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ABSTRACT The sensing coverage and accuracy of vehicles are vital for autonomous driving. However,
the current sensing capability of a single autonomous vehicle is quite limited in the complicated road traffic
environment, which leads to many sensing dead zones or frequent misdetection. In this paper, we propose to
develop a Vehicular Fog Computing (VFC) architecture to implement cooperative sensing among multiple
adjacent vehicles driving in the form of a platoon. Based on our VFC architecture greedy and Support Vector
Machine (SVM) algorithms are adopted respectively to enhance the sensing coverage and accuracy in the
platoon. Furthermore, the distributed deep learning is processed for trajectory prediction by applying the
Light Gated Recurrent Unit (Li-GRU) neural network algorithm. Simulation results based on real-world
traffic datasets indicate the sensing coverage and accuracy by the proposed algorithms can be significantly
improved with low computational complexity.

INDEX TERMS Intelligent vehicles, vehicular fog computing, cooperative sensing, autonomous driving.

I. INTRODUCTION
Autonomous driving has received wide attention from the
academy and industry. Benefiting from the high accuracy,
small size and low cost of on-board sensors, the perception
ability of intelligent vehicles can be highly improved, mak-
ing autonomous driving safe and promising [1]. However,
the sensing ability of a single autonomous vehicle could be
quietly limited due to dead zones andmisdetection, which has
led to some traffic accidents according to recent news reports.
Fortunately, with the help of the internet of vehicles (IoV),
autonomous vehicles can be connected and share their sens-
ing information, thus the driving satiety and traffic efficiency
can be improved significantly [2].

Meanwhile, grouping vehicles into platoon is recognized
as a promising method to enhance the safety of autonomous
driving [3]. Autonomous vehicles with similar driving speed
towards the same direction can be organized as a connected
platoon, in which each platoon member can communicate
with each other with low latency and high transmission rate
in IoV [4], [5]. In this case, sensing data can be shared
in the platoon so that the platoon can maintain safe and
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harmonious driving. However, autonomous driving will gen-
erate massive sensing tasks with high computational com-
plexity and high delay sensibility [6] in a dynamic IoV
scenario [7].

The previous studies have proved the edge computing to
be adopted for autonomous driving [8]. Edge computing has
been extensively studied to handle the large latency, unstable
connection, and network congestion of conventional cloud
computing-based approaches [9]–[11].With edge computing,
the computational tasks of vehicles are offloaded to Road
Side Units (RSUs) through a multi-access network [12]–[14].
Nevertheless, the enormous data from cooperative sensing of
the autonomous platoon will put a heavy burden on the cellu-
lar networks which cannot satisfy the low delay requirement
of autonomous driving.

Furthermore, vehicular fog computing (VFC) provides
a promising solution to leverage the computational abili-
ties and reliable wireless connectivity of intelligent vehi-
cles [15]. VFC facilitates nearby intelligent vehicles to carry
out a substantial amount of communication and computa-
tion cooperatively. Different from other existing techniques,
the advantages of VFC include proximity to end-users,
dense geographical distribution, and good mobility support
[16], [17]. Although VFC enables the computation offloading
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among intelligent vehicles, the edge server (RSU) or remote
cloud is required to assist the offloading scheduling in the
existing VFC architecture.

Motivated by the above observations, we propose a new
VFC architecture and intelligent algorithms to perform coop-
erative sensing to improve the sensing coverage and accuracy
of autonomous driving vehicles, as well as driving safety.
The real traffic data from the practical environment, namely
NGSIM I-80 data and US 101 data [18], is used to evaluate
our proposed methods. The contributions of this paper are
summarized as follows.

• In order to overcome the weakness of traditional VFC
architecture, we proposed a new VFC architecture for
cooperative sensing in a platoon, which can jointly uti-
lize the sensing and the computational abilities of intel-
ligent vehicles. This architecture takes full advantage of
platoon driving. To the best of our knowledge, it is the
first time that autonomous vehicle platoon organized as
a vehicular fog to share their sensing, communication
and computation resources for enhancing safety.

• We propose greedy and SVM algorithms respectively
for cooperative sensing to enhance the sensing coverage
and accuracy. Based on the proposed VFC architec-
ture, cooperative sensing tasks are processed bymultiple
vehicles in the platoon. As a consequent, the computing
complexity can be greatly reduced.

• We propose a distributed deep learning for Li-GRU neu-
ral network to predict lane changemanoeuvre. The train-
ing task is offloaded to intelligent vehicles based on our
proposed VFC architecture. The training time is much
lower than traditional centralized learning. Furthermore,
we make a comparison with the existing approaches for
vehicle driving prediction. The Li-GRU neural network
algorithm has a good performance in terms of prediction
accuracy.

The remainder of this paper is organized as follows.
Section II presents the survey of related work. In Section III,
we introduce the VFC architecture for cooperative sensing.
In Section IV, sensing cooperation based on our VFC archi-
tecture is discussed. In Section V, we propose distributed
deep learning for the Li-GRU algorithm to enhance pre-
diction accuracy. In Section VI, we provide numerical test-
ing results of our VFC architecture for cooperative sensing.
In Section VII, conclusion and future research of our work.

II. RELATED WORK
Recent works investigated the architecture of vehicular fog
computing. Approaches for task allocation is widely stud-
ied. Cooperative sensing is also discussed extensively. Some
state-of-the-art researches are discussed to motivate us to
make deeply explore.

A. VEHICULAR FOG COMPUTING
With the rapid development of intelligent vehicles, the VFC
has attracted considerable attention from both industry and

academia. In [15], X. Hou et al. discussed the practicability
of VFC and analyzed the mobility, connectivity, and capacity.
A new framework named autonomous vehicular edge (AVE)
was proposed in [8] to improve the computation abilities
of vehicles. K. Xiong et al. proposed a machine-learning
based framework to allocate the heterogeneous resources of
VFC based on the requirements of the tasks in [17]. In [19],
Zhu et al. proposed Fog following me (Folo), a dynamic
task allocation solution for vehicular fog computing which
aims at minimizing average service latency while reducing
the overall quality loss. In [20], G. Qiao et al. propose a
content cache scheme based on the deep deterministic pol-
icy gradient, which jointly optimizes content placement and
content delivery in vehicular edge computing and networks.
The authors in [21] presents a visionary concept on vehicular
fog computing that turns connected vehicles into mobile fog
nodes and utilizes the mobility of vehicles for providing
cost-effective and on-demand fog computing for vehicular
applications. Nevertheless, all the vehicles in these works are
willing to act as fog nodes, and the incentive issues should
take into account.

The work [22] formulated the negotiation between task
publisher and fog nodes as an optimization problem. The
optimal contract is the Nash equilibrium solution achieved
by task publisher and fog nodes. J. Zhao et al. presented a
collaborative approach based on MEC and cloud computing
that offload services to automobiles in vehicular networks
in [12]. In addition, [23] proposed a framework of content
delivery with parked vehicles, where moving vehicles can
obtain content from both the Road Side Unite (RSU) and
parked vehicles according to the competition and cooperation
among them. Then, based on a Stackelberg game, a pricing
model including moving vehicles, RSU, and parked vehicles,
can obtain their maximum utilities. Moreover, [24] and [25]
considered the power allocation in cognitive radio net-
works. However, in most of the current works’ frameworks,
the scheduling of task offloading is dependent on the edge
server or fog server (RSU). These existing frameworks are
unable to satisfy the low-latency for autonomous driving of
intelligent vehicles platoon and cannot cooperate with the
sensing task with computational requirements to ensure the
safety of autonomous driving.

B. COOPERATIVE SENSING
Meanwhile, sensing fusion of intelligent vehicles has been
extensively studied in recent literature. The fusion model can
be divided into three categories, i.e., fusion for homogeneous
sensors of multi-vehicles [26], fusion for heterogeneous sen-
sors of a single vehicle [27], and fusion for heterogeneous
sensors of multi-vehicles. Most researches focus on the first
two fusion methods. Few approaches addressing how to fus-
ing the heterogeneous sensing information from different
kinds of sensors of multiple vehicles.

Recently, the occupancy grid mapping and filtering algo-
rithm are widely adopted for mapping environments state
into grid states. A SLIC superpixels based clustering for
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FIGURE 1. VFC architecture for cooperative sensing.

a grid cell cluster (GCC) to particles measured using light
detection and ranging and dense depth maps extracted from a
stereo vision and LIDAR sensor [28]. Unfortunately, the OGF
from LIDAR and stereo vision sensor data are based on ego-
vehicle. This method cannot render the dead zone and the
accuracy cannot meet the autonomous driving requirement.
The fast occupancy Grid Filtering (OGF) is an effective
method for sensing data fusion proposed by [29], where the
LIDAR and stereo camera information can be fused effi-
ciently and quickly. Unfortunately, the sensing range of the
OGF method is limited and unable to detect and predict
the platoon scenario. Nevertheless, multi-vehicle cooperative
sensing with heterogeneous sensors is a promising solution
for these problems. The work in [26]proposed an occupancy
probability distribution for OGF map fusion, but the accu-
racy is not sufficient to detect whether the grid is occupied.
Furthermore, based on the cooperative sensing data, the GRU
algorithm that is a modified LSMT algorithm has better accu-
racy and lower computational complexity than LSTM [30].
However, traditional centralized training for the neural net-
work is hard to satisfy the time delay of autonomous driving.
Training tasks can be offloaded to the intelligent vehicles in
the platoon based on our VFC architecture which enables the
distributed learning to reduce training time.

In summary, VFC is a promising technique to improve
the sensing accuracy for autonomous driving. The existing
works consider much about the Fog Radio Access Networks
(FRAN) and the task offloading of VFC. The traditional
VFC architecture concern little about the mobility of the
autonomous driving platoon and the independent cooperation

of the communication, computation, and sensing in the
platoon.

III. ARCHITECTURE OF VFC FOR COOPERATIVE SENSING
In this section, we introduce the autonomous platoon scenario
and our new architecture of VFC for cooperative sensing of
autonomous driving. The cooperative sensing scenario map
is shown in FIGURE 1. Autonomous vehicles A, B, . . . , E
consist of a cooperative sensing platoon and each vehicle
has a sensing coverage. Assume vehicle G intends to change
lane, but vehicle G is in the dead zone of Vehicle A. Besides,
suppose that there doesn’t exist any RSU with MEC to assist
these vehicles, the cooperative sensing process sensing is
shown as follow.

A couple of autonomous vehicles run at a relatively stable
speed and distance. Consequently, they can be connected
based on IoV to inform an autonomous platoon. With the
communication and computation abilities of autonomous
vehicles, this platoon can be organized as a vehicular fog.
Meanwhile, the vehicle with powerful ability of computa-
tion and communication is appointed to be the head vehi-
cle to act as the server and the other vehicles act as the
fog nodes. The head vehicle can manage the resource of
this platoon. Different from the traditional VFC architecture,
the task offloading application can be deployed on intelligent
vehicles. Then, the head vehicle chooses proper cooperative
sensing and task offloaded strategies according to the sens-
ing requests. Subsequently, the surrounding states are fed
into the neural network to predict the trajectory of the sur-
rounded vehicles. The training process can also be offloaded
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to the vehicles in this platoon. Finally, the warning messages
are distributed to each autonomous vehicle sensing platoon
immediately.

Different from traditional VFC architecture, this new VFC
architecture can take the full advantages of the commu-
nication, computation and sensing abilities of intelligent
vehicles. At the same time, this VFC architecture enables
the autonomous platoon organized as a vehicular fog and
ensure driving safety independently. In the following sec-
tions, we discuss the benefits of cooperative sensing based
on our VFC architecture.

IV. COOPERATIVE SENSING ENHANCEMENT
Based on our VFC architecture, we processed sensing coop-
eration for autonomous driving. We consider two kinds of
sensing cooperation tasks which are accumulative sensing
tasks such as [31] and best-quality sensing tasks such as [32].
We first adopt greedy algorithm to optimal cooperative sens-
ing strategy to enhance sensing coverage. Then, we use SVM
algorithm to fuse the multi-vehicles sensing data to get an
accurate state of the vehicles in our sensing platoon. Finally,
the sensing data are fed into a Li-GRU neural network algo-
rithm to predict the lane changing manoeuvre of the target
vehicle. In addition, we use real-world traffic data NGSIM
I-80 Data and US 101 Data [18] to train our SVM algorithm.

A. COVERAGE ENHANCEMENT
According to the sensing task, the head vehicle selects vehi-
cles in this platoon to process the sensing task and task
allocation. We consider the best-quality sensing task for our
cooperative sensing coverage enhancement. In other words,
we select vehicles that have the best sensing coverage to
process the sensing task. In particular, autonomous vehi-
cles in the platoon has different sensing abilities. N =

{1, 2, 3, . . . , n} denotes that there exists n autonomous vehi-
cles in the platoon. We define si as the sensing coverage of
vehicle i, i ∈ N in the platoon. The sensing coverage set can
be define as S = [s1, s2, . . . , sn], where si is the coverage
field of vehicle i. Then, we define the sensing strategy as
A = [a1, a2, . . . , an], therein ai = [0, 1], where 1 means that
the vehicle is selected to process sensing task and 0 means the
vehicle is not selected. Accordingly, the full sensing coverage
of the autonomous vehicles platoon is defined as:

Sf =M
((⋃

i∈N

siai

)⋂
SR

)
, (1)

where M(s) is the area of the field s and SR is the road
field. Meanwhile, the cost of invalid coverage should take
into account. In particular, there could exist sensing coverage
overlaps between the nearby vehicles. As mentioned before,
the coverage sensing task is a best-quality sensing task and
the sensing overlap of the full platoon is:

So =
⋃

i,j∈N ,i<j

{
siai

⋂
sjaj

}
(2)

Our optimal goal is to find the optimal A∗ to maximum the
sensing coverage and minimum the coverage overlap. We use

greedy algorithm to get the optimal strategy A∗ to enhance the
sensing coverage. The optimal goal is shown as follow:

Sf ∗ = argmax
ai∗

M
(⋃
i∈N

siai∗
)

(3)

So∗ = argmin
ai∗

M

 ⋃
i,j∈N ,i<j

{
siai∗

⋂
sjaj∗

} (4)

Besides, we define three parameters to evaluate the effi-
ciency of cooperative sensing coverage which are AreaRatio,
Effectness and TotalRatio. The definition is as follow:

AreaRatio =
Sf

Sf + So
(5)

Effectness =
Sf

M
(∑N

n=1 siai
) (6)

TotalRation =
Sf
SR

(7)

where the AreaRatio means the ratio of selected vehicles’
sensing coverage to full coverage of all vehicles. More-
over, to cover more roads of this platoon, we pursue a high
TotalRatio. A high Effectness means overlap of sensing cov-
erage of selected vehicles is little.

B. GREEDY VEHICLE SELECTION ALGORITHM
To jointly solve problem (3) and (4), we design a greedy
vehicle selection algorithm.Wewill select vehicles iteratively
according to the increased sensing area. Given the selected
vehicle set Ns, for each vehicle i ∈ N −Ns, we will calculate
the new area by

M
(
SNs,i

)
=

∫
sR
I(si−si∩S(Ns))(x, y)dxdy, (8)

where Is(x, y) equals 1 when (x, y) ∈ s, otherwise equals 0.
And S(Ns) =

⋃
i∈Ns

si. We start from an empty selected vehicle

set, and calculate the utilities of each vehicle by (8), add
the vehicle with highest utility into the selected vehicle set
and repeat the process, until the coverage ratio reaches the
threshold, which is defined as

ρ =
M
(
SNs,i

)
M(SR)

. (9)

The pseudo-code of the selection process is presented in
Algorithm 1.

If we selected all candidate vehicles, the number of inte-
grals will be O(n2). If all of the computations are processed
by the head vehicle, the computation delay will be intoler-
able. However, in each loop in Algorithm 1, the integrals
of each utility of the unselected vehicles are independent of
each other, which makes it straightforward to parallel the
calculation process by the task offloading technology. For
example, in the i-th iteration, there are n− i vehicles not been
selected. The head vehicle can choose the first n− i vehicles
ordered by the number of available computation resources.
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Algorithm 1 Greedy Vehicle Selection Algorithm
Input: si, SR, ρ∗.
Output: Optimum selection strategy a∗.
1: Initialisation: Ns = ∅, ρ = 0
2: while ρ < ρ∗ and Ns 6= N do
3: ns = −1, u = −∞
4: for All vehicles i in N − Ns do
5: Calculate utility ui with (8)
6: if ui > u then
7: ns = i, u = ui
8: end if
9: end for
10: Ns = Ns

⋃
{ns}

11: Calculate ρ according to updated Ns and (9)
12: end while
13: a∗i = 1 if i ∈ Ns, otherwise a∗i = 0
14: return a∗

Then offload each utility calculation task to each vehicle,
and obtain the result. Meanwhile, the messages transmitted
between the head vehicle and other vehicles only contain the
selected vehicles and the utility value, which is short enough
to ignore the communication delay. In this manner, the num-
ber of integrals in the proposed algorithm will decrease to
O(n), which makes the computation fast enough for the real-
time application.

FIGURE 2. OGF map of vehicle A and C.

C. ACCURACY ENHANCEMENT
As mentioned before, accumulative sensing task is also con-
sidered by us to improve the sensing accuracy. OGF easily
maps environments as occupancy states. Autonomous vehi-
cles can be assisted with object tracking, localization, and
route prediction. These grid maps are measured by sensors
data. The occupancy grid map of vehicle A and C is shown
in FIGURE 2. The accumulation of the OGF map of a single
vehicle could enhance the cooperative sensing accuracy. The
occupancy grid filtering map of Vk is defined as C t

im×n ,
is shown as below:

C t
km×n =


ct k1,1 ct k1,2 . . . ct k1,n
ct k2,1 ct k2,2 . . . ct k2,n
...

. . .

ct km,1 ct km,2 . . . ct km,n


where, ck t i,j is the particle projected on the gird gi,j from the
on board sensors of vehicle k at time t . A particle in this paper

refers to 3D data measured from sensors, i.e., a particle in a
LIDAR sensor is the reflectance of a beam, and a particle
in a depth map extracted from stereo vision data refers to
a depth pixel. We suppose each autonomous vehicles in the
platoon covered by a head vehicle can upload its OGF map
in a synchrony time stamp. The head vehicle accumulates
occupancy grid filtering map of superpixel-based clustering
particles as C t

m×n. C t
m×n is shown as follows:

C t
m×n =

S∑
k=1

C t
i (10)

We use SVM algorithm to classify whether the grids of
OGFmap are occupied by a real vehicle. The SVM algorithm
is a fast and reliable method for dichotomy of whether the
grid is occupied by a vehicle.The grid state of a vehicle can
be depicted as follow:max

w,b

2
||w|| ;

s.t.gi,j(wCi,j + b) ≥ 1; i = 1, 2, . . . , n
(11)

The purpose is to find the optimal verdict field (optimal
w and b) to fuse the OGFmaps into a high accurate projection
of vehicle states. Thenwe train our SVMalgorithm by the real
traffic data to get optimal. Finally, we can get a full render
of all vehicles’ states Gm×n within an occupancy grid map
fused by the head vehicle group with SVM algorithm. The
definition of the final output Gm×n follows:

Gm×n =


g1,1 g1,2 . . . g1,n
g2,1 g2,2 . . . g2,n
...

. . .

gm,1 gm,2 . . . gm,n


where gi,j = 0 means that gi,j is not occupied by a vehicle
and gi,j = 1 means that gi,j is occupied by a vehicle.

D. TRAINING OF SVM ALGORITHM
In order to simulate the situations of multi-vehicle sensing,
we extract the snapshot (frame) of the real traffic data NGSIM
I-80 and US 101. In order to execute the process of multi-
vehicle sensing, we should locate each single autonomous
vehicle. We extract the Global Positioning System (GPS)
data from the NGSIM. It is well-known that the GPS data
is inaccurate. Luckily, our cooperative sensing approach can
take advantage of the high precision of the sensors to revise
the GPS error [33]. We assume that each autonomous vehicle
equips with the same 360◦ LIDAR and stereo vision sensor in
a single snapshot. According to the linear propagation char-
acteristic of the on-board sensors, we define cii,j = 1+δ is the
occupancy grid filtering map of superpixel-based clustering
particles of Vi on a unite single grid. The δ ∈ [−0.5, 0.5] is
additive system inherent error. δ follows a normal distribution
with a mean of 0 and a variance of p. In our study we set
p = 0.01. The size of a single grid is set as 0.2 meters.
Therefore, each frame is divided into a occupancy map with
the granularity of 0.2 meters. Further, to model our OGF
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faster, we make each vehicle has the same size which is
2 meters wide and 5 meters long. The GPS data of NGSIM is
to locate the vehicles roughly into OGF map. We assume that
the GPS data are the geometric center of a vehicle, hence we
can get a OGFmap based on GPS. This map of single vehicle
at time t can be depict as Rt im×n which has the same structure
as C t

im×n :

Rt km×n =


r t k1,1 r t r1,2 . . . r t k1,n
r t k2,1 r t r2,2 . . . r t k2,n

...
. . .

r t km,1 r t rm,2 . . . r t km,n


where r t km,n is theGPS data extract from each frame projected
to grid (m, n). If there is no GPS data projected into the grid,
we define r t km,n = 0. Otherwise, r t km,n = 1 for a 5 meters
wide and 10meters long range due to the low accuracy ofGPS
data and the geometric center of this range is extract from the
GPS data which is transferred into the relative position of the
occupancy grid map. Similarly, the head vehicle accumulates
the OGF maps of GPS as Rtm×n. Finally, we set the input
as I t = Rtm×n + C t

m×n. The SVM algorithm is effectively
revised the cumulative perceptual results. We extract 10-s
(100) single frame to train the SVM algorithm, the head
vehicle is appointed as the vehicle which is closet to the
camera in each frame. The definition of head vehicle is as
follows: Vhead = Vi

i = min
i
(
√
X ilocal

2
+ Y ilocal

2)
(12)

Finally, we train our SVM algorithm in the following. The
end-to-end output is Om×n which is an accurate OGF map
of our proposed approach. And because of the light data size
of the OGF map and low computational complexity of the
SVMalgorithm, the computation task is processed in the head
vehicle due to its powerful computation ability. In addition,
we sample the geometric center [Xi,Yi] of the Vi in the OGF
map. The [Xi,Yi] can be set as the input of our Li-GRU neural
network algorithm.

V. LANE CHANGE PREDICTION
The neural network is a promising method for trajectory
prediction to enhance driving safety. In order to satisfy the
high prediction accuracy of autonomous driving, we pro-
pose a Li-GRU neural network for lane change detection.
Furthermore, the training of the neural network is a high
computational task and it could take a long time. Based on
our VFC architecture, the training task can be offloaded to
the intelligent vehicles which enable the distributed learning
to reduce the training time significantly.

A. LIGHT GRU ALGORITHM FOR LANE
CHANGE PREDICTION
Deep Neural Network (DNN) algorithm is an effective
method for vehicle trajectory prediction, especially the

LSTM and GRU algorithms which perform well for the tem-
poral and spacial characteristics. At the same time, the accu-
racy and the computational complexity is very important for
DNN algorithm. Although it is proved that GRU algorithm is
a light-weight method for prediction compared with LSTM
algorithm, which lowers the computational complexity, there
still has considerable room for the improvement of accuracy
and lower complexity. The Li-GRU algorithm is a modi-
fied GRU algorithm which removes the reset gate, replacing
the hyperbolic tangent function with the ReLU activation,
and applying batch normalization has better performance.
Li-GRU algorithm is shown in the following model:

zt = σ (BN (Wzxt )+ Uzht−1 + bz), (13)

h̃t = ReLU (BN (Whxt )+ Uhht−1 + bh), (14)

ht = zt � ht−1 + (1− zt )� h̃t . (15)

The batch normalization BN (·) is defined as follows:

BN (a) = γ �
a− mub√
σ 2
b + ε

+ β (16)

where µb and σb are the mini-batch mean and variance.ε is
added for numerical stability. The variables γ and β are train-
able scaling and shifting parameters, introduced to restore the
network capacity. The presence of β makes the biases bh and
bz redundant are omitted in Eq. (13) and (14).
Lane changingmanoeuvres plays an essential role in traffic

flows and autonomous vehicles theory. Therefore, we dis-
cuss the lane changing manoeuvres for our deep learning
empowered cooperative sensing. We consider that the target
vehicle which intends to change lane as Vtar and the vehicles
in front and rear of the target vehicle in the current lane
and the neighbour lanes are defined as surrounding vehicles.
V1,V2, . . . ,Vi are the surrounding vehicles. The trajectory of
theses vehicles are x t tar and x t1, x t2,. . . , x t s. The end-to-end
input and output are defined as x t = [x t tar , x t1, x t2, . . . , x t s]
and the output yts = [0, 1]. The label of lane-keeping is
0 (Positive), and the label of lane changing behaviour is
1(Negative). The details of x t are as follow:{

xttar = [1X (t−th+1t)
tar ,1Y (t−th+1t)

tar , . . . ,1X ttar ,1Y
t
tar ]

xti = [1X (t−th+1t)
i ,1Y (t−th+1t)

i , . . . ,1X ti ,1Y
t
i ]

(17)

yts = [0, 1] (18)

th is the historical time horizon and tp is the prediction
time horizon. [1X ttar ,1Y

t
tar ] and [1X

t
i ,1Y

t
i ] are the position

displacements of Vtar and Vi from the time t −1t to t .
Finally, the training process of our Li-GRU neural network

is allocated to the intelligent vehicles in our autonomous
platoon to perform as distributed learning. The train time can
reduce significantly by our VFC architecture.

B. TRAINING OF LI-GRU ALGORITHM
As mentioned before, we only consider the lane changing sit-
uations. There are two types of lane changing:mandatory lane
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FIGURE 3. Greedy Vehicle selection process.

TABLE 1. Different Li-GRU Algorithm Structure.

changing (MLC) discretionary lance changing (DLC) [34].
MLC means that the driver is forced to change from the cur-
rent lane, due to the on-ramp or off-ramp situations. A DLC
happens when a driver is not satisfied with the situation of
the current lane and intends to change to a neighbour lane.
ComparedwithMLC,DLC ismore likely to cause dangerous.
Hence, we make the data extracting to filter the irrelevant
information:

• We extract the data from the middle lane(lane 2, 3, 4, 5)
which is concerned about DLC.

• Excluding abnormal lane changing behaviours which
include multiple lane changing and non-neighbour lane
changing.

• In order to contain the historical experience of vehicle-
to-vehicle effect, we extract the data of 5-S interval
(50 frames) before the lane changing happens.

• The frame we extracted must be continuous to avoid
sensor occlusion.

We extract 453 DLC vehicles from the NGSIM I-80 data
and US 101 data to train our Li-GRU neural network algo-
rithm. We set 300 DLC vehicles for target vehicle as to
the train sets and extract 5-s (50 frames) historic data of
each target vehicle and the rest 153 as the validation sets.
Therefore, the 1t = 0.1 and th = 5. To avoid the gen-
eral machine learning problem, over-fitting should be paid
special attention during the training process. The previous
researches had proved that a medium sample size and a sim-
pler NN structure can get satisfactory results [35]. Accord-
ingly, the 300 DLC target vehicles are randomly sampled
from the 453 DLC dataset. 20 vehicles will be selected as the
cross-validation set.

In order to find the optimal structure of our Li-GRU
algorithm model, we test different structures based on our
cross-validation samples. TABLE 1 shows the different struc-
tures of the Li-GRU neural network algorithm. The results
show that the Li-GRU algorithm model obtains the best
assessment performance with Structure 4 (two hidden layers
that contain 20 neurons, respectively) in TABLE 1. There-
fore, we adopt Structure 4 Li-GRU algorithm for its best
performance.

Moreover, based on our VFC architecture, we offloading
the train set to the intelligent vehicles in our autonomous
platoon. Therefore, the deep neural network can be trained
in parallel processing [36].

VI. PERFORMANCE EVALUATION
In this section, we provide the simulation results of our
proposed VFC architecture for cooperative sensing of
autonomous platoon driving. First, we evaluate the coopera-
tive sensing coverage. Then, the results of the fusion accuracy
of our SVM algorithm with accumulation OGF map are
shown. Finally, we reveal the performance of our proposed
Li-GRU algorithm for lane changing prediction. For com-
parison, we also present the results of several popular neural
network algorithms for lane changing.

A. SIMULATION RESULTS OF COVERAGE ENHANCEMENT
To simulate our proposed VFC architecture for autonomous
driving, we consider the communication coverage of the head
vehicle is 100 meters. Therefore, we focus on a four-lane
road that’s 100 meters long and 20 meters wide. The intel-
ligent vehicles in this communication coverage of the head
vehicle can connect to the head vehicle. We set the sensing
coverage of a single vehicle si range randomly from 5 meters
to 20 meters due to the effective precision of onboard sen-
sors [37], [38]. In the real world, the distribution of vehicles
varies. To simulate a general situation, we set the N vehi-
cles are located randomly in this area. The greedy vehicle
selection process is shown in FIGURE 3 from a to j. We set
10 vehicles in our autonomous platoon. Besides, the vehicle
id is shown at the bottom of FIGURE 3.

Moreover, to simulate the real situations of the autonomous
platoon, we set the different sizes of our platoon. Further-
more, we process 10 times of simulation for each size to elim-
inate the particularity of a single experiment. The efficiency
of sensing coverage is shown in FIGURE 4. When N = 10
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FIGURE 4. The efficiency of cooperative sensing coverage.

with the greedy vehicles select algorithm, the AreaRatio and
the TotalRatiol show an increasing trend and converge at
9 vehicles. This is because with more vehicles are selected,
the cooperative sensing coverage is enhanced and when the
number of vehicles reaches a certain amount, the additional
cooperative sensing coverage of vehicles is covered by the
previous vehicles. The Effectness grows up to a peak, then
gradually reduces due to there was no overlap of the sensing
coverage of the first several vehicles and with more and
more vehicles are selected, the overlap is growing. Besides,
compared with N = 5 and N = 15 we can draw some
conclusions. Although theEffectness performancewellWhen
N = 5, the TotalRation is much lower than N = 10 and
N = 15 due to the platoon size is small. FIGURE 4 b. and
FIGURE 4 c. both have a good TotalRation and Effectness
when the platoon size is larger than 10 the Effectness could be
more than 90%which means that the cooperative sensing can
cover nearly all the surroundings of the autonomous driving
platoon.

B. SIMULATION RESULTS OF ACCURACY ENHANCEMENT
We trained the SVM algorithm with 100 frames data. The
frame ID is from 800 to 900 of the NGSIM data. Then we
select frame 15 to reveal the performance. To simulate the
autonomous platoon driving we make the vehicles presented
in all 100 frames as the autonomous vehicle because this
extractionmatches the proposed principle of autonomous pla-
toon: almost the same speed and area. The others are defined
as social vehicles. The absolute position errormeans the abso-
lute destination between the geometric center of the output of
our SVM algorithm and the real-traffic data. We compared
three different levels of fusion by choosing different num-
bers of fusion vehicles. FIGURE 5 shows that our proposed
VFC architecture for multi-vehicle sensing fusion has a very
considerable improvement for accuracy. Almost all dark blue
bars are less than 1meter which is much lower than the yellow
bars. This is because the origin locating of GPS is very rough
and our multi-vehicle sensing approach can highly improve
the accuracy of locating. Moreover, the value of green bars
is between the blue bars and yellow bars. This is since the

FIGURE 5. SVM algorithm for cooperative sensing accuracy.

sensing accuracy increases with the size of the autonomous
platoon.

C. PERFORMANCE OF LI-GRU NEURAL
NETWORK ALGORITHM
In this subsection, we compared the train time of the pro-
posed model with different offloading strategies. Based on
our VFC architecture, we compared two structures of the
Li-GRU training which are centralized and distributed. The
centralized structure means that the training is processed in
the head vehicle of our autonomous platoon. Accordingly,
the distributed structure means that the training is offloading
to the vehicles in our platoon. As mentioned before, the train-
ing dataset size is 300. We assume that N = 10. Therefore,
the distributed training dataset size is 30. The results are
shown in TABLE 2. We can see that our proposed VFC
architecture can significantly reduce the training time.

Then we compare Li-GRU neural network algorithm with
several existing models in terms of accuracy. As mentioned,
we use NGSIM I-80 data and US 101 data to compare the
following models: LSTM, GRU and Li-GRU algorithms. The
detailed algorithm procedure and model introduction can be
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TABLE 2. Training Time of Different Structure.

FIGURE 6. Prediction accuracy of neural network algorithms.

found in their references [30] and [39]. As we know, accuracy
is the most important metric of the neural network algo-
rithm. As shown in FIGURE 6, after 40 epochs Li-GRU
algorithm has an accuracy of 98.9 % compared with GRU
algorithm 97.7% and LSTM algorithm 96.9% which is
proved the best one.

VII. CONCLUSION
In order to overcome the weakness of traditional VFC archi-
tecture, we proposed a new VFC architecture for cooperative
sensing in a platoon, which can jointly utilize the sensing and
the computational abilities of intelligent vehicles. Based on
our VFC architecture, we adopt greedy and SVM algorithms
respectively to enhance the sensing coverage and accuracy
in the platoon. Besides, a distributed Li-GRU neural network
is leverage for lane change detection. The real-world traffic
dataset NGSIM is used to verify our model. The results show
that the sensing coverage ratio can reach more than 90%.
The sensing accuracy can reduce a lot. Also, the distributed
Li-GRU neural network can perform a 98.9% accuracy for
lane change prediction. Meanwhile, our VFC architecture
enables the distributed learning to reduces the computation
computing time. However, there remain some problems to be
discussed. The train data we choose for our model is limited,
which is not suitable for all situations. The scheduling of
communication, computation, sensing, and vehicle running
conditions should be in synthetic consideration. These will
be the emphasis of our research in the future.
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