|θ (k)) = pθ (k)j. (4)

Therefore, αil denotes the probabilities that the detector
will emit the signal l ∈ M considering θ (k) = i. The set Mi
can be written as

Mi={l ∈M;αil > 0} = {k i1, . . . , k
i
τi
}, ∪Ni=1Mi=M. (5)

The goal is to stabilize (1) through (2) whilst at the same
time the controller acts also as supervisory filter providing
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estimates of f̂ (k) through the residual signal

r(k) , f (k)− f̂ (k).

By connecting (1) and (2) and defining x̃(k)′ ,
[
x(k)′ xc(k)′

]
and, w̃(k)′ ,

[
w(k)′ f (k)′

]
, we get the closed-loop dynamics

Gc :


x̃(k + 1) = Ã

θ (k)θ̂ (k)x̃(k)+ J̃θ (k)θ̂ (k)w̃(k)

z(k) = C̃cθ (k)θ̂ (k)x̃(k),

r(k) = C̃f θ (k)θ̂ (k)x̃(k)+ Ẽf θ (k)θ̂ (k)w̃(k),

(6)

where

Ãil ,
[
Ai BiCcl
BclLi Acl

]
, J̃il ,

[
Jwi Jfi

BclHwi BclHfi

]
,

C̃cil ,
[
Ci DiCcl

]
, C̃fil ,

[
−DflLi −Cfl

]
,

Ẽfil ,
[
−DflHwi If − DflHfi

]
.

Let us introduce some basic concepts required for properly
describing the main goal. The concept of internal stochas-
tic stability and stabilizability are stated next, where A ,
(A1, . . . ,An) ∈ B(Rn), B , (B1, . . . ,Bn) ∈ B(Rn,Rm),
and K , (K1, . . . ,Kn) ∈ B(Rm,Rn), and for Q ∈ Hn,
Ei(Q) ,

∑
j∈N pijQj.

Definition 1 (Internal Stochastic Stability): System (6) is
said to be internally stochastically stable (ISS) if for any
x̃(0) ∈ R2n and θ0 ∈ N we have that ‖x̃‖2 <∞.
Definition 2 (Internal Stochastic Stabilizability): The pair

(A,B) is said to be internally stochastically stabilizable if
there exists K and Y ∈ Hn+, Y > 0, such that Yi −
Ai(Ki)′Ei(Y )Ai(Ki) > 0 holds for all i ∈ N, where Ai(Ki) ,
Ai + BiKi.
The class of admissible controllers is given by

C , {C : (6) is iSS}. Next we introduce the concept of
H∞ norm of (6) with respect to outputs z(k) and r(k) adapted
from [21]. For that, we set Wi , {w̃ ∈ l

r+f
2 : ‖w̃‖2i > 0},

where for any signal g = {g(k), k = 0, 1, 2, . . .}, ‖g‖22i ,
E(‖g(k)‖2 | θ0 = i).

Now we define the H∞ and H2 norms, which will be used
to present later on the mixed formulation. We start with the
H∞ norm definition.
Definition 3 (H∞ Norms): Given that C ∈ C , the H∞

norm of (6) with respect to z is given by

‖Gc‖(w̃7→z)
∞ , sup

i∈N
sup
w̃∈Wi

‖z‖2i
‖w̃‖2i

,

and the H∞ norm of (6) with respect to r by,

‖Gc‖(w̃7→r)
∞ , sup

i∈N
sup
w̃∈Wi

‖r‖2i
‖w̃‖2i

.

Consider the following inequalities for given γc > 0 and γr >
0, [

Pi 0
0 γ 2

c I

]
>
∑
l∈Mi

αil

[
Mil •

Nil Sil

]
, (7)

[
Mil •

Nil Sil

]
>

[
Ãil J̃il
C̃cil 0

]′[Ei(P) 0
0 I

][
Ãil J̃il
C̃cil 0

]
, (8)

and [
Pi 0
0 γ 2

r I

]
>
∑
l∈Mi

αil

[
Mil •

Nil Sil

]
, (9)

[
Mil •

Nil Sil

]
>

[
Ãil J̃il
C̃fil Ẽfil

]′[Ei(P) 0
0 I

] [
Ãil J̃il
C̃fil Ẽfil

]
,

(10)

for all i ∈ N. The following bounded-real lemma is adapted
from [21].
Lemma 1 (Bounded-Real Lemma): If there exists P ∈

H2n+, P > 0, P ∈ H2n+,P > 0, such that (7), (8), (9), and
(10) hold, then C ∈ C , ‖Gc‖(w̃7→z)

∞ < γc and ‖Gc‖(w̃7→r)
∞ < γr .

Therefore the goal is to design C ∈ C so that ‖Gc‖(w̃7→z)
∞ <

γc and ‖Gc‖(w̃7→r)
∞ < γr for w̃ ∈ Wi, i ∈ N. Specifically in

this work we focus our efforts in finding

inf
C∈C ,P,γr ,γc

{γcβc + γrβr } : s. t. (7), (8), (9) and (10) (11)

hold for a given βc > 0, βr > 0. This particular formulation
will be useful later on in this paper. We present next the H2
norm definition.
Definition 4 (H2 Norms): Assume that C ∈ C . For

x̃(0) = 0, define zs,i and rs,i, the outputs of (6) for the initial
condition θ (0) = i and the input w̃(k) = 0 for k ≥ 1 and
w̃(0) = es, where es is the s−th vector of the standard basis
of Rs. The H2 norms of (6) with respect to the ouputs z and r
are given by

‖Gc‖(w̃ 7→z)
2 =

√√√√ r∑
s=1

N∑
i=1

µi‖zs,i‖22 (12)

and

‖Gc‖(w̃ 7→r)
2 =

√√√√ r∑
s=1

N∑
i=1

µi‖rs,i‖22, (13)

where the initial Markov chain state distribution is given by
P(θ (0) = i) = µi ≥ 0 for all i ∈ N.
Considering the strict inequalities,

Q̃i>
∑
l∈Mi

αil(Ã′ilEi(Q̃)Ãil+C̃
′
cilC̃cil), i∈N, l∈Mi, (14)

and

Q̃i >
∑
l∈Mi

αil(Ã′ilEi(Q̃)Ãil + C̃ ′filC̃fil), i∈N, l∈Mi, (15)

for Q̃i > 0 and Qi > 0, we have that(
‖Gc‖(w̃7→z)

2

)2
<

N∑
i=1

∑
l∈Mi

αilµiTr(J̃ ′ilEi(Q̃)J̃il) (16)

and(
‖Gc‖(w̃7→r)

2

)2
<

N∑
i=1

∑
l∈Mi

αilµiTr(J̃ ′ilEi(Q̃)J̃il+Ẽ ′fil Ẽfil). (17)
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Following the discussion presented in [3] and [5], we get that
if the following inequalities for the filter part

N∑
i=1

∑
l∈Mi

µiαilTr(Wil) < λ2r , (18)

Wil • •

J̃il Ei(Q̃)−1 •

Ẽfil 0 I

 > 0, (19)

Q̃il >
∑
l∈Mi

αil R̃il, (20)

 R̃il • •

Ãil Ei(Q̃)−1 •

C̃fil 0 I

 > 0. (21)

and for the controller side
N∑
i=1

∑
l∈Mi

µiαilTr(Wil) < λ2c, (22)

[
Wil •

J̃il Ei(Q̃)−1

]
> 0, (23)

Q̃il >
∑
l∈Mi

αilR̃il, (24)

R̃il • •

Ãil Ei(Q̃)−1 •

C̃cil 0 I

 > 0. (25)

hold, then C ∈ C, ‖Gc‖(w̃ 7→z)
2 < λc and ‖Gc‖(w̃7→r)

2 < λr .
Similarly to theH∞ case, the main goal is to design C ∈ C so
that ‖Gc‖(w̃7→z)

2 < λc and ‖Gc‖(w̃7→r)
2 < λr for w̃ ∈Wi, i ∈ N.

Specifically in this work we focus our efforts in finding

ψ = {Wil,Qi,Ril,Wil,Qi,Ril, i ∈ N, l ∈Mi} (26)

1 = {ψ such that (18)-(25) hold }

inf
C∈C ,P,λr ,λc

{λcζc + λrζr } : s. t. ψ ∈ 1, (27)

for a given ζc, ζr > 0. Similarly to the H∞ case, we choose
this particular formulation in order to derive some results
later on.
After the controller in (2) is obtained, the next step is the

on-line residual evaluation of the system for detecting faults.
As in [28], we define the evaluation function as follows,

J (r) ,

√√√√√k0+L∑
k=k0

r(k)′r(k), (28)

where k0 is the initial evaluation time and L is the evaluation
duration. The threshold J̄ is given by

J̄ , sup
w∈lr2 ,f=0

E(J (r)). (29)

The idea of (29) is to obtain the value of the residual under
nominal operation, that is, without the fault, in a similar way
as presented in [22]. The value of (29) can be approximated,
for instance, through Monte Carlo simulations and using

some knowledge of the nominal process transfer behavior.
A deeper discussion about this type of threshold can be found
in [2], [9], [12]. The decision process is then characterized by

J (r) > J̄ A fault occured,

J (r) ≤ J̄ No fault. (30)

IV. MAIN RESULTS
In this section, we present the main theoretical results pro-
posed in the present work. The first result is the design of a
H∞ SFDC for discrete-time MJLS with partial information,
the second result is the design of a H2 SFDC for discrete-
time MJLS with partial information. As secondary results we
also present the Mixed H2 / H∞ SFDC for MJLS with partial
information, as well as the coordinate descent algorithm as a
viable way to solve the BMI constraints.

A. H∞ SFDC
The next result presents BMI constraints regarding the con-
troller design (31), (32), as shown at the bottom of the next
page, and for the filter design (33) and (34), as shown at the
bottom of the next page.
Theorem 1: There exists an SFDC described as in (2) such

that C ∈ C , ‖Gc‖(w̃7→z)
∞ < γc, and ‖Gc‖(w̃7→r)

∞ < γr for fixed
γc > 0 and γr > 0 if there exist symmetric matrices Zi,
Xi, M11

il , M
22
il , S

11
il , S

22
il , Zi, Xi, M11

il , M
22
il , S

11
il , S

22
il , and

the matrices M21
il , S

21
il , M

21
il , S

21
il , N

11
il , N

12
il , N

21
il , N

22
il , N

11
il ,

N12
il , N

21
il , N

22
il , Gl , 0l , χl , 2l , 8l , and Kl with compatible

dimensions such that inequalities (31), (32), (33), and (34)
hold ∀i ∈ N, l ∈ M. If a feasible solution is obtained,
a suitable SFDC is given by

Acl = −G
−1
l 0l,

Bcl = −G
−1
l χl,

Ccl = Kl,

Cfl = −2l,

Dfl = −8l .

Proof: The proof follows the similar reasoning pre-
sented in [4] and [10]. We set the structure of matrices Pi and
P−1i of (7)-(8) as

Pi =
[
Xi •

Ui X̂i

]
, P−1i =

[
Z−1i •

Vi Ŷi

]
(35)

and similarly for matrices Pi and P−1i of (9)-(10), we set

Pi =

[
Xi •

Ui X̂i

]
, P−1i =

[
Z−1i •

Vi Ŷi

]
(36)

We also define the matrices τi and υi as

τi =

[
I I

ViZi 0

]
, υi =

[
I Ei(X )
0 Ei(U )

]
(37)

along with

ti =

[
I I

ViZi 0

]
, ui =

[
I Ei(X)
0 Ei(U)

]
. (38)

11982 VOLUME 8, 2020



L. D. P. Carvalho et al.: H2/H∞ SFDC for MJLS With Partial Observation

By verifying the diagonal blocks of (31) and also (32),
we note that Her(Gl) > Ei(X − Z ) > 0 so that Gl is
non-singular. Considering the fact that PiP

−1
i = I and

PiP
−1
i = I , we rewrite the matrices Pi and P

−1
i by setting

Ui = −X̂i, and matrices Pi and P−1i by setting Ui = −X̂i,
as follows

Pi =
[

Xi •

Zi − Xi Xi − Zi

]
, (39)

P−1i =
[
Z−1i •

Z−1i Z−1i + (Xi − Zi)−1

]
, (40)

and

Pi =

[
Xi •

Zi − Xi Xi − Zi

]
, (41)

P−1i =

[
Z−1i •

Z−1i Z−1i + (Xi − Zi)−1

]
, (42)

Besides, Equations (37) and (38) become

τi =

[
I I
I 0

]
, υi =

[
I Ei(X )
0 Ei(Z − X )

]
. (43)

and

ti =

[
I I
I 0

]
, ui =

[
I Ei(X)
0 Ei(Z− X)

]
. (44)

Since Gl is non-singular, we set 0l = −GlAcl , χl = −GlBcl ,
Kl = Ccl , 2l = −Cfl , and 8l = −Dfl . As presented in
[6], [10], we get thatGlEi(X−Z )−1GTl ≥ Her(Gl)+Ei(Z−X )

and GlEi(X − Z)−1GTl ≥ Her(Gl) + Ei(Z − X) so that (32)
and (34) still hold if the diagonal blocks in which Her(Gl)+
Ei(Z − X ) and Her(Gl) + Ei(Z − X) appear are substituted
by GlEi(X − Z )−1GTl and GlEi(X − Z)−1GTl , respectively,
resulting in

M11
il • • • • • •

M21
il M22

il • • • • •

N 11
il N 12

il S11il • • • •

N 21
il N 22

il S21il S22il • • •

451 Ei(Z )Ai Ei(Z )Jwi Ei(Z )Jfi Ei(Z ) • •
461 462 463 464 0 466

•

Ci+DiCcl Ci 0 0 0 0 I


>0,

(45)

and

M11
il • • • • • •

M21
il M22

il • • • • •

N11
il N12

il S11
il • • • •

N21
il N22

il S21
il S22

il • • •

4̃51 Ei(Z)Ai Ei(Z)Jwi Ei(Z)Jfi Ei(Z) • •
461 462 463 464 0 4̃66

•

−Cfl−DflLi −DflLi −DflHwi I−DflHfi 0 0 I


>0,

(46)


Zi • • •

Zi Xi • •

0 0 γ 2
c ∞ I •

0 0 0 γ 2
c ∞ I

 > ∑
l∈Mi

αil


M11
il • • •

M21
il M22

il • •

N 11
il N 12

il S11il •

N 21
il N 22

il S21il S22il

 , (31)



M11
il • • • • • •

M21
il M22

il • • • • •

N 11
il N 12

il S11il • • • •

N 21
il N 22

il S21il S22il • • •

Ei(Z )(Ai + BiKl) Ei(Z )Ai Ei(Z )Jwi Ei(Z )Jfi Ei(Z ) • •

Gl(Ai + BiKl)+ 0l + χlLi GlAi + χlLi GlJwi + χlHwi GlJfi + χlHfi 0 Her(Gl)+ Ei(Z − X ) •

Ci + DiKl Ci 0 0 0 0 I


> 0,

(32)
Zi • • •

Zi Xi • •

0 0 γ 2
r ∞ I •

0 0 0 γ 2
r ∞ I

 > ∑
l∈Mi

αil


M11

il • • •

M21
il M22

il • •

N11
il N12

il S11
il •

N21
il N22

il S21
il S22

il

 , (33)



M11
il • • • • • •

M21
il M22

il • • • • •

N11
il N12

il S11
il • • • •

N21
il N22

il S21
il S22

il • • •

Ei(Z)(Ai + BiKl) Ei(Z)Ai Ei(Z)Jwi Ei(Z)Jfi Ei(Z) • •

Gl(Ai + BiKl)+ 0l + χlLi GlAi + χlLi GlJwi + χlHwi GlJfi + χlHfi 0 Her(Gl)+ Ei(Z− X) •

2l +8lLi 8lLi 8lHwi I +8lHfi 0 0 I


> 0.

(34)
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where

451
= Ei(Z )(Ai + BiCcl),

461
= Gl(Ai + BiCcl)− GlAcl − GlBclLi,

462
= GlAi − GlBclLi,

463
= GlJwi − GlBclHwi,

464
= GlJfi − GlBclHfi,

466
= GlEi(X − Z )−1G′l,

and

4̃51
= Ei(Z)(Ai + BiCcl),

4̃66
= GlEi(X− Z)−1G′l .

By defining the following matrices

5il =

[
Ei(Z )−1 I

0 G−Tl Ei(X − Z )

]
, (47)

and

π̃il =

[
Ei(Z)−1 I

0 G−Tl Ei(X− Z)

]
, (48)

and applying the congruence transformations diag(I , I ,5il, I )
and diag(I , I , π̃il, I ) to (45) and (46), respectively, we get that

τ ′iMilτi • • •

Nilτi Sil • •

υ ′i Ãilτi υ ′i J̃il υ ′iEi(P)−1υi •

C̃cilτi 0 0 I

 > 0, (49)

and 
t′iMilti • • •

Nilti Sil • •

u′iÃilti u′iJ̃il u′iEi(P)−1ui •

C̃filti Ẽfil 0 I

 > 0, (50)

hold, for τi, υi, ti, and ui given as in (43) and (44). By apply-
ing the congruence transformations diag(τ−1i , I , υ−1, I ) and
diag(t−1i , I , u−1i , I ) to (49) and (50), respectively, and the
Schur complement to the resulting inequalities, we get that
(8) and (10) hold. Finally, by noting that (31) and (33) can
be equivalently rewritten as follows[

τ ′iPiτ •

0 γ 2
c I

]
>
∑
l∈Mi

αil

[
τ ′iMilτi •

Nilτi Sil

]
, (51)

and [
t′iPiti •

0 γ 2
r I

]
>
∑
l∈Mi

αil

[
t′iMilti •

Nilti Sil

]
, (52)

we get, after applying the congruence transformations
diag(τ−1i , I ) and diag(t−1i , I ) to (51) and (52), respectively,
that (7) and (9) hold. Thus, since (7)-(8) and (9)-(10) hold for
the closed-loop system as in (6), we get from Lemma 1 that
C ∈ C , ‖Gc‖w̃7→z < γc, and ‖Gc‖w̃7→r < γr , and the claim
follows. �

B. H2 SFDC
The next result presents BMI constraints related to the control
and filter design of the SFDC system (2).
Theorem 2: There exists an SFDC described as in (2) such

that C ∈ C , ‖Gc‖(w̃ 7→z)
2 < λc, and ‖Gc‖(w̃ 7→r)

2 < λr for fixed
λc > 0 and λr > 0 if there exist symmetric matrices W 11

il ,
W 22
il , Ti, Oi, V

11
il , V

22
il , W

11
il ,, V

22
il Ti, Oi, V11

il , V
22
il and the

matricesW 21
il , V

21
il ,W

21
il ,V

21
il Gl , 0l , χl ,2l ,8l , and Kl with

compatible dimensions such that inequalities (53), (54), (55),
(56), (57), (58), (59), and (60), as shown at the bottom of
the next page, hold ∀i ∈ N, l ∈ M. If a feasible solution
is obtained, a suitable SFDC is given by

Acl = −G
−1
l 0l,

Bcl = −G
−1
l χl,

Ccl = Kl,

Cfl = −2l,

Dfl = −8l .

Proof: The proof follows the similar reasoning as the
one employed in the proof of Theorem 1. Similarly as pre-
sented in [4], [10], the structure of matrices Q̃i and Q̃

−1
i of

(18)-(21), and Q̃i and Q̃−1i of (22)-(25), are

Q̃i =
[
Oi •

Ūi Ôi

]
, Q̃−1i =

[
T−1i •

V̄i T̂i

]
. (61)

and

Q̃i =

[
Oi •

Ūi Ôi

]
, Q̃−1i =

[
T−1i •

V̄i T̂i

]
. (62)

We also define the matrices ηi and σi

ηi =

[
I I

V̄iTi 0

]
, σi =

[
I Ei(T )
0 Ei(Ū )

]
. (63)

along with ni and si,

ni =

[
I I

V̄iTi 0

]
, si =

[
I Ei(T)
0 Ei(Ū)

]
. (64)

We get from (55)-(56) as well as (59)-(60) that Gl is non-
singular. By setting Ūi = −Ôi and Ūi = −Ôi in (61) and
(62) and using the fact that Q̃iQ̃

−1
i = I and Q̃iQ̃

−1
i = I ,

we get that (61)-(64) can be rewritten as

Q̃i =
[

Oi •

Ti − Oi Oi − Ti

]
, Q̃−1i =

[
T−1i •

T−1i ϒ1i

]
, (65)

where ϒ1i = T−1i − (Oi − Ti)−1, and

Q̃i =

[
Oi •

Ti −Oi Oi − Ti

]
, Q̃−1i =

[
T−1i •

T−1i ϒ2i

]
(66)

where ϒ2i = T−1i − (Oi − Ti)−1, along with

ηi =

[
I I
I 0

]
, σi =

[
I Ei(T )
0 Ei(T − O)

]
(67)
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and

ni =

[
I I
I 0

]
, si =

[
I Ei(T)
0 Ei(T−O)

]
. (68)

Recalling the previous reasoning applied in the proof of The-
orem 1, we get thatGlEi(O−T )−1G′l ≥ Her(Gl)+Ei(T −O)
andGlEi(O−T)−1G′l ≥ Her(Gl)+Ei(T−O). By performing
the change of variables 0l = −GlAcl , χl = −GlBcl , Kl =
Ccl , 2l = −Cfl , and 8l = −Dfl , we can rewrite (55)-(56)
and (59)-(60) as follows

W 11
il • • •

W 21
il W 22

il • •

Ei(T )Jwi Ei(T )Jfi Ei(T ) •

Gl[Jwi−BclHwi] Gl[Jfi−BclHfi] 0 GlEi(O−T )−1G′l

>0,
(69)

and
V 11
il • • • •

V 21
il V 22

il • • •

Ei(T )Ai(Ccl) Ei(T )Ai Ei(T ) • •

Glϒ3il Gl[Ai − BclLi] 0 GlEi(O− T )−1G′l •

Ci+DiCcl Ci 0 0 I

>0,

(70)

where Ai(Cc) = Ai+BiCcl andϒ3il = [Ai(Ccl)−Acl−BclLi].
along with

W11
il • • • •

W21
il W22

il • • •

Ei(T)Jwi Ei(T)Jfi Ei(T) • •

Gl[Jwi − BclHwi] Gl[Jfi − BclHfi] 0 GlEi(O− T)−1G′l •

−DflHwi I−DflHfi 0 0 I

>0,

(71)

and
V11
il • • • •

V21
il V22

il • • •

Ei(T)Ai(Ccl) Ei(T)Ai Ei(T) • •

Glϒ3il Gl[Ai − BclLi] 0 GlEi(O− T)−1G′l •

−Cfl − DflLi −DflLi 0 0 I

>0.

(72)

By defining the matrices

5̄il =

[
Ei(T )−1 I

0 G−Tl Ei(O− T )

]
and

π̄il =

[
Ei(T)−1 I

0 G−Tl Ei(TO− T)

]

∑
i∈N

∑
l∈Mi

µiαilTr(Wil) < λ2c, (53)

[
Ti •

Ti Oi

]
>
∑
l∈Mi

[
V 11
il •

V 21
il V 22

il

]
, (54)


W 11
il • • •

W 21
il W 22

il • •

Ei(T )Jwi Ei(T )Jfi Ei(T ) •

GlJwi + χlHwi GlJfi + χlHfi 0 Her(Gl)+ Ei(T − O)

 > 0, (55)


V 11
il • • • •

V 21
il V 22

il • • •

Ei(T )(Ai + BiKl) Ei(T )Ai Ei(T ) • •

Gl(Ai + BiKl)+ 0l + χlLi GlAi + χlLi 0 Her(Gl)+ Ei(T − O) •

Ci + DiKl Ci 0 0 I

 > 0, (56)

∑
i∈N

∑
l∈Mi

µiαilTr(Wil) < λ2r , (57)

[
Ti •

Ti Oi

]
>
∑
l∈Mi

[
V11
il •

V21
il V22

il

]
, (58)


W11

il • • • •

W21
il W22

il • • •

Ei(T)Jwi Ei(T)Jfi Ei(T) • •

GlJwi + χlHwi GlJfi + χlHfi 0 Her(Gl)+ Ei(T−O) •

8lHwi I +8lHfi 0 0 I

 > 0, (59)


V11
il • • • •

V21
il V22

il • • •

Ei(T)(Ai + BiKl) Ei(T)Ai Ei(T) • •

Gl(Ai + BiKl)+ 0l + χlLi GlAi + χlLi 0 Her(Gl)+ Ei(T−O) •

2l +8lLi 8lLi 0 0 I

 > 0. (60)
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and applying the congruence transformations diag(Ir+f , 5̄il)
and diag(I2n, 5̄il, Iq) to (69) and (70) as well as
diag(Ir+f , π̄il, If ) and diag(I2n, π̄il, If ) to (71)-(72),
we get [

Wil •

σ ′i J̃il σ ′i Ei(Q̃)−1σi

]
> 0, (73)η′iR̃ilηi • •

σ ′i Ãilηi σ ′i Ei(Q̃)−1σi •

C̃cilηi 0 I

 > 0, (74)

and Wil • •

s′iJ̃il s′iEi(Q̃)−1si •

Ẽfl 0 I

 > 0, (75)

n′iR̃ilni • •

s′iÃilni s′iEi(Q̃)−1si •

C̃filni 0 I

 > 0. (76)

By applying the congruence transformations diag(I , σ−1i ),
diag(η−1i , σ−1i , I ), diag(I , s−1i , I ), diag(n−1i , s−1i , I ) to
(73)-(76), we get that (19), (21), (23), and (25) hold with the
closed-loop matrices of system (6). Finally, by noting that
(54) and (58) can be rewritten as follows

η′iQ̃iηi >
∑
l∈Mi

αilη
′
iR̃ilηi (77)

and

n′iQ̃ini >
∑
l∈Mi

αiln
′
iR̃ilni (78)

and thus, by noting that (53) and (57) are equivalent to
(18) and (22), and by applying the congruence transforma-
tions η−1i and n−1i to (77)-(78), respectively, we get that
(20)-(24) are also satisfied. Therefore, considering the dis-
cussion presented in Section III, see, for instance, [3] and [5],
we get that C ∈ C, ‖Gc‖(w̃7→z)

2 < λc, and ‖Gc‖(w̃ 7→r)
2 < λr ,

and the claim follows. �

C. MIXED H2 / H∞

We present now the design of mixedH2/H∞ SFDC for MJLS
with partial information on the jump parameter.

Observing the constraints in Theorems 1 and 2 it is possible
to notice that the structure to obtain SFDC is the same,
therefore a mixed solution can be formulated.

To increase the overall performance the H2 norm will
be considered in the controller side of the design due to
its equivalence to the LQR controllers, which provide good
performance in practical solutions. For the fault detection
side, we consider the H∞ norm, which provides an FDI with
a lower occurrence of false alarms, [18], [28].

From the aforementioned discussion, we consider the
mixed solution with the control side of the SFDC designed
using the BMI conditions for Theorem 2 and the fault detec-
tion side obtained using the BMI from Theorem 1. Hence,

the new rewritten optimization problem is

φ = {Zi,Xi,Mil,Nil,Sil,Wil,Vil,Ti,Oi
Gl, 0l, χl,Kl,2l,8l} (79)

κ = {φ such that (33)-(34) and (53)-(56) hold

inf
C∈C ,P,γr ,λc

{λcζc + γrβr } : s. t. φ ∈ κ. (80)

for a given ζc > 0, βr > 0.
Theorem 3: There exists an SFDC described as in (2) such

that C ∈ C , ‖Gc‖(w̃ 7→r)
∞ < γr , and ‖Gc‖(w̃ 7→z)

2 < λc for fixed,
γr > 0, and λc > 0 if there exist symmetric matrices Zi,
Xi, M11

il , M
22
il , S

11
il , S

22
il , W

11
il , W

22
il , V

11
il , V

22
il , Ti, Oi and

the matrices M21
il , S

21
il , N

11
il , N

12
il , N

21
il , N

22
il , W

21
il , V

21
il ,Gl ,

0l , χl , 2l , 8l , and Kl with compatible dimensions such that
inequalities, (33), (34), (53), (54), (55), and (56), hold ∀i ∈ N,
l ∈ Mi. If a feasible solution is obtained, a suitable fault-
compensation controller is given by

Acl = −G
−1
l 0l,

Bcl = −G
−1
l χl,

Ccl = Kl,

Cfl = −2l,

Dfl = −8l .

Proof: The proof for Theorem 3 is black a direct conse-
quence of Theorems 1 and 2. �

D. COORDINATE DESCENT ALGORITHM
As explained at the start of this section the constraints in
Theorem 1 and 2 are in the form of Bilinear Matrices Inequal-
ities, therefore it is necessary to implement an appropriate
procedure to solve such a problem. It can be found in the
literature several numerical ways of dealing with BMI as, for
instance, a combination of line search and a sequence of LMI
as presented in [24]. Although of great interest, an analyzes of
the techniques to solve the BMI in Theorems 1 and 2 would
fall outside the scope of this paper. Due to that we will focus
on a procedure that is extensively used in the literature known
as the Coordinate Descent Algorithm (CDA), as implemented
in [20], or [23]. The specific approach implemented in the
present paper was first introduced in [4].

By inspection, it is possible to observe that all the non-
linearities are ‘‘caused’’ by the state-feedback controller K .
A usual workaround for those non-linearities is to fix
the state-feedback controller and solve the resulting LMI.
Assume that there exists a state-feedback controller K , and
apply this controller in the constraints (31), (32),(33), and
(34) for the H∞ case, or (53),(54),(55),(56),(57),(58),(59),
and (60) for the H2 case. If a feasible solution is found
it may or may not be the optimized solution, due to the
choice of the state-feedback controller. The CDA algorithm
is described as in Algorithm 1.

V. NUMERICAL EXAMPLE
The coupled tank was chosen as an example. This partic-
ular coupled tank parameter and modeling were extracted
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Algorithm 1 Coordinate Descent Algorithm

Input: Kl ,γ−1,tmax ,ε
Output: Ac,Bc,Cc,Cf ,Df

1 Design stabilizing state-feedback controller(e.g. [21]).
2 Fix K in the LMI constraints for the H∞ case or for the
H2 case, and solve it to obtain the matrices Zi, Zi, and Gl
for the H∞ case, or Ti, Ti, and Gl for the H2 case, or Zi,
Ti, and Gl for the mixed case.

3 Fix Zi, Zi, Gl for H∞ case, or Ti, Ti, and Gl for the H2
case, or Zi, Ti, and Gl for the mixed case, and solve the
same LMI constraint and now obtain Acl , Bcl , Ccl , Cfl ,
Dfl , and the upper bound values γc, γr for the H∞ case
and λc, λr for the H2 case.

4 If γ
t−1
c −γ tc

γ t−1c
≤ ε or t ≤ tmax , go back to step 2.

FIGURE 1. Plant scheme.

from [8]. The discrete-time domain space-state model is

A1,2 =
[
−0.0239 −0.0127
0.0127 −0.0285

]
, B1,2 =

[
0.71 0
0 0.71

]
,

Jw 1,2 = 0.01 B1,2, Jf 1,2 = I2×2,

L1 = I2×2, L2=02×2, Hw 1,2 = Hf 1,2=0.1 I2×2,

C1 = I2×2, C2=02×2, D1= I2×2, D2 = 02×2.

This is the space-state representation for the coupled tank
linearized in h1 = 0.2 cm and h2 = 0.1 cm, the sampling
time is Ts = 1s. The transition matrix, initial distribution,
and αk` are

P=
[
0.8 0.2
0.6 0.4

]
, µ′=

[
0.7
0.3

]
, 9=

[
0.7 0.3
0.6 0.4

]
. (81)

The SFDC obtained using Theorem 1 is

Ac1 =
[
0.5053 0.1653
−0.2767 0.4161

]
,

Ac2 =
[
0.2048 0.0686
−0.1065 0.1725

]
,

Bc1 =
[
−0.8252 −0.2487
0.5756 −0.8252

]
,

Bc2 =
[
−0.7180 −0.2263
0.5173 −0.7661

]
,

Cc1 = 10−4
[
−0.1854 −0.0811
0.0043 −0.1406

]
,

Cc2 = 10−4
[
0.4957 0.3046
−0.0602 0.3867

]
,

Cf 1 = 10−6
[
−0.1244 −0.0451
0.0547 −0.1130

]
,

Cf 2 = 10−6
[
−0.5927 −0.2846
0.2542 −0.6101

]
,

Df 1 = 10−5
[
−0.2573 −0.0176
−0.0419 −0.1089

]
,

Df 2 = 10−5
[
0.6632 0.0647
0.0588 0.3256

]
.

WeperformedMonte Carlo simulationwith 2000 rounds. The
fault signal is a step signal at k = 100[s] applied to the first
tank. The noise signal used is thewhite noisewithmean equal
to 0 and variance equal to 0.52 and multiplied by an expo-
nential. The simulation results are presented in four separated
Figs. 2, 3, 4, and 5. Fig. 2 presents the controlled outputs and
compares the simulation with (faulty) and without (faultless)
the fault signal. An information can be extracted, which is
that even with the fault applied to the first tank, the output to
the second tank remains almost the same, which means that

FIGURE 2. Outputs for the H∞ case.

FIGURE 3. Control signal for the H∞ case.
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FIGURE 4. Residue signal for the H∞ case.

FIGURE 5. Evaluation function for the H∞ case.

the controller fulfills its purpose. The first output has an offset
due to the presence of the fault, as expected. The controller
tries to compensate for the fault presence. The first output
is stabilized but not compensated, and for the second output
the fault is compensated. We should recall that the second
state is coupled to the first one, and therefore, any fault
occurring in the first tank affects the second one. Observing
the control signals in Fig. 3 reinforces the statementsmade for
Fig. 2, where both controllers tried to compensate for the fault
occurrence. Fig. 4 shows that the residue signal generated by
the SFDC increases near k = 100[s], which coincides with
the start of the fault signal, meaning that the SFDC almost
instantly responds to the fault.

From Fig. 5 we can notice that the fault detection side of
the solution works properly, since it is clear the difference
between the faulty and faultless evaluation curves.

The setup for the simulation is exactly the same used in the
H∞ case. The SFDC obtained using Theorem 2 is

Ac1 =
[
0.5929 0.0388
0.0201 −0.1255

]
,

Ac2 =
[
−0.5929 −0.0388
−0.0201 0.1255

]
,

FIGURE 6. Outputs for the H2 case.

Bc1 = 10−6
[
−0.2409 −0.0079
0.0093 −0.3303

]
,

Bc2 = 10−6
[
0.3691 0.0010
0.0044 0.0364

]
,

Cc1 =
[
0.8648 0.0728
0.0108 −0.1349

]
,

Cc2 =
[
−0.8053 −0.0366
−0.0460 0.2186

]
,

Cf 1 = 10−13
[
0.0748 −0.0001
0.0000 −0.1463

]
,

Cf 2 = 10−13
[
−0.0835 0.0001
−0.0000 0.1375

]
,

Df 1 =
[
43.2163 −0.0000
−0.0000 7.5839

]
,

Df 2 =
[
−33.2163 0.0000
0.0000 2.4161

]
.

The results obtained via simulation are presented in the
following Figs. 6, 7, 8, and 9.
In Fig. 6 both output signals are presented, as well as a

comparison between the situation with and without the fault
signal. As observed in the H∞ case, the first output has an

FIGURE 7. Control signal for the H2 case.
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offset caused by the fault and the second output compensates
the fault occurrence.

In Fig. 7 for both control signals, it is possible to observe
that the controller tries to counterbalance the fault signal
applied to the first tank, which was the goal of the designed
controller.

In Fig.8 the first residual signal increases right after
k = 100[s], when the fault signal starts. The presented
behavior is the expected behavior for a FDI, which is the goal
for the FDI side of the SFDC proposed in this paper.

FIGURE 8. Residue signal for the H2 case.

The evaluation function presented in Fig. 9 shows that the
proposed solution responds rapidly after the occurrence of the
fault. Another important aspect is that the evaluation function
for the second output does not change its behavior.

FIGURE 9. Evaluation function for the H2 case.

VI. CONCLUSION
In the present paper, we focus on the Simultaneous Fault
Detection and Control problem under the Markovian Jump
Linear Systems with partial observation on the Markov
parameter for the discrete-time domain. The main novelties
in this paper, presented in Section IV, are the design of
H∞ and H2 SFDC for MJLS with partial observation based
on Bilinear Matrix Inequalities, and the mixedH2/H∞ for the

SFDC, where the control side of the SFDC considers the H2
norm and the fault detection part considers the H∞ norm.
We also described the coordinate descent algorithm as a
possible method to solve the BMI. In Section V a numerical
example was presented to illustrate the viability of the pro-
posed solution. The results presented in Section V indicate
that the design ofH∞ /H2 SFDC for MJLS with partial jump
parameter provided in the present paper are viable solutions
for the SFDC problem.

Possible future steps along this line of research would
be to address the fault compensation problem, or consider
H− index to increase the fault detection performance.
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