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ABSTRACT In this paper, an accurate off-line map-matching (OM2) system is designed for complex
trajectory networks. It is difficult to complex trajectories input into the hidden Markov model (HMM)
directly. OM2 includes three key modules that are pre-processing, map-matching based on weight adaptation
HMM (WA-HMM), and post-processing. The pre-processing module divides complex multi-trajectory into
single-trajectory sets based on the self-defined trajectory division model (TDM) of crossroads. Another core
module is the WA-HMM based on Boxplot, which is used to balance efficiency and accuracy of off-line
map-matching. The post-processing is used to map the points of the crossroads so as to further improve the
map-matching accuracy. OM2 employs the actual GPS trajectories of the internet company and road map
of Sichuan province police GIS (PGIS). Our evaluation results show that the accuracy is about 98%, which
is suitable for off-line map-matching and solves the problem of complex trajectory network matching being
difficult and time-consuming.

INDEX TERMS Map-matching, off-line, complex trajectory division, hidden Markov model, weight
adaptation.

I. INTRODUCTION
Map-matching is the process of mapping a series of GPS
points with spatio-temporal information and precision loss
onto the actual road, to solve related problems in urban
computing such as construction of road networks [1], intel-
ligent transportation [2], [3], user travel [4]–[6], trajectory
depth understanding [7], [8] and other location-based services
[9]–[11]. Matching of trajectories and road networks is
divided into on-line and off-line matching. Off-line match-
ing is map-matching after trajectory measurement. One
of the main differences between off-line and on-line is
whether the entire trajectory is included in the analysis,
which provides additional information for selecting the
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correct segment. Our task is off-line map-matching. Because
off-line map-matching is not useful for real-time navigation,
it receives less attention than real-time on-linemap-matching.
The research results regarding improving the accuracy of
off-line algorithms are less available than research on on-
line algorithms, directly affecting location-based data ser-
vices such as logistics and supply chain management, vehicle
trajectory analysis, etc.

In recent years, with the rapid development of wireless net-
works [12]–[16] and the ‘‘Internet + sharing economy’’, the
on-line travel service scene has turned to the mobile terminal,
and GPS devices loaded on mobile terminals collect a large
number of moving position sequences every day. The posi-
tioning accuracy is lower, and the deviation between the data
collected by GPS and the actual road is larger (from several
meters to tens of meters) due to the positioning and sampling
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errors [17] of the sensor itself, as well as the influence of
ambient noise. Due to low-frequency sampling, especially in
the complex urban road network, details between any two
sampling points are easily lost in the case of higher speed,
shorter block, and larger error [18].

However, because the GPS data is taken from a third-party
Internet company and there is no perfect solution for secure
communication (especially wireless secure communication)
[19], [20] and other factors, and the original data cannot
be obtained comprehensively, which makes it impossible to
make full use of the original data attributes to create a map-
matching model. At the same time, for the complexity of
the road network structure, the off-line map-matching has
more time-consuming, which requires an effective balance of
precision and time.

In this paper, we aim to simplify the map-matching model
avoiding strong dependent on data attributes, and effectively
solve the matching quality of short trajectories and com-
plex trajectories and enhance the accuracy of off-line map-
matching. Therefore, we combine the hidden Markov model
(HMM) and the Viterbi algorithm to design an optimized
method for off-line map-matching.

The specific contributions of this paper are as follows.
(1) We designed the architecture of off-line map-matching
(OM2), including the three key modules: re-processing, map-
matching, and post-processing. (2) We defined the trajectory
division model of crossroads. The model addresses a diffi-
cult problem that complex trajectory networks input into the
HMM directly. (3) We proposed an HMM with weight adap-
tation (WA-HMM) based on Boxplot to balance efficiency
and accuracy of off-line map-matching. (4) We implemented
the OM2 and evaluated the performance using the actual GPS
trajectories. The experimental accuracy reache about 98%.

The rest of the paper are organized as follows. In Section II,
related work is introduced. In Section III, we describe the
OM2 system in detail. We present the experimental results in
Section IV. In Section V, we discuss the interrupt processing.
Finally, conclusions are drawn in Section VI.

II. RELATED WORK
Map-matching algorithms can be divided into many classes
based on different dimensions. For one thing, according
to the sampling point range, algorithms can be divided
into local/incremental [21]–[24] and global [25]–[27]. The
local algorithm presents the phenomenon of ‘‘arc jump’’,
which leads to a significant decrease in accuracy [23]. This
method only considers the current position, and the corre-
lation between adjacent points is ignored. The results are
greatly affected by measurement error, and the accuracy is
generally low. But it is useful for on-line matching because it
is fast and real-time. And the global algorithm takes the whole
sampling trajectory into account and shows greater robust-
ness to the reduction of the sampling rate, and is more suit-
able for off-line matching tasks. From another point of view,
the algorithms can be further divided into geometric match-
ing algorithms [28]–[30], topological relation algorithms

[31], [32], probabilistic statistical algorithms [33]–[36], and
advanced matching algorithms [37]–[43].

Some researchers [44]–[46] have developed approximate
techniques to generate an unknown potential map or per-
form map-matching without referencing a known map topol-
ogy, but by observing clusters of trajectories. Rappos et al.
[47] used physical mechanics and borrowed from the field
of force-directed graph drawing to employ off-line map-
matching, which is weak on solving the problem of match-
ing short trajectories and complex trajectories. Advanced
matching algorithms are widely used because they compre-
hensively consider the geometric information, topological
relations, probability, and other information involved in tra-
ditional methods, which greatly improves the accuracy and
performance.

HMM, an advanced mapmatching algorithm, was released
byMicrosoft in 2009 [48]. The HMMmodel is aMarkov pro-
cess statistical model with hidden unknown parameters. The
basic idea is to disassemble the probability of GPS points for
candidate roads into the combination observation probability
and transition probability. HMM has achieved good results
in map-matching of many scenes, and is becoming more and
more popular. Sharath proposed a dynamic two-dimensional
method to map match by incorporating road width and
dynamic weight coefficients [49]. For enhancing the effi-
ciency of map matching, Fiedler et al. [50] prosed a scalable
mapmatching algorithm based onDijkstra’s shortest path and
Yan et al. [51] put forward the optimal path searching via
finding the key points in the discrete trajectory. In addition,
many scholars have developed the integration methods of
HMM and multi-dimensional information. The authors pro-
posed the junction decision domain model that includes the
road network accuracy, the GPS accuracy, the road segment
width, and the angle between two road segments, which can
decrease the error rate of junction matching [43]. The turn
restrictions were applied in the sparse map-matching result
in the fast running time [52].

Those algorithms based on HMM achieved good results in
computational efficiency and accuracy. However, those meth-
ods depend on the extra data information or introduce others
knowledge. It is difficult to our data characteristics that are
diverse data sources, insufficient data attributes, and complex
structure of road network. A variety of factors mentioned
have introduced great challenges to off-line map-matching.

Therefore, our method comprehensively considers the fac-
tors above. We achieve the off-line map-matching based
on trajectory network division and weight adaptation HMM
(WA-HMM). The trajectory division model is simple and
have little dependence on multi-dimensional data attributes.
WA-HMM can effectively balance the off-line map-matching
accuracy of complex trajectory and running time.

III. OM2 SYSTEM
Map-matching is the process of mapping GPS points onto
the actual road segments. The architecture of OM2 is shown
in Fig. 1. The input data is the trajectory network, and the
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FIGURE 1. OM2 architecture with three key modules.

output data is the matched trajectory data mapped to the
road. The middle is the three modules: pre-processing, map-
matching, and post-processing.

The detail descriptions of the three modules are as
follows. (1) The pre-processing module is used to divide
the trajectory network (please refer to Definition 1) into
single-trajectory (please refer to Definition 2) sets based on
the self-defined trajectory division model of crossroads. The
module addresses a difficult problem: the complex trajecto-
ries input into the HMM directly. (2) Another core of OM2 is
an adaptive HMM with weight adaptation (WA-HMM) to
balance efficiency and accuracy. (3) The post-processing is
based on the united trajectory division model of GPS and the
road, and maps the points of the crossroad to the actual road
segment’s position so as to further improve accuracy.
Definition 1 (Trajectory Network): A collection of all

trajectories on a map, which is represented as undirected
graph G = 〈V ,E〉. E is the set of edges between two nodes,
also known as the trajectory segments set. V is the set of
all the nodes. According to the definition of node degree in
the undirected graph, the node is subdivided into endpoints
(starting and ending points) with degree 1, ordinary point
with degree 2, and intersection point with any degree greater
than or equal to 3. The degree of each node is denoted as
D1,D2,D3+.
Definition 2 (Single-Trajectory): A series of GPS

timing point sets that are obtained by the trajec-
tory network division, which can be expressed as
Tr = {(p1, t1,D1) , . . . , (pi, ti,D2) , . . . , (pn, tn,D1)}, pi =
(xi, yi). Each GPS point contains latitude xi, longitude yi, time
identification ti, degree D (D ≤ 2).

A. SELF-DEFINED TRAJECTORY DIVISION MODEL
FOR THE CROSSROADS
1) ASSUMPTION OF THE CROSSROADS
TRAJECTORY DIVISION
An intersection is the key road structure of trajectory division.
Its main characteristics are the connection relationship and
connection mode between segments. The connecting rela-
tionship expresses which sections are passable, and which
can be obtained directly by the vector trajectory network.

FIGURE 2. Diagram of the crossroads trajectory division model.

The angle between segments is used to describe the
connection mode, and the angle can be calculated by the
cosine theorem. Based on people’s behavior habits, the actual
situation of the road network and road traffic planning,
we make the following assumptions about the intersection
trajectory division. On the one hand, at the intersection,
drivers are more willing to choose the path with less change
in direction. On another hand, in the real road network,
roads are divided into the main road, branch road, secondary
branch road. According to relevant laws and regulations and
industrial standards, the main road is generally straighter than
the branch road and secondary branch road, which means the
inner angle of the main road is larger than the non-main road.

2) SELF-DEFINED TRAJECTORY DIVISION
MODEL OF THE CROSSROADS
We first identify the crossroad as the place of intersection of
two or more roads (main road, branch road and secondary
branch, etc.). Namely, according to definition 1 and graph
theory, V is the node of the intersection (degree (V ) ≥ 3).
As shown in Fig. 2, the self-defined trajectory division model
(TDM) of crossroads is defined as follows:

TDM =

{
I .get

(
max

(
θi,j
))
, other

None, max
(
θi,j
)
<
π

3
(1)

where crossroads consist of V and E = {e1, e2, e3, . . . , en} ,
n = degree(V ). The angle between any two edges is

θi,j = arccos
−→
ei .
−→
ej∣∣∣∣−→ei

∣∣∣∣
∣∣∣∣∣−→ej

∣∣∣∣∣
, i, j = 1, 2, 3, · · · , n, i 6= j.

I =
{
θi,j : {ei, ej}

}
denotes the intersection of roads.
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FIGURE 3. Computing the angular deviation using the cosine theorem.

Algorithm 1 Trajectory Division
Input: GPS trajectory network
Output: trajectory_list
1 : Generate dictionaries Enormal and Eintersection

based on degree of nodes, dictionary is defined as
{point : {edge, . . .} , . . .}
2 : for each Intersection ∈ Eintersectiondo
3 : point← Intersection.keys
4 : edge_list← Intersection.values
5 : while len(edge_list) ≥ 2 do
6 : edge_pair← combinations(edge_list,2)

7 : θi,j← arccos
−→
ei ·
−→
ej∣∣∣∣−→ei

∣∣∣∣
∣∣∣∣∣−→ej

∣∣∣∣∣
8 : I ←

{
θi,j :

{
ei, ej

}}
9 : θi,j← max

(
θi,j
)

10: if θi,j > π/3 then
11:

{
ei, ej

}
← I .get

(
max

(
θi,j
))

//Get the main road
12: Enormal .append

({
point :

{
ei, ej

}})
13: else
14: Split

{
ei, ej

}
to {ei} and

{
ej
}

15: Enormal .append ({point : {ei}})
16: Enormal .append

({
point :

{
ej
}})

17: end if
18: edge_list.remove (ei)
19: edge_list.remove

(
ej
)

20: if len(edge_list) = 1 then
21: Enormal .append ({point : {edge_list}})
22: end if
23: end while
24: end for
25: Connect all edges of Enormal according to topology
26: Generate singletrajectory set and store it in the trajec-
tory_list
27: return trajectory_list

According to the trajectory division model (TDM) and
the diagram (Fig. 3), we can obtain the three new trajectory
segment sets [{e1, e4}, {e2, e5}, {e3}] used for producing the
single-trajectory. The trajectory division algorithm is imple-
mented in Algorithm 1, in which, the points stored in Enormal
contain endpoints and ordinary points.

TABLE 1. Rule definition with prior knowledge.

B. WEIGHT ADAPTATION HMM FOR OFF-LINE
MAP-MATCHING
The connectivity model of roads is considered by HMM.
Meanwhile, HMM considers many different path assump-
tions to solve the map-matching problem. Lamb and
Thiebaux [53] first used HMM for map-matching, using a
combination of the Kalman filter and HMM. Several Kalman
filters traced the vehicle along different hypothetical paths,
and HMM chose between them. Hummel [54] and Krumm
[55] used HMM to balance the measured noise and path prob-
ability, and the effect was useful. This paper combines map-
matching with HMM and the Viterbi algorithm, determines
the hidden actual position sequence through the observable
GPS position sequence, and calculates the initial state prob-
ability matrix, observed state probability matrix, and state
transition probability matrix. At the same time, certain rules
are used to fit the real historical data. Among them, the
definition of rules should satisfy people’s prior knowledge
(details please refer to Table 1).

1) OBSERVATION PROBABILITY

p
(
ot,i | ct,i

)
=

1
√
2πσz

e
−0.5

( dt,i−u
σz

)2
(2)

where dt,i = dist (oi, ci) is the Euclidean distance between
ot,i and ct,i, with mean u = 0 and standard deviation σ = 7
m based on empirical findings and statistical analysis of the
data.

2) TRANSITION PROBABILITY
The transition probability is defined as the probability that
the shortest path from a given candidate point ct,i to the next
candidate point ct+1,j is the correct path mapping from ot,i
to ot+1,j. The transmission probability p (dt) is given by the
following expressions:

p (dt) =
1
β
e
−dt/β (3)

where,

dt =
∣∣‖ot − ot+1‖great_circle − ∥∥ct,i∗ − ct+1,j∗∥∥route∣∣ (4)

where the shortest route distance denotes ‖ ct,i∗ −
ct+1,j∗ ‖route and the greatest circle distance between the
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measured points is ‖ ot,i∗ − ot+1,j∗ ‖great_circle. We estimate
the value of β based on (5) suggested by Gather and Schulte
[56]. Note that in (5), we use ct,i∗ and ct+1,j∗ as the ground
truth road candidate points corresponding to the starting index
i∗ and ending index j∗.

β =
1

ln (2)
mediant

(∣∣‖ot − ot+1‖great_circle
−
∥∥ct,i∗ − ct+1,j∗∥∥route∣∣) (5)

3) OPTIMIZED TRANSITION PROBABILITY
All the branch/secondary branch roads obtained by trajectory
division have changes in direction, which are characterized
by relatively large changes in angles geometrically.

To improve the matching accuracy, the emission probabil-
ity is calculated by adding the direction factor, which can be
formulated as:

p (θt) = e−λθt (6)

where according to the test data and our experience, the accu-
racy is good when setting λ ∈ (3, 5).
The transition probability is optimized as (7):

p (dt , θ t) = p (dt) · p (θt) (7)

where because of the complex road network, especially in
urban areas, there are many candidate roads segments within
the buffer zone radius. It is not necessary to calculate all the
differences between each observation point ot,i and the angle
of all candidate points ct,i∗ , so we have improved the angular
deviation θt .

θt : ϕot → ϕct,i∗ (8)

with ϕot → ϕct,i∗ as the change angle between observation
point ot,i and all of candidate points ct,i∗ on the road network
are matched. The angle deviation ϕt : ϕot → ϕct,i∗ is
calculated by the cosine theorem, shown as (9):

θt = arccos
−→
eot .
−→
ect∣∣∣∣−→eot

∣∣∣∣ ∣∣∣∣−→ect
∣∣∣∣ (9)

where since the road data has no direction attribute, it is
impossible to directly determine whether the included angle
is θ or π − θ . Therefore, the included angle is uniformly
normalized as θt ∈ [0, π/2]:

θt =

 θt , θt ≤
π

2
π − θt , θt >

π

2

(10)

where the coordinate of observation point ot,i refers to
(xot,i , yot,i ), and (xct,i , yct,i ) denotes the coordinate of candi-
date points ct,i. The coordinate of observation point ot+1,j
refers to (xot+1,j , yot+1,j ), and (xct+1,j , yct+1,j ) denotes the coor-
dinate of candidate points ct+1,j. We use the starting and
ending coordinates of the GPS trajectory (xot,i , yot,i ) and
(xot+1,j , yot+1,j ) to construct the GPS trajectory vector eot .

FIGURE 4. Choice threshold D based on data analysis using Boxplot.

Algorithm 2 Weight Adaptation HMM for Off-Line Map-
Matching
Input: trajectory_list, road network
Output: trajectory_matchied
1 : Calculate the threshold of the GPS short trajectory
based on the Boxplot
2 : for each trajectory ∈ trajectory_list do
3 : Calculate candidate segments for each GPS point of
the trajectory

4 : p
(
ot,i|ct,i

)
←

1
√
2πσz

e
−0.5

( dt,i−u
σz

)2

5 : p (dt)← 1
β
e
−dt/β

6 : if trajectory.geolength < threshold then
7 : p (θt)← e−λθt

8 : p (trt)← p (dt) · p (θt)
9 : else
10: p (trt)← p (dt)
11: end if
12: Viterbi decoding
13: Add matched results to trajectory_matched
14: end for
15: return trajectory_matched

Similarly, we use the mapping coordinates on the road
from the start and end of the GPS trajectory (xct,i , yct,i ) and
(xct+1,j , yct+1,j ) to construct the road vector ect (as shown
in Fig. 3).

4) WEIGHT ADAPTATION BASED ON BOXPLOT
The real track of the vehicle cannot be restored due to the
off-line track. The direction is important track information
that needs to be considered for a driving track containing
branch roads. Specially, when the GPS track of a non-main
road is matched, adding the direction factor to calculate the
observation probability can effectively improve the match-
ing accuracy. However, if the direction factor of each point
is considered when calculating the observation probabil-
ity of HMM, a large amount of time will be consumed.
Therefore, it is necessary to choose a reasonable trajectory
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FIGURE 5. Precise mappings of intersection points. (a) input; (b) the exact
matching of the point level. Red points indict GPS points. The black line is
the digital map of PGIS. Blue points denote the exact mapping points via
post-processing of the point level.

length threshold. In this paper, Boxplot is used to calculate
this critical threshold.

For a set of discrete data, Boxplot can intuitively show the
discrete degree of the data, and set its lower quartile, median
and upper quartile as Q1,Q2,Q3 respectively. According
to Tukey’s test outlier estimation method, let us make the
following definitions.

The minimum estimated value is:
LowerLimit = Q1 − k (Q3 − Q1) (11)

The maximum estimated value is:

UpperLimit = Q3 + k (Q3 − Q1) (12)

where k is used to determine the degree of abnormality.
Generally, k = 1.5 means moderate abnormality, and k = 3
means extreme abnormality.

According to the actual data of this paper, Boxplot
(as shown in Fig. 4) was used to calculate the threshold value
D of non-main road (the branch road and secondary branch,
etc.) lengths. Fig. 4 shows us the parameters of Boxplot. We
counted the length of non-main roads to obtain the threshold
D. The quartiles are Q1 = 76, Q2 = 112, and Q3 =

125, respectively. In this paper, we employed the moderately
abnormal k = 1.5. According to testing data, we calculated
LowerLimit = 2.5 and UpperLimit = 198.5. Therefore,
in our system, the valueDwas 198meters (D ∈ (2.5, 198.5)).

The whole off-line map-matching algorithm of weight
adaptation HMM is shown in Algorithm 2.

C. POST-PROCESSING
In map matching, line segment level accurate matching
is firstly satisfied. Namely, the current segment of the road
is determined. Then, the exact matching of the point level is
satisfied. That is, the specific position in the current road seg-
ment is determined. The specific position point determined is
usually located in the crossroads, road junction, or complex
intersection. The post-processing uses the united trajectory
division model (TDM) to map the points of the crossroad to
the actual road so as to further improve accuracy.

As shown in Fig. 5(b), a few local adjacent points around
No. 14 point need to finish exact matching of the point level

FIGURE 6. The location of the five testing areas located in Chengdu, Sichuan province.
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FIGURE 7. GPS data used for testing in Chengdu, Sichuan, China. This consists of five areas, including Chengmian Flyover
(a), Jinniu Flyover (b), Wuhou Flyover (c), Chengnan Flyover (d), and Shuangliu Airport (e). The red dots represent GPS
track points and the blue lines represent GPS track lines, which are superimposed on the road map.
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TABLE 2. The testing data including the road area (km2), trajectories
length (km) and points of GPS.

exactly associated based on the unified trajectory division
model of GPS and road networks, namely the self-defined
TDM using (1). In the second step, the adjacent points around
No. 14 point are mapped by using the method of equal
proportion mapping. At the same time, other distant points in
the example can be mapped by using the method of vertical
projection. Of course, we would like to employ an interac-
tive post-processing method, such as the visual interactive
map-matching proposed by Kruger et al. [57].

IV. EXPERIMENTAL RESULTS
A. DATA
TheGPS trajectory data is provided by the third-party Internet
company, and the road network is from the Sichuan police
GIS (PGIS). The data covers the whole Sichuan Province
for LBS from the practical requirements of the PGIS. The
road network data is the basic data of the PGIS digital map.
GPS trajectory data is non-real-time historical data and has
complex tracks, is low-frequency, and has coarse-grained net-
work positioning information. The statistical results of a large
number of data show that the deviation between the GPS data
and PGIS digital map is large (about 7.2 m), which increases
the difficulty of actual map matching. Sichuan Province has
an administrative area of 486,000 km2, the total length of GPS
navigation trajectories is 344,000 km, and the total length of
the road network is 470,000 km. Fig. 6 shows the location of
the study area. Based on the actual situation, we selected five
representative regions in Chengdu, Sichuan for testing, and
comprehensively considered the complexity and importance.
Fig. 7 is the GPS testing data of five areas: Chengmian
Flyover, Jinniu Flyover, Wuhou Flyover, Shuangliu Airport
and Chengnan Flyover, which consists of 3320 points from
the 96.04 km trajectories length, and covers about 3.11 km2

of road area (as shown in Table 2).

B. RESULTS AND EVOLUTION
Map-matching is not easy to evaluate. In this paper, a com-
mon assessment method, the correct matching percentage
(CMP), can be formulated as (13).

CMP =
Nsr
Nsn
∗ 100% (13)

where Nsr is the number of samples matched correctly, and
Nsn denotes the number of samples that were mismatched.

According to (13), we can obtain the test results (as shown
in Fig. 8). We observe that our model has the highest aver-
age accuracy (more than 98%), and each result of the five

FIGURE 8. Results of HMM, Optimized HMM and our model.

FIGURE 9. The running time of HMM, optimized HMM and ours.

groups of tests is the optimal compared with HMM [48] and
optimized HMM (the probability of all GPS points calculated
by adding the angle factor). We can also observe that the
performance of our model is relatively stable.

The result of the running time (Fig. 9) shows that our
model takes slightly more time than optimized HMMbecause
of mapping post-processing of intersections in the cross-
roads, in order to further improve the accuracy. However,
we have used Boxplot optimization to reduce the running
time. An off-line map matching task is different from a real-
time on-line task. Instead of the running time, it is preferable
to guarantee accuracy first. Experimental results show that
the running time is acceptable. The results are trained on a PC
with E5-2630 CPU at 2.4GHz with 16GB RAM and CentOS
7 operating system.

V. DISCUSSION ON INTERRUP PROCESSING
In this paper, we assumed that the road information was
complete in the process of off-line map-matching. However,
there are often incomplete problematic segments such as
the topology error, missing road, and road changes. The
problematic segments lead to discontinuity and exceptions
in the map-matching process using HMM, and cause match-
ing interruptions, as shown in Table 3. We monitor inter-
ruptions in the map-matching process and deal with them
as they occur. When an interruption is found, the program
automatically breaks and records the interruption informa-
tion to minimize the impact of the interruption on the map-
matching output. Interruption handling is another issue we
will continue to address in the future work. We reversely
focused on the correlation between the interruptions and the
problematic segments, so as to solve errors of the matching
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TABLE 3. Classification, analysis, and illustration of incomplete road
network.

results caused by the problem segments, improve the match-
ing accuracy, and support the task of updating the road net-
work.

VI. CONCLUSION
In this paper, we proposed the OM2 system, which provides
accurate off-line map-matching for complex trajectory
networks. We designed the architecture of OM2 sys-
tem, including three core modules: pre-processing, map-
matching of WA-HMM, and post-processing. We present
the pre-processing module of OM2 to divide complex
multi-trajectories into single-trajectory sets based on the self-
defined trajectory division model of crossroads. The pre-
processing makes the complex trajectory network inputting
into the HMM directly easily. Another core of OM2 is an
adaptive HMM with weight adaptation (WA-HMM) based
on Boxplot in order to balance efficiency and accuracy. The
definite united model of GPS and the road network is a key
element of post-processing, which is used to map the points
of the crossroad so as to further improve accuracy. Finally,
OM2 employs the actual GPS trajectories of the internet com-
pany and road map of the Sichuan province. The evaluation
shows us an accuracy of about 98%. Our is effective for
solving the problems of map-matching difficult and time-
consuming for complex multi-trajectory network.

In the future, we will continue to monitor and deal with
program interruptions caused by incomplete roads such as
topology errors, missing roads, and road changes, so that fur-
ther improve the off-line map-matching accuracy and update
the map.
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