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ABSTRACT The edge detection plays an important role in post-processing of PolSAR images. It is still a
great challenge for extracting all the edge features and suppress speckle noises, especially when weak/strong
edges appear simultaneously outside and within heterogenous areas. In this paper, a novel hybrid edge
detection framework is proposed to address this problem. The proposed method is designed by fusing two
initial edge detectors, which can detect complementary edge information. One is an improved polarimetric
constant false alarm rate (IP_CFAR) edge detector, which can detect weak edges well, but fail to detect the
edges in the heterogeneous regions. The other is the proposed weighted gradient-based (WG) detector which
can detect edges in heterogeneous areas well, but loses some weak edges and produces some false edges due
to the speckle noises. Secondly, based on the two detectors above, a wavelet-based hybrid edge detection
method is proposed by combining their merits and suppress their shortcomings. To fuse them effectively,
wavelet transformation is utilized and semantic rules are defined to extract their advantages. Moreover,
a despeckling scheme is designed to suppress the false edges in the wavelet domain. Experimental results
demonstrate that the proposed method outperforms the state-of-art methods in extracting both weak edges
and strong edges within heterogeneous regions.

INDEX TERMS Hybrid edge detection method, improved polarimetric CFAR detector, weighted gradient-
based detector, wavelet fusion.

I. INTRODUCTION
Polarimetric synthetic aperture radar (PolSAR) images [1]
have been paid much attention by researchers in recent
years, since they can provide more information than single-
polarimetric synthetic aperture radar (SAR) images. As the
prerequisite step of the image processing, PolSAR edge
detection is very important, which can provide important
structural information for the further object recognition
[2]–[4] and image interpretation [5]–[8] of PolSAR images.
However, a complex PolSAR scene usually includes both
heterogenous and homogenous terrain types such as the urban
areas, forests, farmlands, waters and so on. Here, the urban
area and the forest are considered as the heterogenous areas,
since there are obvious intensity changes within them. The
farmland and waters are considered as the homogenous areas
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since there are weak intensity changes within them. As shown
in Fig.1, in the PolSAR image of Oberpfaffenhofen area,
the road and the farmland are homogenous areas and the
buildings are heterogenous areas. It can be seen the road edge
in the red rectangle is weak edge, and the internal changes of
urban areas in the yellow rectangle is the strong edge. The
target of edge detection is not only to detect the boundary
between different ground objects in homogenous areas, but
also the internal changes of heterogeneous areas. However,
it is difficult to detect both weak edges and the edge details
in the heterogeneous areas by a same detection threshold.
A higher threshold will lose some weak edges, while a lower
threshold will produce false edges by speckle noises.

To overcome these challenges, multiple of edge detec-
tion methods [9]–[17] have been studied for decade years.
There are three major thoughts for edge detection in Pol-
SAR images according to the literature available. 1) feature-
based edge detection methods [9]–[11]. For instance,
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FIGURE 1. The PolSAR image on Oberpfaffenhofen.

Zhou et al. proposed the curvelet based edge detection
method [10] to suppress the false edges. This method gave
a two-scale procedure. Specifically, in the coarse scale,
the curvelet transformation was utilized to obtain a coarse
result as a mask to reduce speckle noises, and then an edge
map was obtained within the mask in the fine scale. This
method can remove false edges caused by speckle noises
effectively. However, it will lose some edge details, since
some weak edges with lower energy values will be removed
by threshold in the coarse scale. In addition, shearlet-based
edge detection methods [18], [19] can obtain sound perfor-
mance in natural image. However, it was designed for natural
image and didn’t consider the polarimetric characteristics
and speckle noise of PolSAR images. In 2013, a largest
eigenvalue-based edge detection method was proposed by
Deng et al. [12],which made fully use of the polarimetric
features but had high computation complexity. Moreover,
the polarimetric whitening filter (PWF)based detector
[13], [14] was proposed by making use of the polarimetric
information. These methods can suppress false edges well,
while they may lose some edges without considering the
scattering information of PolSAR data.

2) Multiple-channel fusion based methods [15]. These
methods applied the single channel detector to detect edges
for each polarimetric channel respectively, and then a fusion
schemewas used to obtain the final edgemap. However, these
detectors are sensitive to speckle noises without considering
the fully polarimetric information. In 2016, an improved mul-
tiscale edge detection method(IM-NSCT) [20] was proposed
for PolSAR images. This method extracted edge energies by
the nonsubsampled coutourlet transformation (NSCT) [21]
with 8 directions in each scale, and then fused them to obtain
the final edge map. This method can extract edges effectively
by fusing multiscale information. However, it can still pro-
duce false edges without considering statistical characteris-
tic [22] of PoLSAR data.

3) Statistics based edge detection methods [23].
Schou et al. [16] proposed the polarimetric constant false

alarm rate (CFAR) detection method which made full use of
the statistical distribution of PolSARdata [24] and suppressed
the speckle noise effectively. However, this method failed to
detect the edge details in heterogeneous terrain types such as
the thin roads in the urban area. It is because that the pixels
in the heterogeneous regions don’t satisfy the assumption of
the homogeneity any more. According to this shortcoming,
Xiang et al. [25] proposed a new edge detector by using
SIRV model [26] and Gauss-shaped filter. This method
can provide more details in the heterogenous urban area.
However, it needs the S matrix data which is the single look
original data with abundant speckle noises. In addition, filters
with fixed-shape window is limited for heterogenous areas.
In 2018, Wei et al. [27] proposed a directional span-driven
adaptive window and obtained a superior edge detection
result. It also needs the S matrix data by using the SIRV
model. Consequently, all these methods used filters with four
directions [27]–[29], which are not enough to describe the
whole edges for various terrain objects with multiple of scales
and orientations.

To overcome these disadvantages, a novel edge detection
framework is proposed in this paper, which firstly designs the
improved polarimetric CFAR (IP_CFAR) and the weighted
gradient-based detectors, and then combines them to extract
their advantages. Specifically, the proposed IP_CFAR detec-
tor can detect the weak edges well with Wishart measure-
ment, while it is difficult to detect the strong edges within
heterogenous areas. On the contrary, the weighted gradient-
based (WG) detector [30], owing to the anisotropic Gaussian
kernel filters, can detect the sharp bright-dark variations in
intensity in the heterogeneous regions well. However, it will
produce some false edges due to the speckle noises [31]. Our
purpose is to detect both the strong edges in the heterogenous
urban area andweak edges, and remove the false edges caused
by the speckle noises. Therefore, a proper fusion scheme,
which can both keep the advantages of the two detectors and
get rid of the shortcomings, is rather important. For this prob-
lem, some fusion functions [30], [32] have been proposed
by firstly normalizing the data of the two edge energy maps.
However, two sets of data are hardly to be fused accurately
by comparing corresponding pixels directly since they have
different distributions. Wavelet transform [33], which is an
effective tool for image processing, has been widely used in
image fusion [34], [35]. It can fuse two images effectively
in frequency domain since wavelet coefficients in each sub-
band have similar distribution. In addition, signal and speckle
noises can be distinguished well in frequency domain.

In this paper, a new wavelet based hybrid edge detec-
tion method is proposed. This method has three novelties.
1) An IP_CFAR edge detector is designed to better detect
the weak edges, and a WG detector is proposed to detect
the heterogenous area well. 2) A novel edge detection frame-
work is proposed for the first time, and it is accomplished
by combining two detectors mentioned above with wavelet
fusion. The proposed method can obtain both the weak edges
and edge details in the heterogenous areas. 3) To extract the
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advantages of the two detectors and suppress their shortcom-
ings, different fusion rules are designed in low- and high-
frequency bands to both suppress the noises and enhance the
edge information during wavelet fusion. Experimental results
demonstrate that the proposed method can obtain sound per-
formance in both weak edges and heterogeneous regions.

This paper is organized as follows. The motivation of
image fusion is described in Section II. The proposed method
is introduced in Section III. Section IV is the experimental
study. The conclusion is given in Section V.

II. MOTIVATION OF IMAGE FUSION
In this paper, we fuse the IP_CFAR and gradient-based edge
detectors to obtain their complementary information and
remove their disadvantages.

A. MOTIVATION OF FUSING TWO DETECTORS
The IP_CFAR detector is a modified CFAR detector, and the
detailed procedure of the CFAR detector can refer [16]. The
CFAR detector obtained the edge energy by using theWishart
likelihood ratio, and can detect the edges well especially for
the weak edges. However, it is difficult to detect the sharp
intensity variations in the heterogeneous areas especially
for the urban area. The reasons can be concluded into two
aspects. Firstly, the pixels in the heterogenous area seldom
satisfies the homogenous assumption. So, the Wishart distri-
bution is not suitable for the heterogenous areas any more.
Secondly, similar to the Ratio operator [36], [37] for SAR
images, the Wishart likelihood ratio narrows the difference
between two brighter pixels and amplifies the difference
between two darker pixels either.

Moreover, the experimental result by the CFAR detector
also verify this phenomenon as shown in Fig. 2. Figure 2(a)
is the total backscattering power (SPAN) subimage of the
San Francisco data. Regions 1 and 2 are the weak edge and
the urban area respectively. The polarimetric energy map by
CFAR detector is indicated in Fig. 2(d). It can be seen that
the CFAR method can detect the weak edge in Region 1.
However, it fails to detect the strong intensity variations of
the urban area in Region 2, although they are easily observed
by human beings.

Furthermore, since the intensity values of pixels are very
different in heterogenous area, and it can be dectected
by the gradient-based detector [30] from SPAN images.
So, the gradient-based detector can provide complementary
information for the edge-line detection. The energy map by
the gradient-based detector is shown in Fig.2(e). It can be seen
that the gradient-based method can detect the structure of the
urban area well but not sensitive to the weak edges. In addi-
tion, some false edge energies appear in the sea and mountain
areas due to speckle noises. To obtain the edge information in
both heterogenous urban area and weak edges along the river,
we can combine the CFAR and gradient-based detectors.
Therefore, a fusion of polarimatric and gradient-based edge-
line detectionmethods is necessary and can obtain better edge
information for PolSAR images.

B. MOTIVATION OF USING WAVELET FUSION
A proper fusion scheme should keep the advantages of both
detectors and get rid of their shortcomings. Some fusion func-
tions [30], [32] have been proposed by adjusting the ranges of
the two edge energy maps. These fusion methods are simple
and suitable for two sets of data with similar distributions.
However, when two maps are with different distributions, it is
difficult to fuse them accurately.

Figs. 3(a) and (b) are the distributions of Figs.2(d) and (e)
obtained by the polarimetric CFAR and gradient-based detec-
tors respectively. It can be seen that their distributions are
not similar. The distribution in Fig.3(a) is a curve with high
peak and long tail, while the distribution in Fig. 3(b) is more
similar to the Gaussian distribution. In [30], a fusion function
is used to fuse the two data sets. However, this fusion function
cannot extract both their advantages and suppress their short-
comings. It is because some important edges have low energy
values in Fig.2(d), while some noises have high energies
in Fig. 2(e). Fusing them directly may lose the important
edges in Fig. 2(d) and remain false edges in Fig.2(e). Wavelet
fusion [34], [35] is an effective way to fuse two images in
frequency domain since each sub-band of two images has
similar distribution. In this paper, a nonsubsampled wavelet
transform [38] is utilized to obtain multiscale images with the
same size. In addition, edge and non-edge information can
be separated into different sub-bands. Edge information can
be extracted in high-frequency bands and image energies are
remained in the low frequency. Thus, different fusion rules
can be defined for low- and high-frequency bands. Fig. 2(f)
is the fused energy map with wavelet fusion. It can be seen
that the fused result can obtain high energies in both weak
edges and the urban area.

III. PROPOSED METHOD
The flowchart of the proposed hybrid edge-line detection
method is shown in Fig. 4. Firstly, the IP_CFAR and WG
edge detectors are proposed to detect the weak edges in the
homogenous areas and strong edges within the heteroge-
nous areas respectively. Then, a fusion scheme based on the
wavelet framework is proposed to combine the two edge
detection results. Thus, a fused edge map is derived by com-
bining the advantages of both polarimatric and gradient based
edge-line features.

A. IMPROVED POLARIMETRIC CFAR
EDGE-LINE DETECTOR
The CFAR edge detector [16] is applied to PolSAR data
since it can reduce the effect of the speckle by involving
the statistical distribution of the speckle. However, the CFAR
detector used filters with a single scale and four directions,
which are not enough to describe the ground objects with
various scales and directions. In addition, a rectangle filter
with the same weight is utilized in the CFAR detector. This
rectangle filter is not suitable for 2-D image smoothing, and
the same weights in a filter are not reasonable since pixels
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FIGURE 2. Example of the proposed edge-line detection method. (a) SPAN image of San Francisco area; (b)polarimetric
edge-line filters with 3 scales and 18 directions; (c) anisotropic Gaussian kernels with 3 scales and 18 directions; (d) energy
map by polarimetric CFAR detector; (e) energy map by weighted gradient detector; (f) fused energy map by the proposed
method;(g) edge map by polarimetric CFAR detector; (h) edge map by weighted gradient detector; (i) edge map by the
proposed method.

near the edge should have higher weights than pixels far
from the edge in a filter. Therefore, we propose the IP_CFAR
detector in this paper.

The IP_CFAR detector has two improvements compared
with the traditional CFAR detector. One is that we design a
filter configuration with multiple scales and 18 orientations
instead of original filter configuration, as shown in Fig.2(b),
which can better detect edges and lines. The other is an
anisotropic Gaussian filter is designed instead of a rectan-
gle shaped filter, as shown in Fig.2(c), which can provide

higher weights along the edges. Moreover, a line detector
is constructed by coupling of two edge detectors with a
common part. Specifically, the traditional rectangle shaped
edge and line filters are shown in Fig.5 (a) and (b) respec-
tively. The edge-line filter configuration is Kf = {l,w, s, θ}
which describes the length, width, the spacing of the filter
and the orientation respectively. For edge filters, s is set to
one pixel. For line detection, lines with different widths can
be detected by varying s. Traditional filter configuration is
single scale and four directions. Here, we construct Nf filters
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FIGURE 3. Data distribution of two energy maps. (a) Data distribution of
polarimetric energy map; (b) Data distribution of gradient energy map.

with multiple scales and orientations for the edge and line
detections of PolSAR images. Fig.2 (b) illustrates edge and
line filters with 3 scales and 18 orientations. It is considered
that the filter with 18 directions can obtain finer detection
result than 4 directions. For one scale, Fig. 6(a) illustrates
the rectangle shaped edge filters with 18 directions in detail.
In addition, the proposed anisotropic Gaussian filters are
obtained by multiplying the anisotropic Gaussian kernel to
the rectangle shaped filters. The anisotropic Gaussian kernel
with 18 orientations is shown in Fig. 6(b). The brighter the
pixel, the larger its weight. The weight of the white pixel is 1,
and the weight of the black pixel is 0. It can be seen that pixels
along the orientation has larger weights, and pixels far away
from the edge have smaller weights. Hence, the weighted
Wishart likelihood ratio [16] is proposed to measure the
similarity of two regions in a filter, which is defined as:

Qxy =
(n+ m)p(n+m)

npnmpn
·

∣∣∣Ẑx ∣∣∣n∣∣∣Ẑy∣∣∣m∣∣∣Ẑx + Ẑy∣∣∣n+m (1)

where

Ẑ =

n∑
i=1

wiCi

n∑
i=1

wi

(2)

where Ẑx is the average covariance matrix in region x, Ci is
the covariance matrix of the ith pixel in a region. n and m are

the number of looks of the two regions in a filter respectively.
p is the number of channels, and generally p = 3 under the
reciprocity assumption [39]. wi is the anisotropic Gaussian
kernel weight. It is used to average the covariance matrix in a
filter. The anisotropic Gaussian kernel for edge and line filters
are defined as:

w(x, y) =
1

√
2πσx
√
2πσy

exp

(
−

(
x2

2σ 2
x
+

y2

2σ 2
y

))
(3)

where w is the anisotropic Gaussian kernel weight for pixel
(x, y). σx and σy are the length and width of the filter window.
Thus,for each filter configuration, the edge and line energies
of a pixel are given by:

Eedge = max {−2ρlogQ12}Nf (4)

Eline = max {min {−2ρlogQ12,−2ρlogQ13}}Nf (5)

and

ρ = 1−
2p2 − 1

6p

{
1
n
+

1
m
−

1
n+ m

}
(6)

where Qij is Wishart likelihood ratio, and Nf is the number
of filters which are determined by the number of scales and
orientations. Eedge and Eline are edge and line energy values
respectively. p is the number of channels, and generally p = 3
under the reciprocity assumption [39]. ρ is defined in Eq. (6)
and can compute the probability of finding a smaller value of
Eedge by the test statistic method [40]. The detail procedure
can be seen in [16], [40]. According to Eq. (4), it can be seen
that the edge energy is increasing with the decreasingWishart
likelihood ratio. Eq. (5) shows a line object can be detected
when two edges appear with high energies in both sides of the
central region. The maximum energy of a PolSAR image is
obtained by comparing the energy value E in each scale and
orientation.

To verify the performance improvement of the proposed
IP_CFAR detector, we compare the IP_CFAR and CFAR
detectors by two PolSAR images in Fig.7. The first col-
umn is the original PolSAR images, and the second and
third columns are the edge-line energies by the CFAR and
IP_CFAR detectors respectively. It can be seen that the pro-
posed IP_CFARmethod can not only detect more edge details
in the urban areas, but also provide more accurate detection
of weak edges than traditional CFAR detector.

B. WEIGHTED GRADIENT EDGE-LINE DETECTION
FOR POLARIMETRIC SAR IMAGE
The IP_CFAR detector can detect weak edges well by
Wishart likelihood ratio. However, it is difficult to detect the
strong intensity changes in the heterogenous areas. In order to
better detect the edge details in the heterogenous urban area,
a weighted gradient-based(WG) edge-line detection method
is proposed for the PolSAR image. Firstly, a refined Lee
filter [41] is applied to PolSAR data to reduce the speckle
noise. Then, to utilize the polarimetric information, we use
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FIGURE 4. Procedure of the proposed edge-line detection method for PolSAR images.

FIGURE 5. The rectangle shaped edge and line filters. (a) The rectangle
shaped edge filter; (b) The rectangle shaped line filter.

FIGURE 6. The edge filters and anisotropic Gaussian kernel filters with
18 orientations. (a) The edge filters with 18 orientations; (b) The
anisotropic Gaussian kernel with 18 orientations.

the coherency matrix T [32] to calculate the gradient dif-
fidence. The coherency matrix T is a complex conjugate
symmetric matrix and defined as [42]:

T =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 (7)

To compute gradient conveniently, we convert the
coherency matrix T [42] to a nine-dimension vector V ,
defined as:

V = {T11,T22,T33, real(T12), img(T12), real(T13),

img(T13), real(T23), img(T23)} (8)

where the real(.) and img(.) represent the real and imaginary
component operations respectively.

According to the vector V , we define the WG edge-line
detector for the PolSAR image. The anisotropic Gaussian
filters are defined, and the Euclidean distance is used to
measure the gradient difference. Since the PolSAR data vary
dramatically and are mostly close to zero, a logarithmic
transformation is applied to reduce the variation. In addition,
for the closed double edges in PolSAR image, a line can be
detected with the line filters. The weighted gradient-based
edge and line detectors are defined as:

Gedge = log ||
n∑
i=1

wiVi −
m∑
j=1

wjVj||2 (9)

Gline = min{G12
edge,G

13
edge} (10)

wherem and n are the pixel numbers of region 1 and 2 respec-
tively in the edge filter as shown in Fig.5 (a).Vi is the vector of
the coherency matrix of the ith pixel, and wi is the anisotropic
Gaussian weight of the ith pixel. Gedge and Gline are the edge
and line gradient responses respectively. The line gradient
response is defined as the minimum value of two closed edge
gradient values as shown in Fig.5 (b).

To test the superiority of the proposed weighted gradient-
based detector, the comparison experiments are taken on two
real PolSAR images, and the detection results by WG and
traditional gradient-based detectors are shown in Fig. 8. It is
noted that traditional gradient-based detector also use the
vector V to compute the edge-line energies.

C. HYBRID EDGE-LINE DETECTION METHOD
To combine the advantages of the IP_CFAR and WG detec-
tors, a proper fusion strategy is needed. Since the two energy
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FIGURE 7. Experimental comparison of the polarimetric CFAR [16] and the proposed IP_CFAR
methods. (a) PolSAR image of Ottawa; (b) edge energy map by traditional polarimetric CFAR
method [16]; (c) edge energy map by proposed IP_CFAR method; (d) PolSAR subimage of San
Francisco; (e) edge energy map by traditional polarimetric CFAR method [16]; (f) edge energy map
by proposed IP_CFAR method.

FIGURE 8. Experimental comparison of the gradient-based [16] and the proposed weighted
gradient-based methods. (a) PolSAR image of Ottawa; (b) edge energy map by traditional
gradient-based method [16]; (c) edge energy map by proposed WG method; (d) PolSAR subimage
of San Francisco; (e) edge energy map by traditional gradient-based method [16]; (f) edge energy
map by proposed WG method.

maps are obtained by different methods, it can be consid-
ered as a problem about image fusion. Image fusion aims
to obtain a better image with high quality by combining
complementary information from several source images so
that the fused image contains more effective information and
removes noises. Both the energy maps by the IP_CFAR and
WG detectors are source images which should be normalized
to [0, 255] in advance. The fusion objective is to produce a
better energy map which can obtain large values in the edge
locations of both the two energymaps and suppress other non-
edge and false edge regions.

Many pixel-level image fusion methods [30], [32], [35]
have been proposed in the past decades. Wavelet transform
as a multi-resolution analysis approach has been widely used
for image fusion [43], [44] since the image details will
be separated into multiple scales and the fast algorithm is
available. Since the distributions of the two energy maps
are different, it is improper to fuse them directly. However,
in wavelet domain, coefficients in different bands have sim-
ilar distributions and can be combined directly. Therefore,
a discrete stationary wavelet transform (SWT) [45] is applied
to fuse the two energy maps since it is a simple and effective
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FIGURE 9. Procedure of wavelet fusion with semantic rules.

method without information loss. In addition, the gradient-
based energy map has many false edges due to the speckle
noises. A despeckling operation should be designed to reduce
the noises. The wavelet fusion procedure is shown in Fig.9,
and the main procedure of the proposed methods are given in
Algorithm 1.

Algorithm 1 Hybrid Edge-Line Detection Method
1: Improved polarimetirc CFAR edge-line detection is pro-

posed to obtain the polarimetric energy map.
2: Weighted Gradient-based edge-line detection method is

designed to obtain the gradient energy map.
3: SWT is applied to the two energy maps and 3-level

wavelet coefficients are obtained.
4: An orientation-based despeckling scheme is designed for

the wavelet coefficients of the gradient energy map.
5: Fuse the corresponding wavelet coefficients of the two

energy maps with proposed fusion rules, and inverse
transform is applied to derive a fused energy map.

6: Non-maximum suppression is done and the final edge
map is obtained by double thresholds.

At first, a despeckling operation is designed in wavelet
domain to reduce the noises of the gradient energy map. The
reason why the gradient energy map exists speckle noises
are given as follows. Firstly, there are still some speckle in
the PolSAR image after the refined Lee filter. In addition,
due to the imaging characteristics, the scattering waves are
not totally homogenous and some small variations always
occur in the homogenous region. This will lead to some false
edge energies in homogenous regions after the WG detector.
Moreover, the WG detector cannot suppress speckle noises
since the speckle in the PolSAR data is not additional. There-
fore, the despeckling operation is necessary for the gradient
energy map.

To suppress the noises and false edges in the gradient map,
an adaptive despeckling scheme is designed by calculating
the local energy [46] for wavelet coefficients. The local
energy of each pixel is calculated by a set of neighborhood
windows as shown in Fig. 10.The neighborhood windows
consider the four directions of the high-frequency bands.
Blue pixels are neighbors, while white pixels are ignored.

FIGURE 10. A set of neighborhood windows. (a) neighbors for LL band.
(b) neighbors for HL band. (c) neighbors for LH band. (d) neighbors for
HH band.

According to the orientation of each high-frequency band,
different neighborhood window [47] is selected. The local
energy of the low-frequency band is calculated by a 5 × 5
window since there is no orientation in this band. Therefore,
the local energy of pixel (i, j) is defined as:

E(i, j) =
1
N

∑
(m,n)∈η

|F(m, n)| (11)

where E(i, j) is the local energy of the wavelet coefficient in
pixel (i, j), and N is the total number of neighborhood pixels.
F(m, n) is the wavelet coefficient value in pixel (m, n). η is
the neighborhood set obtained by the neighborhood windows
in Fig.8. Fig. 8(a) is selected as the neighborhood window for
the LL band. Fig. 8(b),(c) and (d) are neighborhood windows
for HL, LH and HH bands respectively.

After calculating the local energies for wavelet coeffi-
cients, a despeckling scheme is used by setting a threshold of
the local energies in high-frequency bands. The threshold is
selected adaptively by the unsupervised method in [48]. The
wavelet coefficients less than the threshold are set to zero.

The core of the image fusion is the fusion rules. Our
objective is to enhance the edge information and suppress
the non-edge information. Many fusion rules [49], [50] in
wavelet domain have been proposed such as maximum coef-
ficient is selected for the fused image or variances of wavelet
coefficients are computed as the fused coefficients. However,
an unified rule can hardly optimize contradictory objectives
well since it is expected the edge information is enhanced and
the background is suppressed. A simple scheme of select-
ing maximum values in low frequency will cause a rough
background and produce false edges. Therefore, different
fusion schemes should be exploited for the edge and non-edge
regions.
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FIGURE 11. Edge detection results of the simulated PolSAR image. (a) PauliRGB image of the
simulated PolSAR image; (b) the cartoon image. (c) Real edge map of the simulated PolSAR image.
(d) edge map by IP_CFAR detector; (e) edge map by weighted gradient-based detector; (f) edge map
by IM-NSCT method; (g) edge map by PWF-based method; (h) edge map by the proposed method.

In this paper, two different semantic rules are defined to
fuse coefficients in high- and low- frequency bands. To sup-
press the noises, we fuse the two images by comparing their
corresponding local energy values instead of the single pixel
values. For coefficients in high frequency bands, the local
energy maximum is selected for the fused image to enhance
the edge information. For coefficients in the low frequency
band, a weighted mean is used to obtain the main energy. The
fusion rules can be described as follows:

Fhigh(i, j) =

{
F1
high(i, j) if E1

high(i, j) ≥ E
2
high(i, j)

F2
high(i, j) if E1

high(i, j) < E2
high(i, j)

(12)

FLL(i, j) =
E1
LL(i, j)

(E1
LL(i, j)+ E

2
LL(i, j))

F1
LL(i, j)

+
E2
LL(i, j)

(E1
LL(i, j)+ E

2
LL(i, j))

F2
LL(i, j) (13)

where high includes three high frequency bands (HH,HL
and LH). Fhigh and FLL are the fused energy values in high
and low frequency bands respectively. F1 and F2 represent
the corresponding wavelet coefficients of the CFAR and gra-
dient energy maps respectively. ELL and Ehigh are the local
energies for low- and high- frequency bands respectively.

Equation 12 is used to combine the larger energy values
of high frequency bands in both CFAR and gradient images
since the high frequency stands for the edge or line infor-
mation. Edge energies in two images are different and com-
plementary while both of them are in high frequency bands.
Hence, the fusion scheme of selecting maximum local energy
value is superior for high frequency bands. For low frequency
bands, a fusion rule is proposed to obtain main information
and suppress noises in Eq.(13). Weighted mean values are
selected to fuse the low frequency bands since the different
weights should be given for two energy maps. The weights

are calculated by the ratio of their local energies, which can
show their importance. After fusing Fig.2 (d) and (e), a fused
energy and edge maps are shown in Figs. 2(f) and (i) respec-
tively. It can be shown that both weak edges and structures of
the urban area are enhanced simultaneously.

IV. EXPERIMENTAL STUDY
A. EXPERIMENTAL SETTINGS
In this section, four sets of simulated and real PolSAR data
in different bands and sensors are used to test the effective-
ness of the proposed method. The first one is the simulated
PolSAR data, as shown in Fig.11(a), and its cartoon map
is shown in Fig.11(b). The PolSAR data is designed as the
G0 distribution in the simulated image. It is used to test the
effectiveness of the proposed method in the heterogenous
areas. The second one is a snythetic PolSAR image, as shown
in Fig. 14(a), which is obtained from the Xi’an Area, and the
corresponding edgemap is shown in Fig.14(b). This synthetic
PolSAR image is composed of the urban area with sharp
bright-dark variations and a river with weak edges. It is used
to evaluate the effectiveness of the proposed method in both
the heterogenous area and the weak edge. The third one is the
PolSAR image in Xi’an Area, as shown in Fig.16(a), which
is RadarSAT-2 C-band fully polarimetric SAR data with the
resolution of 8m. The last one is a subimage of the AIRSARL
band data in San Francisco which is 4-look fully polarimetric
data. Their common characteristics are multiple of heteroge-
neous terrain types appearing in the PolSAR images such as
buildings and forests.Moreover, the PolSAR subimage of San
Francisco in Fig. 2 (a) is used to test the effectiveness of the
orientation despeckling scheme in the proposed method by
computing the residual SPAN image.

The parameter settings are given as follows. The filters
with three scales and 18 orientations are selected for all the
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FIGURE 12. Edge detection results of the simulated PolSAR image. (a) PauliRGB image of the
simulated PolSAR image; (b) the cartoon image. (c) Real edge map of the simulated PolSAR image.
(d) edge map by IP_CFAR detector; (e) edge map by weighted gradient-based detector; (f) edge map
by IM-NSCT method; (g) edge map by PWF-based method; (h) edge map by the proposed method.

TABLE 1. Edge accuracies of the proposed method and compared methods(%) on the simulated PolSAR image.

experiments to better describe the edge information of various
ground objects. In addition, three level wavelet transform is
used to obtain multi-scale information during the wavelet
fusion. The window size of the orientation despeckling oper-
ation in wavelet domain is selected as 5× 5 for all the exper-
iments. A computer with Intel Core i7 CPU and 16G RAM
is used, and all the experiments are conducted on Windows
system with Matlab.

Moreover, we compare the proposed method with four
related edge detection methods to verify the detection per-
formance: 1) the improved polarimetric CFAR edge detec-
tion method(IP_CFAR); 2) weighted gradient-based edge
detection on SPAN images; 3) the improved multiscale edge
detection method based on nonsubsampled contourlet trans-
formation (IM-NSCT) [20] and 4) the polarimetric whitening
filter (PWF)-based method [13]. Furthermore, some eval-
uation indexes, such as classification accuracy, confusion
matrix and the ROC curve, are used to quantitatively value
the proposed method and other compared methods. However,
only the visual detection results are shown for the last two
PolSAR images,since it is difficult to obtain the real edge
maps.

B. EXPERIMENTAL RESULTS OF THE
SIMULATED PolSAR IMAGE
A simulated PolSAR image with the size of 200 × 200 is
shown in Fig. 11(a), and the corresponding cartoon image
is shown in Fig. 11(b). It is composed of squares, circle and

TABLE 2. The confusion matrix of the proposed method on the simulated
PolSAR image.

some dense curves. The real edge map, illustrated in Fig. (c),
can be obtained from the cartoon image.

The edge energy maps by the four compared meth-
ods and the proposed method are shown in Fig. 11(d)-(h)
respectively, and the corresponding edge maps are illustrated
in Fig.12(d)-(h). We can see that the IP_CFAR detector can
detect the single curve and the strong edges. It failed to
detect the circle edge and the dense curves accurately since
the PolSAR data donnot obey Wishart distribution. From
Fig12(e), we can seen that the gradient-based detector can
detect most of the intensity variation areas, but produce some
speckle noises. By fusing them, the edge map by the pro-
posed method, as shown in Fig. 12(h), can extract both the
weak circle and the dense curves. The IM-NSCT method
in Fig. 12(f) is difficult to detect the extreme weak edges
and produce some false edges. In addition, The PWF-based
method in Fig. 12 (g) also lost some square edges and the
dense curves.

To evaluate quantitatively of the extracted edges, edge
accuracies of the proposed and compared methods are given
in Table 1. The threshold is selected adaptively by the OTSU
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TABLE 3. Running time of the proposed method and compared methods(s) on the simulated PolSAR image.

TABLE 4. Edge accuracies of the proposed method and compared methods(%) on the synthetic PolSAR image.

method [48]. It is considered that a superior edge detection
method should have higher accuracy rate and lower false
alarm rate. It can been seen that the proposed method have
53.74%,1.1%,39.19%,11.01% higher edge accuracy rate than
four comparedmethods. In addition, the false alarm rate of the
proposed method is lower than most of compared methods.

In addition, the confusion matrix of the proposed method
is calculated in Table 2. There are totally 40000 pixels
in Fig. 11 (a), in which the numbers of the edge and non-
edge pixels are 3396 and 36604 respectively. It can be seen
that most of the edge pixels can be detected correctly, and
the main error is that some edge pixels are detected as non-
edges. It is because the extremely weak edges are difficult to
be extracted.

FIGURE 13. ROC curves on the simulated image.

Moreover, receiver operating characteristic (ROC) curve,
illustrated in Fig. 13, is used to evaluate quantitatively the
performance of the proposed method and other compared
methods. The x-axis represents the false positive rate (FPR),
and the y-axis is the true positive rate (TPR). The true-
positive rate is also known as sensitivity, recall or prob-
ability of detection [51] in machine learning. The false-
positive rate is also known as the fall-out or probability of
false alarm [51]. Better performance is obtained if the ROC
curve is closer the top left corner. The proposed method

is the red curve and the four compared methods are rep-
resented by other color curves. It can be seen that the
proposed method can obtain better performance than other
methods.

What is more, the running time is computed for the pro-
posed and other compared methods shown in Table 3. It can
be seen the IP_CFAR and the proposed methods cost more
time than other methods. There are mainly two reasons. One
is that edge and line filters with 3 scales and 18 directions are
calculated for each pixel. In other words, during edge-line
detection, 108 filters will be applied to each pixel. Another
reason is that the Wishart distance, which includes the matrix
inverse and trace operations, will be calculated during each
edge-line filtering. And matrix inverse and trace operations
are time costing.Moreover, the proposedmethod spendsmost
time, since it needs to fuse the IP_CFAR and WG methods.
The most time is spent on the IP_CFAR detector due to the
matrix operation. However, the proposed method can obtain
superior performance.

C. EXPERIMENTAL RESULTS OF THE
SYNTHETIC PolSAR IMAGE
A synthetic Pauli RGB image is shown in Fig. 14(a). It is
obtained by selecting two blocks of Xi’an area. One is
the urban area and another is the river in the rectangles
in Fig. 16(a). It is designed to test whether the proposed
method can detect both sharp variations in the urban area and
weak edges along the river or not. Fig. 14(b) is the true edge
map. Fig. 14(c) is obtained by mapping the true edge map to
SPAN image of Fig. 14(a).

The edge maps by the four compared methods and the
proposed method are shown in Fig. 14(d)-(h) respectively.
We can see that the IP_CFAR detector can detect the edges
between two different terrain types well especially the weak
edges along the river. Moreover, the gradient-based detector
can obtain more detailed edges in the urban area. By fus-
ing them, the edge map by the proposed method is shown
Fig. 14(h). It can be seen that the fused edge map can
extract both the details in the urban area and the weak edges.
The compared IM-NSCT method in Fig. 14(f) cannot sup-
press the speckle noises and produces some false edges. The
PWF-based method in Fig. 14(g) loses some details in the
urban area.
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FIGURE 14. Edge detection results of the synthetic PolSAR image. (a) pseudo color image of the synthetic
PolSAR image; (b) true edge map. (c) mapping edges to SPAN image. (d) edge map by IP_CFAR detector;
(e) edge map by weighted gradient-based detector; (f) edge map by IM-NSCT method; (g) edge map by
PWF-based method; (h) edge map by the proposed method.

TABLE 5. The confusion matrix of the proposed method on the synthetic
PolSAR image.

To evaluate quantitatively of the extracted edges, edge
accuracies of the proposed and compared methods in Fig. 14
are given in Table 4. It can been seen that the proposedmethod
have 54.05%,28.95%,21.05%,18.02% higher edge accuracy
rate than four compared methods. In addition, the false alarm
rates of these methods are similar and not too high. The false
edges by the proposed method is produced since the left and
right sides of the urban area are confused by speckle noises,
and the edges are hardly to be distinguished. It is considered
that more excellent despecking method needs to be designed
for PolSAR image in the further work, such as shearlet-based
despeckling for SAR images [52].

In addition, the confusion matrix of the proposed method
is calculated in Table 5. There are totally 3200 pixels in

FIGURE 15. ROC curves on the synthetic image.

Fig. 14 (a), in which the numbers of the edge and non-edge
pixels are 493 and 2707 respectively. It can be seen that most
of the edge pixels can be detected correctly, and the main
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FIGURE 16. Edge energy maps of the Xi’an area. (a) pseudo color image of Xi’an area; (b) energy map by
IP_CFAR detector; (c) energy map by weighted gradient-based detector; (d) energy map by IM-NSCT method;
(e) energy map by PWF-based method; (f) energy map by the proposed method.

error is that more pixels are detected as edges. Changing
threshold may produce a better result. A better threshold
selection method can be studied in the further work.

Moreover, receiver operating characteristic (ROC) curve,
illustrated in Fig. 15, is used to evaluate quantitatively the
performance of the proposed method and other compared
methods. The x-axis represents the false positive rate (FPR),
and the y-axis is the true positive rate (TPR). Better perfor-
mance is obtained if the ROC curve is closer the top left
corner. The proposed method is the red curve and the four
compared methods are represented by other color curves.
It can be seen that the proposed method can obtain better
performance than other methods.

D. EXPERIMENTAL RESULTS OF XI’AN AREA DATA SET
The pseudo color image of Xi’an area is shown in Fig. 16(a)
with the size of 512×512. There are the buildings on the left-
up corner, and a river along the urban area. Cross the river,
there are three bridges on the right-up corner and a railway
parallel to the bridge. In addition, there are some villages and
the bare soil on the right-down corner. Another small river is
laid on the right of the image. There are lots of details and
edges in this image. This is a complex scene of the PolSAR
image with various ground objects, and it is a difficult task to
detect all the edges.

The edge energy maps by the four compared methods
and the proposed method are illustrated in Fig.16(b)-(f)

respectively. The polarimetric and gradient-based energy
maps are shown in Fig. 16(b) and (c) respectively. We can see
that the IP_CFAR detector can obtain many edges between
two different terrain types especially the weak edges along
the river. However, it is not sensitive to the edges in the het-
erogenous urban area. Moreover, the gradient-based detector
can obtain many details especially the edges in the urban area
while it is difficult to detect the weak edges. By fusing them,
the edge energy by the proposed method is shown Fig. 16(f).
It can be seen that the fused energy map have both the details
and the weak edges. Moreover, the noises in the gradient
energy map are suppressed in Fig. 16(f). Two other compared
methods are shown in Fig. 16(d) and (e). It can be seen the
compared methods still produce speckle noises especially in
the river area.

According to the energy maps, a non-maximum suppres-
sion method is applied to obtain the edge maps. The edge
maps of the compared and proposed methods are given
in Fig. 17(b)-(f) respectively. It can be seen that the edge
maps obtain similar results as the energymaps. The IP_CFAR
detector in (b) can detect weak edges along the river well,
while it cannot detect the edges in the urban area. The
gradient-based detector can detect the edges in the urban area
while it loses the edges along the river. The IM-NSCT and
PWF-based methods can detect the heterogenous area and the
weak edges well. However, they are sensitive to the noises
and produce some false edges. The proposed method can not
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FIGURE 17. Edge detection results of the Xi’an area. (a) pseudo color image of Xi’an area; (b) edge map by IP_CFAR detector;
(c) edge map by weighted gradient-based detector; (d) edge map by IM-NSCT method; (e) edge map by PWF-based method;
(f) edge map by the proposed method.

only detect heterogenous areas and weak edges well, but also
suppress the speckle noises.

E. EXPERIMENTAL RESULTS OF SAN FRANCISCO
DATA SET 1
A subimage of San Francisco data is used with the size of
180×200. Its pseudo color image is shown in Fig. 18(a) with
Pauli base as the RGB channels. This image mainly includes
the urban area and the forest, and a golf filed was built in the
forest.

The edge energy maps by the four compared and proposed
methods are illustrated in Fig. 18(b)-(f) respectively. It can be
seen that the IP_CFAR detector in Fig.18(b) can detect weak
edges well especially for the edges of the golf filed, but it
is not sensitive to the edges in the heterogenous urban area.
On the contrary, the gradient-based detector in Fig.18(c) can
obtain large edge energies especially in the urban area while it
losed the edges in the golf filed. Two other comparedmethods
are shown in Fig. 18(d) and (e) after the logarithmic transfor-
mation. It can be seen the other two methods still produce
speckle noises especially in the forest. In Fig. 18(f), the edge
energy by proposed method shows obvious improvement by
combining the advantages of the IP_CFAR and gradient-
based detectors. Our method can detect both the details in the
urban area and the weak edges in the golf filed well, and the
noises are suppressed in Fig. 18(f) either.

In addition, the final edge maps by the four compared
methods and the proposedmethod are shown in Fig. 19(b)–(f)
respectively. It can be seen that the IP_CFAR detector can
detect the weak edge well such as the golf field in the for-
est. However, it cannot detect the sharp bright-dark varia-
tion caused by the building and the thin road in the urban
area. Contrary to the IP_CFAR detector, the WG detec-
tor can detect the urban area well but fail to detect the
weak edges. Two other compared methods are shown in
Figs. 19(d) and (e). It can be seen that they can detect the
weak edges and the urban areas but are sensitive to the speckle
noises, and obtain some false edges in the urban area and the
forest. By contrast, the proposedmethod in Fig. 19(f) not only
keeps the weak edges from the IP_CFAR detector but also
obtains the edge in the urban area. In addition, the noises are
suppressed in the fused edge map.

F. EXPERIMENTAL RESULTS OF SAN FRANCISCO
DATA SET 2
In this paper, an adaptive despeckling operation is designed
in wavelet domain to reduce the noises of the gradient
energy map. To test the effectiveness of the proposed
despeckling method, the San Francisco subimage is used as
shown in Fig. 2(a). Its corresponding SPAN image is shown
in Fig. 20(a) after the refined Lee filter. Fig.20 (b) is the
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FIGURE 18. Edge detection results of the San Francisco area. (a) pseudo color image of San Francisco area;
(b) energy map by IP_CFAR detector; (c) energy map by weighted gradient-based detector; (d) energy map by
IM-NSCT method; (e) energy map by PWF-based method; (f) energy map by the proposed method.

FIGURE 19. Edge detection results of the San Francisco area. (a) pseudo color image of San Francisco area;
(b) edge map by IP_CFAR detector; (c) edge map by weighted gradient-based detector; (d) edge map by
IM-NSCT method; (e) edge map by PWF-based method; (f) edge map by the proposed method.

gradient energymap. It can be seen that some noises appear in
the forest. After the despeckling operation in wavelet domain,
the obtained gradient energy maps by using different filtering
windows with 3 × 3 ∼ 9 × 9 are shown in Figs. 20(c)-(f)
respectively. Since the despeckling operation is conducted

along the direction in high-frequency bands, filtering win-
dows with different size can obtain similar results. All of
them can suppress the noises and keep original signal well.
The residuals are shown in Fig.21 with different window
size. It illustrates that the residuals are similar and no edge
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FIGURE 20. Experimental results by the despeckling operation with different windows. (a) SPAN image of
San Francisco. (b)Gradient energy map; (c) 3 × 3; (d) 5 × 5; (e) 7 × 7;(f) 9 × 9.

FIGURE 21. Residual SPAN images with different filtering windows.
(a) 3 × 3; (b) 5 × 5; (c) 7 × 7;(d) 9 × 9.

information are suppressed. It verifies that the despeckling
operation is robust to window size and can control signal loss
well. In general, we choose 5 as the window size.

V. CONCLUSION
In this paper, a hybrid edge detection method is presented to
fuse the advantages of two detectors, which are the proposed

IP_CFAR andWG detectors. For the first detector, according
to the the limitation of Wishart measurement and traditional
filter configuration in the CFAR detector, an IP_CFAR detec-
tor is designed to detect weak edges well. For the second
one, the WG detector is designed to detect the strong inten-
sity changes in the heterogenous areas. Then, a hybrid edge
detection method is proposed by combining the merits of
the two detectors above. Wavelet fusion is designed and
different semantic rules are defined to fuse high-frequency
and low-frequency wavelet sub-bands respectively. More-
over, a despeckling method is proposed to suppress the noises
in the gradient energy map. Several experiments are con-
ducted on simulated and real PolSAR data, and they show
the effectiveness of the proposed method.

In addition, the proposed method gives a novel frame-
work for PolSAR edge detection. Traditional edge detection
method is trying to design a better detector. However, no one
method can detect all the edges well for various terrain types.
In this paper, we proposed a novel hybrid framework by
fusing two detectors with wavelet transform. By this, the pro-
posed method is superior to both methods. It validates the
statement that one plus one is greater than two.

Furthermore, the proposed method is not limited to the
two detectors, and it can fuse any two methods as long
as they can provide complementary information. Therefore,
this paper gives a novel framework to improve the edge
detection result. This framework can also extend to image
classification, object recognition and so forth. In the further
work, we will try to improve its commonality by fusing
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more detectors. Moreover, more effective despeckling
method should be proposed to improve the fusion result.
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