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ABSTRACT As a powerful global registration method for point clouds, the 4-points congruent sets (4PCS)
algorithm has been wildly used in the 3D scene reconstruction field. In this paper, we propose an adaptive
4PCS (A4PCS), which aims to provide a robustness rigid transformation for two or more overlapping laser
scans. The proposed method only incorporates the distance information of the stereoscopic base set and a
fast mechanism for congruent base extraction into 4PCS. To ensure the registration accuracy when dealing
with restrictive situations, such as point clouds with small overlaps or scenes with symmetrical structures,
a non-coplanar 4-points base set is adopted without extra time consumption. Besides, the adaptive set fine-
tuning is introduced to the point pair searching process to accelerate the convergence of the algorithm.
In addition, we replace the binary cost function of the original 4PCS with a modified estimator to strengthen
the robustness of the proposed method. Experiments on thirteen pairs of point clouds for 3D indoor scenes,
including ten regular size models and three scenes of one large-scale model, can demonstrate the accuracy
and efficiency of the proposed method.

INDEX TERMS Global registration, 4-points congruent sets (4PCS), rigid transformation, point clouds.

I. INTRODUCTION
With the advancing of laser scanner based applications,
3D registration has attracted great interest in the computer
vision [1]–[3] and remote sensing [18], [19] related research
fields. As an indispensable component of 3D reconstruction,
the main task of the 3D registration is to match multiple point
clouds scanned from different orientations of the same scene
to a uniform coordinate system [8]–[10]. In this way, 3D
registration can provide a basic architecture for 3D recon-
struction to restore the entire scene. Therefore, in order to
get a more realistic 3D reconstruction result, a precise 3D
registration is essential.

To align two scans captured in arbitrary positions with
partial overlaps, the first thing to do with 3D registration is to
estimate the correspondences between the two scans [5], [6],
[16]. The correspondences can be estimated based on various
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feature descriptors, such as [7], [11]. In order to complete the
alignment of the corresponding regions after obtaining the
correspondences, the optimal rigid transformation parameters
should to be estimated first with the 3D registration. The
optimal transformation parameters are defined as the ones
that can minimize the distances between correspondences
of the two converted point clouds. Since the number of the
correspondences obtained by each estimation may be zero or
more than one pair, the transformation parameters calculated
based on the correspondences also may not exist or are not
unique. To solve this problem, random iterations and appro-
priate evaluation functions are introduced into the registration
algorithms to estimate the optimal transformation parameters,
which shows better performance [25].

Typically, such transformation parameters are estimated
in a two-step procedure: global registration and fine regis-
tration. Usually, an initial rigid transformation is estimated
by global registration to align point clouds roughly, so as
to avoid the fine registration falling into a local optimal
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solution [12]–[15]. Besides, good initialization from global
registration can speed up the convergence of fine registration,
such as the classical iterative closest point (ICP) or its variants
[4], [20]. Based on the global registration, the fine registration
further refines local regions that are not aligned precisely.
Therefore, accurate estimation of global registration parame-
ters is critical for fully automated real-time registration pro-
cess in real-world applications.

The rest of this paper is organized as follows. In Section II,
related work is briefly reviewed. Section III describes the
proposed method in details, followed by a performance study
in Section IV. The paper is concluded in Section V.

II. RELATED WORK
Recently, a variety of approaches have been proposed to
achieve fully automated global registration of the laser
scans. Algorithms based the RANdom SAmple Consen-
sus (RANSAC) for global registration have achieved great
success. These methods often followed similar strategies:
Given two laser scans with partial overlap, repeated the
random voting process to match pairs of congruent bases
which were extracted from these two scans separately until
it found the optimal rigid transformation. Rusu et al. pro-
posed a popular variant named Sample Consensus Initial
Alignment (SCA-IA) [21], which used the triplet sets as the
congruent bases. Though it was able to complete registra-
tion with low errors, the computational complexity usually
increased to O(n3), where n was the size of the point sets.
As opposed to use a 3-point base, Aiger et al. [22], [23]
proposed the 4-Points Congruent Sets (4PCS) and Super
4PCS (S4PCS) algorithms with coplanar 4-points set as the
bases, which reduced the runtime complexity to O(n2) and
O(n) respectively.

Based on the 4PCS algorithm, several practical methods
have been developed recently [24]–[30]. Theiler et al. [26],
[27] presented a combined 4PCS method, named Keypoint-
based 4PCS, in which keypoints were firstly extracted from
raw point clouds to be used as the input to the 4PCS
algorithm. Mohamad et al. [28], [29] proposed the Gen-
eral 4PCS (G4PCS) and Super G4PCS successively. The
G4PCS introduces a more general type of 4-points base
set that removed the planarity constraint. Huang et al. [30]
proposed Volumetric 4PCS(V4PCS), which incorporated the
volumetric information to the S4PCS to accelerate the extrac-
tion of the congruent bases. The MSSF-4PCS, proposed by
Xu et al. [17], embedded multiscale sparse features (MSSF)
with sparse coding into 4PCS to enable efficient global
registration of point clouds.

Though the existing methods have made improvements
either in terms of the runtime or the registration accuracy,
the results of the registration were often not desirable when
faced with restrictive situations. For example, when the over-
lap area between two scans was very small, computation
complexity would be very high because it was difficult to
extract the congruent base sets within the small overlapping
area. Besides, due to the lack of stereo information in the

coplanar point sets, the registration accuracy also needed to
be further improved in condition of models with symmetrical
structures. Considering the above problems, we proposed a
novel adaptive 4PCS method and the two main contributions
of this paper were as follows.

1) Only the distance information of the stereoscopic base
set was utilized to the congruent base extraction pro-
cess, which could make full use of the fast point pairs
searching mechanism of the S4PCS algorithm as well
as avoiding the time consumption caused by angle
calculations to filter the unnecessary base sets.

2) To accelerate the extraction of the congruent bases,
we introduced a new fast searching mechanism to
the proposed method. Besides, the adaptive sets fine-
tuning was incorporated into the point pairs searching
process, which gained about a 4 times speedup of the
congruent base extraction process.

III. METHODOLOGY
A. GLOBAL REGISTRATION PROCEDURE
The adaptive 4PCS method follows the same framework
as the 4PCS but exploiting non-coplanar congruent bases
instead of planar ones. The whole framework involves three
steps as described in Fig. 1 and the details are presented
below:
• Sparse Representation: Given the input sets S and T
with partial overlap, the voxel grid filter is applied to
roughly even out the strongly uneven point distribution
caused by equipment acquisition.

• RANSAC Iteration:After sampled, the two sparse uni-
form point clouds are used to estimate the optimal trans-
formation. In order to eliminate the variance caused by
randomly sampling of the base sets, the RANSAC itera-
tion is introduced in this process. In each RANSAC loop,
congruent 4-points base sets B ∈ S and Mi ∈ T will
be extracted to compute the candidate transformations
Ti using the Singular Value Decomposition (SVD) algo-
rithm. The iteration will be terminated if it completes L
(the maximum number) times iterations or it finds the
optimal transformation (Topt ). In this step, we introduce
a new fast method to extract the congruent bases and a
modified estimator to find the optimal transformations
from the candidate ones, which will be presented in
detail in the following Section III-C and III-D separately.

• Rotation and Translation: Finally, these two point
clouds can be registered by two steps of rotation and
translation with the parameter Topt .

B. CONGRUENT SETS EXTRACTION WITH 4PCS
As the proposed congruent 4-points sets extraction method is
based on the 4PCS algorithm, the basic concept of the 4PCS
will be briefly introduced in the first as follows:
Base Set Selection: Randomly select a coplanar 4-points

set B = {a, b, c, d} from source set S, and then calculate the
point distances d1 and d2, the intersection point e, and the
corresponding ratios r1, r2 as shown in Fig. 2.
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FIGURE 1. Flowchart of the proposed method.

FIGURE 2. Basic principle of 4PCS with base set B{a,b, c,d } ∈ S and a
corresponding congruent point set M{a′,b′, c ′,d ′} ∈ T .

Point Pairs Searching: Search for all the point pairs with
distances d1 and d2 from the target set T .
Congruent Sets Extraction: Match each two point pairs

with distances d1 and d2 to the base B. If they satisfy the
following restrictions, the set M = {a′, b′, c′, d ′} will be
considered congruent to B.
a) The respective intersection points e and e′ are coincident,

i.e.,

r1 = r ′1, r2 = r ′2. (1)

b) The respective angles between two lines are equivalent,

θ=θ ′. (2)

Up to this point, the 4PCS method is able to extract the
coplanar congruent sets with aO(n2+k+c) time complexity,
where n is size of T , k is the number of the searched point
pairs and c is the number of the extracted congruent sets. The
most time-consuming step is the point pair searching step,
which takes O(n2) time to search all point pairs with a given
distance within the set T [22]. In order to save this time cost,
the S4PCSmethod introduces a new data structure to organize
the points and a smart searching mechanism to find the point
pairs in a linear time complexity O(n) [23].

C. CONGRUENT SETS EXTRACTION WITH A4PCS
Since our proposed registration method is for 3D scenes,
coplanar congruent bases may not be able to take full

advantage of the information of 3D data. For example, when
dealing with scenes with symmetric structures, using copla-
nar bases may produce incorrect transformation [30]. More-
over, the study in [28] finds that using a coplanar base will
result in excess number of congruent bases. Considering the
above issues, we select a non-coplanar 4-points set as the
base B.

As mentioned above, the S4PCS method has developed a
fast mechanism to search point pairs with given distances in
a linear time. In order to utilize this capability, we propose
to extract the congruent bases that only utilizes the distance
information. From the knowledge of geometry, two non-
coplanar 4-points sets can be considered congruent if all
the six distances of their corresponding point pairs are the
same. Based on this stereoscopic information, the extraction
of the congruent 4-points sets can be converted to extract six
corresponding pairs of points.

A similar idea is proposed in [30], which extracts all the
point pairs corresponding to the six distances at first, and
then stores them into six connective tables to query which
six point pairs can be formed into a congruent base. And the
authors have derived that the time complexity compared to
S4PCS can be decreased from O(n + k + c) to O(n + k),
where n is the number of points in set T , k is the number of
the extracted point pairs and c is the number of congruent base
sets. Though this method introduces the S4PCS to accelerate
point pairs searching step, searching for all these six group
point pairs will still be time-consuming if the size of the
target point cloud n is too large. In order to further reduce this
computation complexity, we propose an adaptive searching
strategy to extract the congruent bases. It can be known from
the geometry that each vertex in a tetrahedron is connected
to its three edges at the same time. So if a point belongs to a
congruent base set, it must belong to three of six point pairs
of this congruent base at the same time. Therefore, there is
no need to search all these six groups of point pairs in the
whole set T . For this purpose, we extract these six groups of
point pairs from the set T and its’ subsets step by step. By this
strategy, the searching pools can be adaptively fine-tuned to
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FIGURE 3. Basic principle of the proposed method with the base set B{a,b, c,d } ∈ S and one of its congruent point set
Mi = {a′

i ,b′

i , c ′

i ,d ′

i } ∈ T .

smaller subsets according to the distance information. The
details are presented as follows (Fig. 3):
Step1: Base Set SelectionRandomly select a non-coplanar

4-points base set B = {a, b, c, d} from source set S, and then
calculate all the six distances d1 ∼ d6 between each two point
pairs of the base B.
Step2: Point Pairs Searching Instead of searching all six

groups point pairs in the set T at one time as the V4PCS dose
[30], we just first search for two groups with distances of
d1 and d2 by using the pairs searching algorithm in S4PCS.
And then, store them into two respective tables (Table1 and
Table2) with an effective standard data structure [39].
Step3: Congruent Triangular Set Query Query all the

point pairs of the Table1 and Table2, if there are two point
pairs (one from Table1 and one from Table2 respectively) that
have a common point, then we just need to ensure whether the
distance between the rest two points is d3. If satisfied, these
two point pairs will be stored as the congruent triangular set
{a′i, b

′
i, c
′
i} into Table3.

Step4: Congruent 4-points Base Extraction Based on the
extracted triangular sets, the rest three groups point pairs
corresponding to distances d4, d5 and d6 can be searched
within small subsets. Specifically, the point pairs with dis-
tance of d4 can be extracted within sets {a′i} and T . For each
a′i, the searched points from the set T are defined as the set
Osph. And then, search for all points with a distance of d5
to the point b′i within the set Osph and the searched points
are defined as the set Ocir . Finally, the points d ′i which are at
distance d6 to c′i can be searched from Ocir .
Alg. 1 summarizes the whole process of the congruent base

extraction and it is also worth mentioning that the distances
of all the point pairs extracted in our method have a given
tolerance (ε). Rather than searching all these six groups of
point pairs at one time from the whole set T [30], we first
query the congruent triangular sets {a′i, b

′
i, c
′
i} to filter the

irrelevant sets. Based on the congruent triangular sets and the
distance information of the base set, the searching pools for
the rest point pairs can be adaptively adjusted to the subset

Algorithm 1 Extract Congruent Bases by the A4PCS
Input: Source and target point sets S and T
Output: The congruent bases B and Mi

1: //Base Points Selection
2: Select a non-coplanar base set B = {a, b, c, d} ∈ S
3: Calculate all distances d1 ∼ d6
4: //Point Pairs Searching
5: Search point pairs with distances d1 and d2 from T
6: Table1, Table2← Initialize two tables to store the d1 and
d2 point pairs

7: // Congruent Triangular Set Query
8: for (i = 1; i < Table1.size; i++) do
9: for (j = 1; j < Table2.size; j++) do
10: {a′i, b

′
i, c
′
i} ← Query for congruent triangular sets

11: // Congruent 4-points Base Extraction
12: Osph← Search for the points in T with distance d4 to a′i
13: Ocir ← Search for the points in Osph with distance d5 to

b′i
14: {d ′i } ← Extract the points in Ocir with distance d6 to c′i

return B = {a, b, c, d} ∈ S and Mi = {a′i, b
′
i, c
′
i, d
′
i }

Osph, then to Ocir step by step as shown in Fig. 3. Through
this strategy, the time complexity of the point pairs search-
ing process can be reduced by decreasing the sizes of the
searching pools (n). Besides, with the decrease of searching
pool sizes, the number of the extracted point pairs (k) will be
decreased as well. As a result, the proposed searching strategy
can further decrease the time complexity from O(n + k) to
a smaller one. And the experimental results also show that
the proposed method has a significant contribution to the
reduction of runtime.

D. ESTIMATION WITH ROBUST MODIFIED
COST FUNCTION
As the transformation parameters computed in each itera-
tion loop are usually not unique, it is necessary to estimate
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FIGURE 4. Examples of successful registration by A4PCS with different
parameters settings for each model (Bird: δ = 0.8, Dragon: δ = 0.6, Hippo:
δ = 0.7, Head: δ = 1.5, Buddha: δ = 0.3).

the optimal one based on a robust cost function. Given the
squared Euclidean residuals e2i between the ith point in the
transformed set S ′ and its closest neighbour in the set T ,
the standard 4PCS algorithm adopts a binary decision as the

cost function. ρF = 1
n

n∑
i
ρ(e2i ), where

ρ(e2i ) =

{
0 e2i ≤ δ

2

1 e2i ≥ δ
2 (3)

This evaluation criterion relies heavily on the threshold set-
tings of δ, which is subject to the density of the point cloud.
It has been reveled that incorrect registration results are
highly likely to occur with this estimator [25]. Therefore,
we modify the robust estimator MSAC (M-estimator Sample
Consensus) to be the cost function of our method without
additional computation. The function is modified to

ρ(e2i ) =


e2i

e2i + δ
2

e2i ≤ δ
2

1 e2i ≥ δ
2

(4)

This cost function can weaken the punishment of the inner
points and decrease the influence on the threshold settings,
so it can be more robust when dealing the point clouds with
different densities. In such way, the optical transformation
with the lowest score will be estimated by this cost function.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
To verify the efficiency of the proposed method, we have
designed three experiments to compare it with the other state-
of-art registration methods. We experimentally evaluate the
A4PCS with respect to registration accuracy and computa-
tional efficiency. And all experiments in this paper are ran on
a personal computer equipped with Intel E5400 at 2.69 GHz
and 2 GB of RAM.
1) Registration Accuracy: The Root Mean Square Error

(RMSE), which is between true correspondences of the trans-
formed input sets, is adopted to evaluate the registration
accuracy of these two methods:

RMSE=

√
1
m

∑m

i=1
(xi−x ′i)2+

(
yi − y′i

)2
+(zi−z′i)2 (5)

TABLE 1. The descriptions of the ten measured models.

where (xi, yi, zi) and (x ′i , y
′
i, z
′
i) are the coordinates of the ith

point in the transformed source set S and its closest neighbour
in the target set T , respectively. Besides,m is the total number
of the correspondent point pairs.
2) Computational Efficiency: Computational efficiency is

represented by the average total runtime Tt for the whole
process.

A. PERFORMANCE EVALUATION AND COMPARISON
WITHOUT LOCAL REGISTRATION
For the first experiment, we compare the proposed method
with the S4PCS method (the only open source 4PCS-based
method). The testing dataset contains ten pairs of point clouds
scanned from ten models. Five data sets of models (Fig. 4)
are obtained from [37] [38] and the other five models (Fig. 6)
are measured by RPLIDAR scanner produced by SLAMTEC
company and we have shared them to [40]. The initial num-
bers, the estimated overlaps and dimensions of the ten data
sets are shown in Table 1.
As the proposed method follows the same scheme as

S4PCS to set the parameters, we test both algorithms with
the same parameters: the threshold of the point pairs dis-
tance ε, the threshold of M-estimator δ, the the sample size
N , the estimated overlap and the maximum number of the
iterations L. Since both the settings of the threshold δ and
ε are subject to the estimated point cloud density, we set
δ = ε and we set them to different values for different
models as shown in Table 2. To average the variances caused
by improper sampling densities and make the experimental
results more convincing, we use two different sample sizes
for each model and we run 30 times for each sample size to
report the average values of results. The settings of the two
sample sizes for each model are determined by the original
size of the dataset. Besides, improper settings of the maxi-
mum number of RANSC iterations may affect the alignment
performance, for example, the registration method may be
difficult to meet the real-time requirements under excessive
numerical settings, or it may not be able to reach convergence
states within a few iterations. So, we use the same method as
4PCS to calculate L.
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TABLE 2. Comparison of registration accuracy and runtime between two 4PCS-based methods.

The experimental results of these two methods are
shown in Table 2. In order to make a comparison, we set
TS = (TS − TA)/TS to denote the runtime saving, and RA =
(RMSES − RMSEA)/RMSES to denote the improvement of
the registration accuracy for the A4PCS. According to the last
two columns in Table 2, it is obvious that the proposedmethod
is superior to the S4PCS under different parameters settings.
Compared with the S4PCS, the A4PCS saves 36.55% of the
average total runtime. In addition, the average registration
accuracy of the A4PCS method is 50.57% higher than that of
S4PCS. Since the coplanar bases can not take full advantage
of the geometry of 3D data, the non-coplanar bases will per-
form better when registering the three-dimension point clouds
with the stereoscopic information. Especially, when dealing
with the symmetrical model (Shelf) or the low overlap model
(Cups), our proposed method achieves 67.46% improvement
in registration accuracy and 67.56% in runtime saving.

The proposed method has two major contributions for the
significant reduction of the total runtime Tt . On one hand,
the noncoplanar base B is adopted to take advantage of the
stereoscopic information, which can filter the most candidate
congruent basesMi and decreases the runtime of the transfor-
mation estimation process to a large extent. On the other hand,
to accelerate the congruent base extraction, we first extract
the congruent triangle bases in linear time and we adaptively
fine tune the pointsets of the congruent base extraction from
the whole set T to the smaller subsets step by step as shown
in Fig. 3. Moreover, with the stereoscopic information of
the base set, there is no need to compute the ratios and
angles to judge whether the sets are congruent as the S4PCS
method does.

In order to validate our improvements in detail, we record
the average numbers of congruent bases Mi and the aver-
age runtime of the congruent base extraction of each iter-
ation loop. As we set two different sample sizes for each
model, we report the recorded data under the bigger sample
size (BS) and smaller sample size (SS) separately. As shown
in Fig. 5(a), the numbers of the congruent bases extracted

FIGURE 5. Comparison of the congruent bases extracted by the S4PCS
and the A4PCS under two different sample sizes of each model. Fig. 5(a)
shows the average congruent bases numbers extracted in each iteration.
Fig. 5(b) shows the average runtime for the congruent base extraction in
each iteration. BS represents bigger sample size and SS represents
smaller sample size.

by A4PCS method are much fewer than that by S4PCS both
in case of sparse or dense dadasets. Since computation and
verification of the transformation parameters accounts for a
large part of the total runtime, reducing the congruent bases
number can directly lead to a reduction in runtime. Further-
more, as shown in Fig. 5(b), the runtime of the congruent base
extraction process for the A4PCS method is also decreased
compared with the S4PCS method.

B. PERFORMANCE EVALUATION AND COMPARISON
WITH LOCAL REGISTRATION
Since the purpose of the proposed method is to provide a
good initial position for fine registration to avoid it falling
into local optimal solutions, it is quite feasible to evaluate
the effectiveness of the global registration algorithm by com-
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FIGURE 6. Registration results of the five measured models with the three registration methods (Go-ICP, S4PCS+ICP and A4PCS+ICP). The two
source scans for each model are shown in the first row. The parameters for each model are shown under each column. The colorbar shows the
registration error for each model and the unit is centimeters.

FIGURE 7. Visualization for successful registration examples of the six scans (S1-S2, S3-S4, S5-S6) of the ETH Hauptgebaude scene. The extracted
NARF keypoints (green) from each scan (red) are displayed blow.

bining local registration algorithms. In order to make a com-
parison, we perform the ICP fine registration after completing
the S4PCS and A4PCS separately in this section. Besides,
the developed ICP method Go-ICP [32], is also executed
singly to verify the registration performance of the proposed
method. As shown in the Fig 6, the registration result of
the A4PCS followed by ICP outperforms that of the single
Go-ICP method, which indicates that the A4PCS method
is able to estimate a good initial transformation for fine

registration method to gain more desirable registration per-
formance. Moreover, it is clear that our method also shows
better performancewith less registration error than the S4PCS
method.

C. PERFORMANCE EVALUATION AND COMPARISON
WITH LARGE-SCALE DATASETS
Although the proposed method has achieved signif-
icant improvements in the efficiency of registration,
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TABLE 3. Comparison of registration accuracy and runtime between keypoint-based methods with large-scale datasets.

the computational cost will still be quiet large when facing
with large-scale point clouds. In such cases, the proposed
method can be easily embedded into the keypoint-based
method which extracts keypoints from raw point clouds with
feature descriptors before the registration process begins [27].
In order to verify the feasibility of this idea, we add an
additional experiment as shown in Table 3. In this experiment,
we test three pairs scans of the ETH Hauptgebaude scene of
the Automonous Systems Lab (ASL) dataset [41] as shown
in Fig 7. Besides, the NARF (Normal Aligned Radial Feature)
descriptor [34] is introduced to extract the keypoints in our
method and two state-of-art methods are also included to
assess the proposed method. As shown in the Table 3, PCL
is a Point Cloud Library implementation of the algorithms
[21], [35] and FGR (Fast Global Registration) is the algorithm
of [36]. The trail will be terminated if the the proportion of
corresponding points exceeds 80% and it is not necessary
to align all points for the overlap is not 100%. Given the
expected large influence of the correspondences distance
threshold τ , all tests in this part are done with two different
threshold values τ = {0.05m, 0.1m}.
As shown in the Table 3, the time represents the total

runtime for the keypoints extraction and registration pro-
cess. As the results shown, all these four registration meth-
ods can obtain satisfactory registration results in a limited
time. Besides, from the average value data, the proposed
method achieves a higher registration efficiency with the
adaptive searching mechanism than the other methods. More-
over, with the stereo information of the non-coplanar bases,
the K-A4PCS method achieves more accuracy registration
results than what K-S4PCS dose. Therefore, even when
dealing with large-scale datasets, the proposed method can
achieve the desirable registration efficiency by extracting
keypoints to sparse the point clouds density.

V. CONCLUSION
In this paper, we propose a novel fast automated global
registration method based on 4PCS algorithm. As the mech-
anism of the congruent base extraction is more flexible than
traditional algorithms, the A4PCS method improves the reg-
istration performance both in respect of the runtime and

accuracy. Especially, with fuller stereoscopic information of
the non-coplanar bases, our method shows more desirable
results than S4PCS when dealing with the laser scans with
symmetrical structures or low overlaps. Besides, the pro-
posed method adopts a modified estimator to strengthen
the robustness of the algorithm. From the experimental
results, the A4PCS is capable of estimating good ini-
tial transformations for fine registration method to achieve
satisfactory performance.
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