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ABSTRACT In this paper, the flight control of an unmanned aerial vehicle (UAV), quadrotor, in the presence
of high-order disturbances is presented. Since during flight, UAV faces enormous, and various kinds of
disturbance, the effect of such disturbances becomes vital for consideration during the development of
disturbance observer (DO) based tracking control scheme. To obtain the desired tracking performance,
standard sliding mode control (SMC) method is utilized while for disturbance estimation, DO based on
Simpson’s approximation is developed and incorporated with SMC. Furthermore, in this paper, bothmatched
and mismatched disturbances are considered. Hence, a matrix associated with disturbances is invoked
in the system model. To show the effective and desired control performance of developed disturbance
observer-based control (DOBC) scheme, extensive simulations are conducted, followed by presenting the
results in the paper.

INDEX TERMS Disturbance observer, high-order disturbances, quadrotor, sliding mode control, tracking
control

I. INTRODUCTION
Without automatic control and theory, the evolution in sci-
ence and technology would never have been the same.
Because, it provides necessary helping hand resulting in
a change in manpower, efficiency and reduction of time
required to complete a particular task. To achieve accurate
and efficient control performance, extensive research has
been conducted in this area for several decades. However,
there still exists the possibility of improving the performances
of control systems even further. In this paper, for the devel-
opment of automatic flight control, the model of a quadrotor
is considered. The quadrotor is a kind of robot built using
four rotors installed equidistant from each other. With the
rotation of the rotors, thrust is produced achieving flight in
the air [1]. When all the four rotors yield equal thrust by the
equal rotation speed of the rotors, the lifting phenomenon
occurs labelled as vertical take-off and landing (VTOL) [2].
By producing a mismatch in the rotation of the rotors, rolling,
pitching and yawing, motions of the quadrotors are obtained
during the flight in the air [3]–[6]. Before the development of
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the control algorithms and schemes for the flight control of
quadrotor, it is necessary to obtain the mathematical model
of the quadrotor. In literature, researchers have worked on
developing the model of UAV, quadrotor, the model adopted
in this article is developed in [7]. Following the develop-
ment of a mathematical model, researchers worked on the
control design using different linear control methodologies.
The methods included in those linear methods were propor-
tional derivative, proportional integral derivative and linear
quadratic regulator in [4], [8]–[12] and references therein.
However, the control schemes developed using linear control
theory had limitations. That is, the control development was
based on linear control theory, while the model of a quadrotor
is highly nonlinear. Hence, it was necessary to work on the
nonlinear control scheme to obtain improved performance.

Therefore, researchers worked on the nonlinear control
scheme for a quadrotor with the abilities of robustness, dis-
turbance rejection and achieving the control performance
asymptotically, exponentially and in finite time. For obtain-
ing excellent asymptotic performance, sliding mode con-
trol (SMC)methodwas studied for flight control in [13]–[16].
Also, backstepping control synthesis in [17], [18] and a mod-
ified version of SMC algorithm labelled as super twisting
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SMC in [19] are available in the literature. Furthermore,
hybrid control techniques were developed with the ability
of SMC and other nonlinear control schemes in [20]–[22].
However, regardless of these developments, the practical
implementation of control algorithms did not achieve effi-
cient performances by using the known bound of unknown
disturbances.

To solve the problem of disturbances affecting the control
performances, during the last couple of decades, the major
highlight and sight of research is on the development of
disturbance observers based control (DOBC) theory. Because
in practice, the disturbances regress and oppose the control
performance. Therefore, it is important to estimate and reject
the disturbance effect on the systems by developing the con-
trol schemes integratedwith disturbance observers (DO) [23].
DOBCs for different kinds of disturbances have been inves-
tigated in [24]–[30]. Disturbances can be sub-divided into
matched and mismatched disturbances while considering its
effect in the state-space model of the system [31], [32].
In [23], DO with the ability to reject disturbances as well
as estimate the unmodelled uncertainties was presented. The
DOs integrated separately with different types of nonlinear
control schemes, i.e. SMC, backstepping, adaptive, fuzzy
control schemes and many more were discussed in [33]–[48]
for different kinds of disturbances. Nevertheless, in the
research, as mentioned earlier, the quadrotor affected by dis-
turbances with a model of high-order disturbances is not con-
sidered. Since practically the disturbances and their models
are unknown before the development of the control algo-
rithms, hence, it is required to consider higher-order distur-
bances, which includes disturbances of various behaviours.
To estimate these kinds of disturbances, author in [29] devel-
oped a DO for high-order disturbances using integrator.
However, integrator can lead to saturation, instability and
adversely affect the control system. Thus, in this paper,
a criteria to solve the problem of using integrator for DO
development is presented. In this technique, the idea is to
develop a DO without an integrator for the disturbance of
higher-order function models. Following that it is patched
with a robust SMC to obtain desired DOBTC for tracking
control. Themajor contributions of this paper are summarized
as follows:
• Integrator free DO is designed for higher-order distur-
bances to avoid the requirement of additional integrator
for each increasing order in disturbance model.

• Higher-order disturbances with variable frequency, i.e.
chirp modelled disturbances, are investigated with the
designed DO.

The paper is organized as follows. In section 2, the prob-
lem statement is presented. In section 3, the disturbance
observer-based tracking control scheme is developed along
with the necessary stability proof of the control scheme.
In section 4, proposed DO based control algorithm is sim-
ulated and discussed for quadrotor followed by a conclusion
in section 5.

II. PROBLEM STATEMENT AND PRELIMINARIES
In this paper, a criteria to solve the problem of using integrator
for DO development is presented. The idea is to develop a
DO without an integrator for the disturbance of higher-order
function models. Now, prior to control development, follow-
ing lemmas and assumptions are necessary for the design of
DOBTC based on SMC.
Lemma 1 [7]: According to [7], a quadrotor model can be

derived as Ẋ (t) = f (X ,U ), where X = [x1 x2 . . . x12]T and
U = [Uφ Uθ Uψ Uh]T . Assuming that the disturbance
exists in each channel of the model, a mathematical model of
quadrotor is written as follows:

f (X ,U ) =



x2 + Fφ11dφ
x4 x6 k1φ + x4�rk2φ + lφUφ + Fφ21dφ

x4 + Fθ11dθ
x2 x6 k1θ − x2�rk2θ + lθUθ + Fθ21dθ

x6 + Fψ11dψ
x2 x4 k1ψ + lψUψ + Fψ21dψ

x8 + Fh11dh
g− Uh

m (cos x1 cos x3)+ Fh21dh


(1)

where x2, x4 and x6 are representing rate of change of roll
angle (x1), pitch angle (x3) and yaw angle (x5), respectively.
x8 represent the rate of change in height (x7). dφ , dθ , dψ
and dh are disturbances in each subsystem of roll, pitch,
yaw and height along with Fφ11 , Fφ21 , Fθ11 , Fθ21 , Fψ11 , Fψ21 ,
Fh11 and Fh21 as known positive constants [23]. Furthermore,
Uφ , Uθ , Uψ and Uh are representing control inputs, �r is
quadrotor parameter, g is representing gravitational constant.
k1φ , k2φ , k1θ , k2θ , k1ψ , lφ , lθ and lψ are simplified version
of constants written as k1φ = (Iyy − Izz)/Ixx , k2φ = Jr/Ixx ,
k1θ = (Izz − Ixx)/Iyy, k2θ = Jr/Iyy, k1ψ = (Ixx − Iyy)/Izz,
lφ = l/Ixx , lθ = l/Iyy, lψ = 1/Izz, with l representing the
length, Jr denotes rotor inertia, Ixx , Iyy and Iyy are air-frame
inertia of roll, pitch and yaw, respectively. In addition, for
the development of DOBTC, the model of a quadrotor is
decoupled in roll, pitch and yaw. To obtain a decoupled
quadrotor model, geometrical technique has been applied
in [58], a method introduced for nonlinear system in [57].
Furthermore, in [7], [59], it was assumed that the flight of
quadrotor is either in hovering state or in motion based on
small changes in angles. Hence, the gyroscopic effects can
be neglected, and thus the cross-coupling can be removed,
resulting in a decoupled model of roll, pitch and yaw. In
order to design a control scheme, the decoupled models of a
quadrotor in the presence of disturbances can be written in a
generalized form defined by a class of second-order nonlinear
systems as follows:

ẋ = γ (x, u; t)+ d(t) (2)

where ẋ = [ẋ1 ẋ2]T , γ (x, u; t) = [x2 f (x) + g(x)u]T and
d(t) = [d1(t) d2(t)]T . In this paper, it is assumed that dis-
turbance appearing in each channel of the model is same but
with different magnitude, hence, a constant is invoked with
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the disturbance as presented in (1). Furthermore, f (x) and
g(x) are smooth continuous functions and u is control input.
Lemma 2 [29]: A class of non-affine nonlinear systems

suffering from high order disturbance can be written as
follows:

ẋι = f (xι, uι; t)+ Fdι(t) (3)

where xι ∈ Rn represents state vector of the system, uι ∈ Rm

represents control input vector, t represents time and F ∈ Rn

is a vector and dι(t) is disturbance. Furthermore, according
to [29], a disturbance observer can be developed for the
aforementioned class of nonlinear systems as follows:{

żι = F+f (xι, uι; t)+ 00g0(t)+ · · · + 0qgq(t)
d̂ι(t) = 00g0(t)+ · · · + 0qgq(t)

(4)

with

gk (t) =
{
F+xι − zι(k = 0);

∫ t

0
gk−1(τ )dτ (k ≥ 1) (5)

where F+ is pseudo inverse of F and it is obtained by using
Moore-Penrose method, zι represent auxiliary variable and
subscript k is a constant such that 0 ≤ k ≤ q. Further-
more, 0q = diag[γ01, . . . , γ0r ] has elements γ0j > 0 with
j = 1, . . . , r and should be chosen such that the following
polynomial is Hurwitz stable.

ρi(s) = sq+1 + γ0jsq + · · · + γ(q−1)js+ γqj (6)

where j = 1, . . . , r and r is representing the dimension of a
square matrix. Hence, d̂l will estimate dl(t), if the diagonal
constant elements of matrix 0q are chosen according to (6).
Furthermore, defining d̃(t) = d̂ι(t)−dι(t) followed by taking
derivative and combining it with (4), (5) and (6) yields error
dynamics as follows:

˙̃dι(t) = −00d̃(t)+ 01g0(t)+ · · · + 0qgq−1(t) − ḋι(t) (7)

Similarly, the qth derivative is obtained as d̃ [q]ι (t) =
−00d̃

[q−1]
ι (t)−01d̃

[q−2]
ι (t)−· · ·−0qd̃ι(t). The dynamics of

the observer can be decoupled for the aforementioned equa-
tions because 0k with k ∈ (0, . . . , q) are diagonal matrices
with elements obtained using (6).
Lemma 3 [54]: According to Simpson’s rule, a numerical

integration for a definite integral can be estimated using
following equation [53], [54]∫ b

a
h(x) =

1x
3

[
h(a)+

(n/2)−1∑
j=1

2h(t2j)

+

(n/2)∑
j=1

4h(t2j−1)+h(b)
]
−O(14) (8)

where O(14) = b−a
1801

4 h(4)(µ) is negligibly small esti-
mation error term with 14 representing fourth and higher
order terms after estimation andµ is a constant. Furthermore,
it is assumed that estimation error and its rate of change are
bounded such that |O(14)| ≤ κ and | ∂

∂t (|O(1
4))| ≤ %.

FIGURE 1. Simpson’s rule for approximation of a function h(x).

FIGURE 2. Continuous and estimated parabolic functions using
Simpson’s rule.

a and b are limits of the integral such that 0 < a < b.
Moreover, 1x = (b − a)/n and tj = a + j1x where j ∈
(0, 1, 2, . . . , n). Fig. 1 illustrates the Simpon’s approximation
method.

It should be noted that the estimation of Simpson’s rule
is dependent on the interval decided by n. When n is
set to a large value, the approximation error is less and
vice-versa.
Assumption 1: The model of quadrotor can be written

in a class of nonlinear system (2), where the disturbance
is assumed to be modelled using second-order function as
d(t) = d0 + d1 t + d2 t2 with d0 > 0, d1 > 0 and d2 < 0 as
constants.
Assumption 2 [23]: It is assumed that a positive constant

bounds, d∗ and %, can be defined for the disturbances effect-
ing the quadrotor such that d∗ = sup|d(t)| and % = sup|ḋ(t)|
for t > 0.
Assumption 3 [28]: It is assumed that the roll angle, φ and

pitch angle, θ lies in interval [−π2 ,
π
2 ].

Remark 1: By setting d1 = d2 = 0 and d2 = 0, d1 <
0 in d(t) yields disturbance model for constant and ramp,
respectively. The former disturbances can be during the
flight of UAV drone when the pressure of air vary slowly,
however, rate of change in disturbances can be taken as
zero [23]. While, the latter and parabolic disturbance incurs
because of the noise induced from the rotors creating the
vibrations.
Remark 2: In order to find out whether the proposed

DO can estimate disturbances which can not be modeled in
high-order function but have similar and identical behavior,
the model of chirp function is considered for simulation
purpose. In Fig. 2, a second order function is presented. It can
be seen from Fig. 3 that chirp function is similar to the second
order function, however, it has variable frequency. Mathe-
matically, the chirp function can be written as as dc(t) =
υ + kt with υ representing a constant, k = f1−f0

T , and f1
and f0 representing final frequency and initial frequencies,
respectively. T is time constant.
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FIGURE 3. Continuous and estimated chirp functions using Simpson’s
rule.

FIGURE 4. Proposed disturbance observer.

III. DISTURBANCE OBSERVER BASED TRACKING
CONTROL FOR QUADROTOR
The development of DOBTC requires two steps. Firstly a
DO is designed according to a criterion shown in Fig. 4 fol-
lowed by control design in the second step. Following section
presents an in detail derivation of DOBTC for decoupled
models of roll, pitch, yaw and height.

A. DISTURBANCE OBSERVER BASED ROLL
TRACKING CONTROL USING SMC
Using (1) and (3), a nonlinear model of roll is written as ẋ1 =
x2 + Fφ11dφ and ẋ2 = x4 x6 k1φ + x4�rk2φ + Fφ21dφ + lφUφ
where Fφ11 and Fφ12 are the elements of the matrix Fφ asso-
ciated with high-order disturbances affecting roll subsystem.

1) DO FOR PARABOLIC DISTURBANCES (SECOND ORDER)
Let us assume a disturbance with second order function
model as dφ (t) = d0φ + d1φ t + d2φ t

2 where d0φ , d1φ and
d2φ are unknown bounded constants. Furthermore, Fφ =
[Fφ11 , Fφ21 ]

T with its Moore-Penrose inverse written as
F+φ = [F+φ11 F

+

φ12
]. Now, a DO for estimation of second-order

disturbance can be designed as follows:
żφ = F+φ fφ(xφ,Uφ; t)+ 00φg0φ (t)

+01φg1φ (t)+ 02φg2φ (t)
d̂φ = 00φg0φ (t)+ 01φg1φ (t)+ 02φg2φ (t)

(9)

where g0φ (t) = F+φ11x1 + F+φ12x2 − zφ , g1φ (t) =

1h/3
(
g0φ (t0)+

m−1∑
j=1,3,...

4g0φ (ti)+
m−1∑

j=2,4,...
2g0φ (ti)+ g0φ (tm)

)

and g2φ (t) = 1h/3
(
g1φ (t0) +

m−1∑
j=1,3,...

4g1φ (ti) +

m−1∑
j=2,4,...

2g1φ (ti) + g1φ (tm)
)
with 1h = (b − a)/n, 0 < 0 < b

and n > 0 according to Lemma 3. Now, simplifying yields

żφ = 00φF
+

φ11
x1 +

(
F+φ11 + 00φF

+

φ12

)
x2

+F+φ12
(
x4x6k1φ + x4�rk2φ + lφUφ

)
−00φ zφ + 01φ

1h
3

(
g0φ (t0)

+

m−1∑
j=1,3,...

4g0φ (tj)+
m−1∑

j=2,4,...
2g0φ (tj)

+g0φ (tm)
)
+ 02φ

1h
3

(
g1φ (t0)

+

m−1∑
j=1,3,...

4g1φ (tj)+
m−1∑

j=2,4,...
2g1φ (tj)+ g1φ (tm)

)
d̂φ = 00φ

(
F+φ11x1 + F

+

φ12
x2 − zφ

)
+01φ

1h
3

(
g0φ (t0)+

m−1∑
j=1,3,...

4g0φ (tj)

+

m−1∑
j=2,4,...

2g0φ (tj)+ g0φ (tm)
)

+02φ
1h
3

(
g1φ (t0)+

m−1∑
j=1,3,...

4g1φ (tj)

+

m−1∑
j=2,4,...

2g1φ (tj)+ g1φ (tm)
)

(10)

where d̂φ and zφ represent disturbance estimation and auxil-
iary variable of DO, respectively.

2) ROLL TRACKING CONTROL DESIGN
To obtain roll tracking control, a robust SMC technique is
used. However, before proceeding, firstly the state space
model of roll subsystem is assumed to have no disturbance to
obtain error-based state space model. Hence, we assume that
ẋ1 = x2; ẋ2 = x4x6k1φ + x4�rk2φ + lφUφ . Now, let us define
a tracking error ξ1φ = x1−xφD with xφD as desired reference.
Taking first and second derivative and assuming ξ̇1φ = ξ2φ ,
followed by substitution of ẋ1 and ẋ2, respectively, yields:

ξ̇1φ = ξ2φ + Fφ11dφ
ξ̇2φ = x4x6k1φ + x4�rk2φ + lφUφ − ẍφD + Fφ21dφ (11)

where dφ is representing disturbance, Fφ11 and Fφ12 are con-
stant. Now, choosing sliding mode surface as ζφ = δ1φ ξ1φ +
δ2φ ξ2φ where δ1φ > 0 and δ2φ > 0 are SMC parameters. Now,
taking time derivative

ζ̇φ = δ1φ ξ̇1φ + δ2φ ξ̇2φ (12)

substituting (11)

ζ̇φ = δ1φ
(
ξ2φ + Fφ11dφ

)
+ δ2φ

(
x4x6k1φ

+ x4�rk2φ + lφUφ − ẍφD + Fφ21dφ
)

(13)

Next step is to invoke d̂φ for dφ , i.e. disturbance estimation,
followed by setting ζ̇φ = 0. And, also introduce a switching

VOLUME 8, 2020 8303



N. Ahmed et al.: DO-Based Tracking Control of Quadrotor With High-Order Disturbances

control and a criterion to reduce chattering [48], thus, the to
obtain tracking performance, following SMC law can be
designed

Uφ = −
1

lφδ2φ

[
δ1φ ξ2φ + δ2φ

(
x4x6k1φ + x4�rk2φ − ẍφD

)
+ ηφ d̂φ + Kφζφ + Lφsgn(ζφ)

]
(14)

where ηφ =
(
δ1φFφ11 + δ2φFφ21

)
> 0, and Kφ > 0,

Lφ > 0 are sufficiently large constants to obtain robust SMC
controller. Now, before proceeding ahead, it is necessary to
ensure the stability of the designed DOBC. Thus, we choose
a Lyapunov candidate as follows:

Vr = Vφ + VφD (15)

where Vφ = 1
2ζ

2
φ and VφD =

1
2 d̃

2
φ with d̃φ = d̂φ − dφ .

Therefore, we have Vr = 1
2ζ

2
φ +

1
2 d̃

2
φ . Now, after taking

derivative of VφD , we have V̇φD = d̃φ
˙̃dφ . Thus,

V̇φD = d̃φ
(
00φ ġ0φ (t)+ 01φ ġ1φ (t)+ 02φ ġ2φ (t)− ḋφ

)
(16)

Using Lemma 2, it can be written that g0φ (t) = F+φ xφ − zφ .
Taking time derivative yields

ġ0φ (t) = F+φ ẋφ − żφ (17)

From (3), the roll model can be written as ẋφ =

fφ(xφ,Uφ; t)+ Fφdφ . Thus, substituting ẋφ and (9) yields

ġ0φ (t)

=F+φ (fφ(xφ,Uφ; t)+Fφdφ)−(F
+

φ ×fφ(xφ,Uφ; t)+d̂φ)

= −d̃φ (18)

Similarly, according to Lemma 2, it can be written that g1φ =∫ t
0 g0φ (t)dt and g2φ (t) =

∫ t
0 g1φ (t)dt . Thus, after taking

derivative, it can be derived that

ġ1φ (t) = g0φ (t), ġ2φ (t) = g1φ (t) (19)

However, g1φ (t) and g2φ (t) are approximated using the crite-
rion presented in Lemma 3, i.e. (8). Thus, an error may exist
in the approximation. Hence,

ġ1φ (t) = g0φ (t)+ e1φ , ġ2φ (t) = g1φ (t)+ e2φ (20)

where e1φ and e2φ are the errors incurred due to the approxi-
mation technique of g1φ (t) and g2φ (t), respectively. It should
be noted that according to (5), g0φ (t) does not require any
approximation. Now, substituting (18) and (20) into (16)

V̇φD = d̃φ
(
− 00φ d̃φ + 01φ

(
g0φ (t)+ e1φ

)
+ 02φ

×
(
g1φ (t)+ e2φ

)
− ḋφ

)
≤ −00φ d̃

2
φ + |01φ |

(
|g0φ (t)| + |κ1φ |

)
|d̃φ |

+ |02φ |
(
|g1φ (t)| + |κ2φ |

)
|d̃φ | + |%φ ||d̃φ |

≤ −00φ d̃
2
φ + |01φ ||g0φ (t)||d̃φ | + |01φ ||κ1φ |

× |d̃φ | + |02φ ||g1φ (t)||d̃φ | + |02φ ||κ2φ ||d̃φ |

+ |%φ ||d̃φ | (21)

where %φ ≥ ḋφ , κ1φ ≥ e1φ and κ2φ ≥ e2φ . Further
simplification yields

V̇φD ≤ −00φ d̃
2
φ +

(1
2
02
1φ d̃

2
φ +

1
2
g20φ (t)

)
+
(1
2
02
1φ × d̃

2
φ +

1
2
κ21φ

)
+
(1
2
02
2φ d̃

2
φ +

1
2
g21φ
)

+
(1
2
02
2φ d̃

2
φ +

1
2
κ22φ

)
+

1
2
%2φ +

1
2
d̃2φ

≤ −
(
00φ − 0

2
1φ − 0

2
2φ −

1
2

)
d̃2φ +

1
2

(
g20φ

+ g21φ
)
+

1
2

(
κ21φ + κ

2
2φ + %

2
φ

)
≤ −20̄φVφD +

1
2

(
B1φ + B2φ

)
(22)

where 0̄φ ≥ 00φ − 0
2
1φ
− 02

2φ
−

1
2 , B1φ = max{g20φ + g

2
1φ
}

and B2φ = max{κ21φ + κ
2
2φ
+ %2φ}. Now, since the DO gain

constants are designed according to Lemma 2 and if 0̄φ ≥(
00φ−0

2
1φ
−02

2φ
−

1
2

)
> 0 holds, then the boundsB1φ > 0 and

B2φ > 0 are legit and the states will not escape. Therefore,
the convergent dynamics are obtained and it can be stated that
V̇φD ≤ 0. Thus, the designed DO is stable.

Next is to take derivative of Vφ = 1
2ζ

2
φ as follows:

V̇φ = ζφ ζ̇φ (23)

To obtain ζ̇φ , substituting (14) into (13)

ζ̇φ =−
(
δ1φFφ11+δ2φFφ21

)(
d̃φ(t) +1φ

)
−Kφζφ−Lφsgn(ζφ)

= −ηφ
(
d̃φ(t) +1φ

)
− Kφζφ − Lφsgn(ζφ) (24)

where 1φ is an error. Now, substituting (24) into (23)

V̇φ = ζφ
(
− ηφ

(
d̃φ(t) +1φ

)
− Kφζφ − Lφsgn(ζφ)

)
≤ −Kφζ 2φ +

(1
2
L2φζ

2
φ +

1
2

)
+
(1
2
ζ 2φ +

1
2
η2φ(d̃φ +1φ)

2)
≤ −

(
Kφ −

1
2
(L2φ + 1)

)
ζ 2φ +

1
2

(
η2φ(d̃φ +1φ)

2
+ 1

)
≤ −(2Kφ − (L2φ + 1))Vφ + B3φ (25)

where B3φ ≥ max 1
2 {η

2
φ(d̃φ+1φ)

2
+1}. Thus, with the appro-

priate choice of Kφ and Lφ , the asymptotic stability can be
achieved. Now, taking derivative of (15) and substituting (22)
and (25)

V̇r = V̇φ(t)+ V̇φD
≤ −20̄φVφD − (2Kφ − (L2φ + 1))Vφ + 1/2

≤ −20̄φVφD − (2Kφ − (L2φ + 1))Vφ + B∗φ (26)

where B∗φ =
1
2

(
B1φ + B2φ

)
+ B3φ . Now, by designing

0̄φ ≥ 00φ − 0
2
1φ
− 02

2φ
−

1
2 , Kφ ≥

1
2 (L

2
φ + 1) and with

appropriate design of Lφ such that the states stay at the sliding
manifold, the Lyapunov criteria for stability can be ensured.
Thus, the developed DOBC is stable. This completes the
proof.
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B. DISTURBANCE OBSERVER BASED PITCH
TRACKING CONTROL USING SMC
From (1), the pitch model can be written as follows:

ẋ3 = x4 + Fθ11dθ
ẋ4 = x2x6k1θ − x2�rk2θ + Fθ21dθ + lθUθ (27)

where Fθ = [Fθ11 Fθ21 ]
T , fθ (xθ ,Uθ : t) = [x4 x2 x6 k1θ −

x2�rk2θ + lθUθ ]
T . Furthermore, we have F+θ = [F+θ11 F+θ12 ].

1) DO FOR PARABOLIC DISTURBANCES (SECOND ORDER)
A second order disturbance can be assumed as dθ (t) = d0θ +
d1θ t + d2θ t

2 where d0θ , d1θ and d2θ are constants. Similar to
the previous section, the DO can be constructed as follows:

żθ = F+θ fθ (xθ ,Uθ : t)+ 00θ g0θ (t)+ 01θ g1θ (t)
+02θ g2θ (t) ;

d̂θ = 00θ g0θ (t)+ 01θ g1θ (t)+ 02θ g2θ (t)

(28)

where 00θ , 01θ , 02θ are chosen according to Lemma 1.
Furthermore, we have g0θ (t) = F+θ11x3 + F+θ12x4 − zθ ,

g1θ (t) = 1h/3
(
g0θ (t0)+

m−1∑
j=1,3,...

4g0θ (tj)+
m−1∑

j=2,4,...
2g0θ (tj)+

g0θ (tm)
)
and g2θ (t) = 1h/3

(
g1θ (t0) +

m−1∑
j=1,3,...

4g1θ (tj) +

m−1∑
j=2,4,...

2 g1θ (tj) + g1θ (tm)
)
. Now, żθ and d̂θ can be obtained

as follows:

żθ = 00θF
+

θ11
x3 +

(
F+θ11 + 00θF

+

θ12

)
x4

+F+θ11
(
x2x6k1θ − x2�rk2θ + lθUθ

)
−00θ zθ + 01θ

1h
3

(
g0θ (t0)

+

m−1∑
j=1,3,...

4g0θ (tj)+
m−1∑

j=2,4,...
2g0θ (tj)

+g0θ (tm)
)
+ 02θ

1h
3

(
g1θ (t0)

+

m−1∑
j=1,3,...

4g1θ (tj)+
m−1∑

j=2,4,...
2g1θ (tj)+ g1θ (tm)

)
d̂θ = 00θ

(
F+θ11x3 + F

+

θ12
x4 − zθ

)
+01θ

1h
3

(
g0θ (t0)+

m−1∑
j=1,3,...

4g0θ (tj)

+

m−1∑
j=2,4,...

2g0θ (tj)+ g0θ (tm)
)

+02θ
1h
3

(
g1θ (t0)+

m−1∑
j=1,3,...

4g1θ (tj)

+

m−1∑
j=2,4,...

2g1θ (tj)+ g1θ (tm)
)

(29)

where d̂θ and zθ represent disturbance estimation and auxil-
iary variable for high-order DO, respectively.

2) PITCH TRACKING CONTROL DESIGN
Define ξ3θ = x3−xθD and ξ4θ = x4− ẋθD where xθD is desired
reference, an error based system is obtained as follows:

ξ̇θ3 = ξ4θ + Fθ11dθ
ξ̇4θ = x2x6k1θ − x2�rk2θ − ẍθD + Fθ21dθ + lθUθ (30)

Next, sliding mode surface is defined as ζθ = δ1θ ξ3θ +

δ2θ ξ4θ . Using SMC technique, control scheme is obtained as
follows:

Uθ = −
1

lθδ2θ

[
δ1θ ξ4θ + δ2θ

(
x4x6k1θ − x4�rk2θ − ẍθD

)
+ ηθ d̂θ + Kθζθ + Lθ sgn(ζθ )

]
(31)

where d̂θ is disturbance estimation, Kθ > 0, Lθ > 0
is switching gain constant and ηθ =

(
δ1θFθ11 + δ2θFθ21

)
.

Next step is to analyze stability of pitch subsystem. Hence,
defining Lyapunov function for pitch as follows:

Vp = Vθ (t)+ VθD =
1
2
ζ 2θ +

1
2
d̃2θ (32)

where d̃θ = d̂θ − dθ . Now, following the same procedure of
roll stability, it can be derived that

V̇p ≤ −20̄θVθD − (2Kθ − (L2θ + 1))Vθ + B∗θ (33)

where 0̄θ is a constant, B∗θ =
1
2

(
B1θ + B2θ

)
+ B3θ with

B1θ = max{g20θ + g21θ }, B2θ = max{κ21θ + κ
2
2θ
+ %2θ } and

B3θ ≥ max 1
2 {η

2
θ (d̃θ +1θ )

2
+ 1} are representing bounds. %θ

is a bound on rate of change of disturbance. κ1θ and κ2θ are
bounds on approximation errors introduced because of using
Simpson’s technique for the derivation of g1θ (t) and g2θ (t),
respectively. 1θ represents an error. Now, by designing the
0̄θ ≥

(
00θ − 0

2
1θ
− 02

2θ
−

1
2

)
> 0, Kθ ≥ 1

2 (L
2
θ + 1) and

choosing appropriate gain for Lθ will ensure V̇p ≤ 0, i.e. the
stability of DOBC developed for pitch model.

C. DISTURBANCE OBSERVER BASED YAW
TRACKING CONTROL USING SMC
From (1), the yaw subsystem can be written as follows:

ẋ5 = x6 + Fψ11dψ
ẋ6 = x2x4k1ψ + lψUψ + Fψ21dψ (34)

where dψ is disturbances and we can write
Fψ = [Fψ11 , Fψ21 ]

T .

1) DO FOR PARABOLIC DISTURBANCES (SECOND ORDER)
A second order model for disturbances affecting yaw subsys-
tem can be assumed as dψ (t) = d0ψ + d1ψ t + d2ψ t

2 where
d0ψ , d1ψ and d2ψ are constants. Next is to design a DO as
follows:{
żψ=F

+

ψ fψ (x, u; t)+00ψ g0ψ (t)+01ψ g1ψ (t)+02ψ g2ψ (t);

d̂ψ=00ψ g0ψ (t)+01ψ g1ψ (t)+02ψ g2ψ (t)

(35)
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where F+ψ = [F+ψ11
F+ψ12

], 00ψ , 01ψ , 02ψ are chosen accord-
ing to Lemma 2. Furthermore, we have g0ψ (t) = F+ψ11

x5 +

F+ψ12
x6 − zψ , g1ψ (t) = 1h/3

(
g0ψ (t0) +

n−1∑
i=1,3,...

4g0ψ (ti) +

n−1∑
i=2,4,...

2g0ψ (ti) + g0ψ (tn)
)
and g2ψ (t) = 1h/3

(
g1ψ (t0) +

n−1∑
i=1,3,...

4g1ψ (ti)+
n−1∑

i=2,4,...
2g1ψ (ti)+ g1ψ (tn). Now, żψ and d̂ψ

can be obtained as follows:

żψ = 00ψF
+

ψ11
x5 +

(
F+ψ11
+ 00ψF

+

ψ12

)
x6

+F+ψ12

(
x2x4k1ψ + lψUψ

)
− 00ψ zψ

+01ψ
1h
3

(
g0ψ (t0)+

m−1∑
j=1,3,...

4g0ψ (tj)

+

m−1∑
j=2,4,...

2g0ψ (tj)+ g0ψ (tm)
)

+02ψ
1h
3

(
g1ψ (t0)+

m−1∑
j=1,3,...

4g1ψ (tj)

+

m−1∑
j=2,4,...

2g1ψ (tj)+ g1ψ (tm)
)

d̂ψ = 00ψ
(
F+ψ11

x5 + F
+

ψ12
x6 − zψ

)
+01ψ

1h
3

(
g0ψ (t0)+

m−1∑
j=1,3,...

4g0ψ (tj)

+

m−1∑
j=2,4,...

2g0ψ (tj)+ g0ψ (tm)
)

+02ψ
1h
3

(
g1ψ (t0)+

m−1∑
j=1,3,...

4g1ψ (tj)

+

m−1∑
j=2,4,...

2g1ψ (tj)+ g1ψ (tm)
)

(36)

where d̂ψ and zψ represent disturbance estimation and auxil-
iary variable for high-order DO, respectively.

D. YAW TRACKING CONTROL DESIGN
After developing a DO for disturbance estimation, it is
required to construct a control scheme for tracking by follow-
ing the similar method of previous sections. The subsystem
for yaw model based on tracking error can be written as
follows:

ξ̇ψ5 = ξψ6 + Fψ11dψ
ξ̇ψ6 = x2x4k1ψ + lψUψ + Fψ21dψ − ẍψD (37)

where xψD is desired angle. Now by designing a sliding
mode surface as ζψ = δ1ψ ξψ5 + δ2ψ ξψ8 , an SMC control is
developed as

Uψ = −
1

lψδ2ψ

[
δ1ψ ξ2ψ + δ2ψ

(
x2x4k1ψ − ẍψD

)
+ ηψ d̂ψ + Kψζψ + Lψ sgn(ζψ )

]
(38)

where d̂ψ (t) is disturbance estimation, Kψ > 0, Lψ > 0 is
switching constant and ηψ =

(
δ1ψFψ11 + δ2ψFψ21

)
.

Now, for the stability of yaw system, defining a Lyapunov
candidate function is chosen as follows:

Vy = Vψ (t)+ VψD

=
1
2
ζ 2ψ +

1
2
d̃2ψ (39)

where d̃ψ = d̂ψ − dψ . Now, taking derivative of (39) yields

V̇y = V̇ψ + V̇ψD

= ζψ ζ̇ψ + d̃ψ
˙̃dψ (40)

With similar derivation of roll and pitch, it can be derived that

V̇y ≤ −20̄ψVψD − (2Kψ − (L2ψ + 1))Vψ + B∗ψ (41)

where 0̄ψ > 0 is a constant. Furthermore, B∗ψ =
1
2

(
B1ψ +

B2ψ
)
+B3ψ with B1ψ = max{g20ψ + g

2
1ψ
}, B2ψ = max{κ21ψ +

κ22ψ
+ %2ψ } and B3ψ ≥ max 1

2 {η
2
ψ (d̃ψ + 1ψ )2 + 1} are

representing bounds. %ψ and 1ψ denotes the upper bound
on rate of change of disturbances and an error, respectively.
κ1ψ and κ2ψ are bounds on the approximation errors e1ψ and
e2ψ , respectively. These errors are incurred because of the
Simpson’s approximation technique used for the derivation
of g1ψ (t) and g2ψ (t). Now, with appropriate choice of 0̄ψ ≥(
00ψ − 0

2
1ψ
− 02

2ψ
−

1
2

)
, Kψ ≥ 1

2 (L
2
ψ + 1) and Lψ , V̇y ≤ 0

can be ensured.

E. DISTURBANCE OBSERVER BASED ALTITUDE CONTROL
From (1), altitude model can be written as follows:

ẋ7 = x8 + Fh11dh

ẋ8 = g−
Uh
m
(cos x1 cos x3)+ Fh21dh (42)

where dh is representing disturbances, Fh11 and Fh12 are the
elements of the matrix Fh associated with high-order distur-
bances affecting altitude subsystem.

1) DO FOR PARABOLIC DISTURBANCES (SECOND ORDER)
A second order model for disturbances is assumed as dh =
d0h + dh1 t + dh2 t

2, where d0h , d1h and d2h are unknown
constants. Now, a DO can be developed as follows:

żh = F+h fh(xh,Uh; t)+ 00hg0h (t)
+01hg1h (t)+ 02hg2h (t);

d̂h = 00hg0h (t)+ 01hg1h (t)+ 02hg2h (t)

(43)

where F+h = [F+h11 F+h12 ]. 00h , 01h and 02h are chosen by
using Lemma 2. Furthermore, we have g0h (t) = F+h11x7 +

F+h12x8 − zh, g1h (t) = 1h/3
(
g0h (t0) +

n−1∑
i=1,3,...

4g0h (ti) +

m−1∑
j=2,4,...

2g0h (tj) + g0h (tm)
)
and g2h (t) = 1h/3

(
g1h (t0) +

m−1∑
j=1,3,...

4g1h (tj) +
m−1∑

j=2,4,...
2g1h (tj) + g1h (tm)

)
. Now, żh and d̂h
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can be obtained as follows:

żh = 00hF
+

h11
x7 +

(
F+h11 + 00hF

+

h12
x8
)

+F+h11
(
g− Uh

m (cos x1 cos x3)
)

−00hzh + 01h
1h
3

(
g0h (t0)

+

m−1∑
j=1,3,...

4g0h (tj)+
m−1∑

j=2,4,...
2g0h (tj)

+g0h (tm)
)
+ 02h

1h
3

(
g1h (t0)

+

m−1∑
j=1,3,...

4g1h (tj)+
m−1∑

j=2,4,...
2g1h (tj)+ g1h (tm)

)
d̂h = 00h

(
F+h11x7 + F

+

h12
x8 − zh

)
+01h

1h
3

(
g0h (t0)+

m−1∑
j=1,3,...

4g0h (tj)

+

m−1∑
j=2,4,...

2g0h (tj)+ g0h (tm)
)

+02h
1h
3

(
g1h (t0)+

m−1∑
j=1,3,...

4g1h (tj)
)

+

m−1∑
j=2,4,...

2g1h (tj)+ g1h (tm)
)

(44)

where d̂h and zh represent disturbance estimation and auxil-
iary variable for high-order DO, respectively.

2) ALTITUDE TRACKING CONTROL DESIGN
To obtain a tracking control, similar procedure of previous
sections is followed. Firstly, a second-order nonlinear model
of altitude system is derived based on error as follows:

ξ̇h7 = ξh8 + Fh11dh

ξ̇h8 = g−
Uh
m
(cos x1 cos x3)− ẍhD + Fh21dh (45)

where xhD is desired height. To start with, a sliding mode
surface is assumed as ζh = δ1hξh7 + δ2hξh8 where δ1h and
δ2h are sliding mode control parameters. Now, following the
steps of SMC controller, following control scheme is obtained
for tracking of altitude.

Uh =
m

δ2h cos x1 cos x3

[
δ1hξh8 + δ2h

(
g− ẍhD

)
+ ηhd̂h + Khζh + Lhsgn(ζh)

]
(46)

where d̂h is disturbance estimation, Kh > 0, Lh > 0 is the
switching gain constant and ηh =

(
δ1hFh11 + δ2hFh21

)
. For

obtaining the stability criteria of altitude model, let us define
a Lyapunov candidate as follows:

Vh = Vh(t)+ VhD =
1
2
ζ 2h +

1
2
d̃2h (47)

where d̃h = d̂h − dh. Following similar procedure of proving
stability for attitude model, it can be derived that

V̇h ≤ −20̄hVhD − (2Kh − (L2h + 1))Vh + B∗h (48)

where 0̄h is a positive constant, B∗h =
1
2

(
B1h + B2h

)
+ Bh3

with B1h = max{g20h + g21h}, B2h = max{κ21h + κ
2
2h
+ %2h}

and Bh3 ≥ max 1
2 {η

2
h(d̃h + 1h)2 + 1} are upper bounds.

%h and 1h represents the upper bound on rate of change of
disturbances and an error, respectively. κ1h and κ2h denotes
the bounds on the approximation errors introduced while
using Simpson’s approximation technique for the derivation
of g1h (t) and g2h (t), respectively. Now, if the design constants
0̄h ≥

(
00h −0

2
1h
−02

2h
−

1
2

)
and Kh ≥ 1

2 (L
2
h + 1) are chosen

along with the appropriate design of Lh, then V̇y ≤ 0.
It should be noted that Kiζi where i ∈ (φ, θ, ψ, h),
is introduced in the controller for minimizing the chattering
effect [48]. Since, Kiζi and Lisgn(ζi) appear in same chan-
nel, hence, by appropriately design Ki can yield domination
over discontinuous function, resulting in reducing chattering
effect. Now, all of the above analysis and design can be
summarized as the following theorem.
Theorem 1: For a model of quadrotor suffering from

unknown but bounded high-order disturbances, a disturbance
observer based tracking control (DOBTC) scheme can be
constructed by incorporating a DO proposed in (10), (29),
(36) and (44), controller developed using SMC for roll, pitch,
yaw and altitude in (14), (31), (38) and (46), respectively. The
developed DOBTC yields asymptotic stability when observer
gain parameters are designed according to Lemma 2 and
following criteria are ensured.

0̄τ ≥
(
00τ − 0

2
1τ − 0

2
2τ −

1
2

)
,Kτ >

1
2
(L2τ + 1) (49)

where B∗τ =
1
2

(
B1τ +B2τ

)
+B3τ with B1τ = max{g20τ +g

2
1τ
},

B2τ = max{κ21τ +κ
2
2τ
+%2τ } and B3τ ≥ max 1

2 {η
2
τ (d̃τ+1τ )

2
+

1} representing the upper bounds. %τ and 1τ denotes the
upper bound on rate of change of disturbances and an error,
respectively. κ1τ and κ2τ are the upper bounds on approx-
imation errors occurred because of the use of Simpson’s
technique for the derivation of g1τ (t) and g2τ (t), respectively.
Furthermore, it is required to design Lτ sufficiently large to
satisfy slidingmode criterion, and tomake sure the states does
not escape the sliding manifold.
Proof: The stability of the proposed control scheme can be

analyzed using the Lapunov stability criterion. According to
the stability criterion, the origin yields asymptotic stability
given that the Lyapunov candidate V is positive definite and
its time derivative V̇ is negative definite. Since, the developed
control scheme incorporates tracking control and DO, hence,
to analyze the stability of quadrotor, the Lyapunov candidate
can be defined as follows:

VQ = Vr + Vp + Vy + Vh (50)

where Vr , Vp, Vy and Vh represent Lyapunov functions for
roll, pitch, yaw and height, respectively. Now, taking time
derivative

V̇Q = V̇r + V̇p + V̇y + V̇h (51)

Substituting (26), (33), (41) and (48)

V̇Q ≤ −20̄φVφD − (2Kφ − (L2φ + 1))Vφ + B∗φ
− 20̄θVθD − (2Kθ − (L2θ + 1))Vθ + B∗θ
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FIGURE 5. Flow chart of disturbance observer based tracking control.

TABLE 1. Quadrotor parameters.

− 20̄ψVψD − (2Kψ − (L2ψ + 1))Vψ + B∗ψ
− 20̄hVhD − (2Kh − (L2h + 1))Vh + B∗h (52)

To obtain V̇Q < 0, the Lyapunov stability for attitude
and altitude model of quadrotor, the DO gain parameters
are required to be design according to the Lemma 2, i.e.
ρi(s) = 0 resulting in convergent dynamics [29]. And also
with τ ∈ (φ, θ, ψ, h),

0̄τ ≥
(
00τ − 0

2
1τ − 0

2
2τ −

1
2

)
, Kτ >

1
2
(L2τ + 1) (53)

This completes the proof. A complete flow diagram to obtain
tracking scheme of a quadrotor with the ability of disturbance
rejection using proposed DOBTC is shown in Fig. 5.

IV. SIMULATION RESULTS
For simulation purpose, the parameters of quadrotor are taken
as, gravity g = 9.91m/s2, mass m = 0.468kg. distance
l = 0.225m, thrust coefficient k = 2.980 × 10−6, drag
coefficient b = 1.140 × 10−7, rotor inertia IM = 3.357 ×
10−5 kgm2. The airframe inertia and drag coefficients for
roll, pitch and yaw are shown in the table 1. For Simpson’s
approximation, n = 1000 during simulations of all subsys-
tems. Furthermore, the matrix F associated with disturbances
and itsMoore-Penrose pseudo inverse commuted usingmath-
ematical program are as follows:

F =
[
4
6

]
F+ =

[
1.6000 0.8000

]
(54)

A. SIMULATION RESULTS OF ROLL MODEL
The design constants of the developed control scheme and
DO for roll angle are shown in the following table 2.
It should be noted that the DO is constructed for second-order
parabolic disturbances. However, the simulations are con-
ducted for constant, ramp and chirp disturbances also.

TABLE 2. Design constants for tracking control of roll with DO.

FIGURE 6. Tracking roll angle.

FIGURE 7. Control input using sgn function.

FIGURE 8. Control input using sat function.

For constant and ramp disturbances, d1 = d2 = 0 and
d2 = 0 are taken, respectively. While for chirp disturbances,
the DO of parabolic disturbance is used but with different
tuned gain constants to achieve the estimation. Furthermore,
the reference desired angle for roll tracking is assumed to be
xφD = 0.4 rad . Since SMC technique is used for achieving
tracking performance, DOBTC can be constructed either by
using sgn(.) or sat(.) functions. The former function exhibits
chattering in the controller while the latter negates it. Fur-
thermore, the developed control scheme contains two control
design parameters, i.e. Lφ and Kφ . Hence, in Fig. 6, various
results are presented for tracking performance followed by
the control inputs required in Fig. 7 and Fig. 8, respectively.
A significant reduction in chattering can be noticed in control
input by introducing the design gain constant of Kφ = 25,
as shown in Fig. 7. Furthermore, Fig. 8 shows comparison
of control inputs for different values of control gain param-
eters. Hence, from the simulation study it can be said that
with appropriate choice of Lφ and Kφ , chattering can be
reduced.

The simulation results for proposed DO to estimate con-
stant, ramp, parabolic and chirp disturbances are presented in
Fig. 9, Fig. 10, Fig. 11 and Fig. 12, respectively.
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FIGURE 9. Constance disturbance and disturbance estimation.

FIGURE 10. Ramp disturbance and disturbance estimation.

FIGURE 11. Parabolic disturbance and disturbance estimation.

FIGURE 12. Chirp disturbance and disturbance estimation.

TABLE 3. Design constants for tracking control of pitch with DO.

B. SIMULATION RESULTS OF PITCH MODEL
The design parameter constants of control and DO for the
decoupled model of pitch subsystem of attitude are enlisted
in table 3. For pitch, the desired tracking angle is taken as
xθD = 0.5 rad . In Fig. 13, tracking performance of pitch
is presented for different values of Lθ and Kθ . Fig. 14 and
Fig. 15 shows the control inputs with different designed
control parameters by using signum and saturation functions,
respectively.

C. SIMULATION RESULTS OF YAW MODEL
The design control parameters for the decoupled model
of yaw are presented in table 4. For simulation purpose,
the desired yaw angle is considered to be xψD = 0.3rad .

TABLE 4. Design constants for tracking control of yaw with DO.

FIGURE 13. Tracking pitch angle.

TABLE 5. Design constants for tracking control of altitude with DO.

FIGURE 14. Control input using sgn function.

FIGURE 15. Control input using sat function.

FIGURE 16. Constant disturbance and disturbance estimation.

Fig. 20 shows the tracking performance for yaw model for
various Lψ and Kψ . The control inputs by using signum and
saturation functions are shown in Fig. 21 and Fig. 22, respec-
tively. It is evident from Fig. 21 that the chattering is reduced
after invoking Kψ in the control technique. After in-depth
simulation analysis, in Fig. 23, Fig. 24, Fig. 25 and Fig. 26,
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FIGURE 17. Ramp disturbance and disturbance estimation.

FIGURE 18. Parabolic disturbance and disturbance estimation.

FIGURE 19. Chirp disturbance and disturbance estimation.

FIGURE 20. Tracking yaw angle.

FIGURE 21. Control input using sgn function.

FIGURE 22. Control input using sat function.

are presented for DO estimating the disturbances of constant,
ramp, parabolic and chirp models, respectively.

D. SIMULATION RESULTS OF ALTITUDE/HEIGHT MODEL
For altitude/height subsystem of the quadrotor, the desired
height considered is 25m. From Fig. 27, it can be seen that

FIGURE 23. Constant disturbance and disturbance estimation.

FIGURE 24. Ramp disturbance and disturbance estimation.

FIGURE 25. Parabolic disturbance and disturbance estimation.

FIGURE 26. Chirp disturbance and disturbance estimation.

FIGURE 27. Desired height.

the desired height is achieved in the presence of distur-
bances. Furthermore, it is shown that the desired height is
achieved for various design gain parameters, i.e. Lh and Kh.
The control inputs required to achieve the desired height are
shown in Fig. 28 and Fig. 29. The former control input is
obtained when sgn function is used in the control scheme
while the later is obtained when the sgn function is replaced
by sat function in DOBTC scheme. It can be seen that by
introducing Kh, the chattering can be reduced in the con-
trol input. The performance of DO can be seen in Fig. 30,
Fig. 31, Fig. 32 and Fig. 33 where the disturbance estimation
of constant, ramp, parabolic and chirp function is shown,
respectively.
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FIGURE 28. Control input using sgn function.

FIGURE 29. Control input using sat function.

FIGURE 30. Constant disturbance and disturbance estimation.

FIGURE 31. Ramp disturbance and disturbance estimation.

FIGURE 32. Parabolic disturbance and disturbance estimation.

FIGURE 33. Chirp disturbance and disturbance estimation.

The tracking performance can be varied by designing dif-
ferent the switching gain constants regardless of using signum
or saturation function used in switching function during the
developedDOBTC based on SMC control. Designing switch-
ing gain higher yields quick performance of the designed
control and the tracking performance is obtained quickly
while with the small design value of switching gain results in

slower tracking performance. Furthermore, the performance
can also be improved by introducing Kτ in the controller.
In fig. 6, fig. 13 and fig. 20, the tracking performance of
roll, pitch and yaw are presented, respectively. Fig. 27, rep-
resents the height achieved using DOBTC. These tracking
performances can be varied by adjusting Lτ and Kτ accord-
ing to the requirements. With the introduction of the latter
design gain constant, the chattering can also be reduced in
the control input. Moreover, it should be noted down that
the attitude model of a quadrotor is independent of altitude
model. However, the altitude model is dependent on from
attitudemodel. Hence, with the control of attitude, the altitude
tracking performance can be varied.

V. CONCLUSION
In this paper, a DOBTC technique with the ability of tracking
and disturbance estimation is presented. The developed DO is
an integrator-free DO to avoid the unnecessary saturation and
adverse effects on the controller. When patched with the con-
troller, it attenuates both matched and mismatched high-order
disturbances as well as tracks the desired references. After
conducting the simulation study, a conclusion can be drawn
that the DO can estimate disturbances with both constant and
variable frequencies. Furthermore, the developed SMC tech-
nique achieves tracking performance of the UAV, quadrotor.
Hence, with the support of asymptotic stability obtained using
Lyapunov criteria, it can be stated that the control scheme is
effective and stable.
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