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ABSTRACT In urban vehicular ad hoc networks (VANETs), the high mobility of vehicles along street roads
poses daunting challenges to routing protocols and has a great impact on network performance. In addition,
the frequent network partition caused by an uneven distribution of vehicles in an urban environment further
places higher requirements on the routing protocols in VANETs. More importantly, the high vehicle density
during the traffic peak hours and a variety of natural obstacles, such as tall buildings, other vehicles
and trees, greatly increase the difficulty of protocol design for high quality communications. Considering
these issues, in this paper, we introduce a novel routing protocol for urban VANETs called RSU-assisted
Q-learning-based Traffic-Aware Routing (QTAR). Combining the advantages of geographic routing with
the static road map information, QTAR learns the road segment traffic information based on the Q-learning
algorithm. In QTAR, a routing path consists of multiple dynamically selected high reliability connection
road segments that enable packets to reach their destination effectively. For packet forwarding within a road
segment, distributedV2VQ-learning (Q-learning occurs between vehicles) integratedwith QGGF (Q-greedy
geographical forwarding) is adopted to reduce delivery delay and the effect of fast vehicle movements on
path sensitivity, while distributed R2R Q-learning (Q-learning occurs between RSU units) is designed for
packet forwarding at each intermediate intersection. In the case of a local optimum occurring in QGGF,
SCF (store-carry-forward) is used to reduce the possibility of packet loss. Detailed simulation experimental
results demonstrate that QTAR outperforms the existing traffic-aware routing protocols, in terms of 7.9% and
16.38% higher average packet delivery ratios than those of reliable traffic-aware routing (RTAR) and greedy
traffic-aware routing (GyTAR) in high vehicular density scenarios and 30.96% and 46.19% lower average
end-to-end delays with respect to RTAR and GyTAR in low vehicular density scenarios, respectively.

INDEX TERMS Mobile ad hoc networks (MANETs), vehicular ad hoc networks (VANETs), adaptive
routing, reinforcement learning, Q-learning.

I. INTRODUCTION
With the rapid development of wireless communication tech-
nology, vehicular ad hoc networks (VANETs) have emerged
as one of the most prospective solutions to enhance road
traffic efficiency and decrease road traffic accidents in an
intelligent transportation system (ITS). In addition, the sig-
nificant progress in wireless communications technology
and widespread use of mobile electronic terminal equip-
ment have migrated VANETs from the realm of theory to a
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practical technology. However, message transmission in
VANETs faces difficult challenges such as frequent changes
of the network topology, intermittent connection, and nonuni-
formity of vehicle density [1]. These new challenges may
greatly affect the experience of VANET-based applications
that have a wide variety of quality of service (QoS) require-
ments such as low delay and high accessibility.

A considerable number of traditional routing protocols
designed for MANETs have been proposed, among which
previous studies have shown that they are not suitable for the
VANETs environment. In addition, some conventional geo-
graphical routing protocols [2]–[4] are considered promising
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approaches to forward packets in dynamic network environ-
ment. Despite routing simplicity and scalability, geographical
greedy forwarding is still unable to achieve better perfor-
mance in urban VANETs. Furthermore, the recovery strate-
gies, such as perimeter forwarding, are also shown to be
ineffective in urban VANETs due to the limits of the radio
range, tall building obstacles and high vehicle mobility. More
importantly, conventional geographical routing protocols do
not take into account the real-time road traffic information
which can help predict the occurrence of a local optimum and
avoid unnecessary entry into the unreachable next forwarder.

To overcome the limitations of conventional geographi-
cal routing, a variety of traffic-aware routing protocols [5]
have been proposed to improve the routing adaptability to
urban VANETs. Unfortunately, many of the existing traffic-
aware routing protocols select the next forwarder based on
the greedy method both within road segments and in the
intersection areas, neglecting the road structure and therefore
obtaining lower routing performance. In addition, vehicles
passing through intersections often change their speed and
direction unexpectedly, which leads to high mobility and
further results in poor forwarding performance. For this rea-
son, a number of intersection-based traffic-aware routing
protocols [6]–[11] have been proposed to make forward-
ing decisions at intersections. Nevertheless, these protocols
strongly rely on accurate location information especially in
the intersection areas. Therefore, a novel high mobility adap-
tive traffic-aware routing protocol suitable for urbanVANETs
based on the Q-learning algorithm is proposed, in which a
routing path consisting of a succession of road segments
and intersections is learned with high connection reliability
and low average end-to-end delay in dense and sparse traffic
cases, respectively. Combining the advantage of Q-learning-
based geographic routing with the information of the static
topology of road networks, the real-time road traffic infor-
mation between two adjacent intersections is dynamically
learned.

Reinforcement learning is increasingly being applied to
solve dynamic routing problems [10]. The Q-learning [12]
algorithm is one of the most common algorithms of reinforce-
ment learning [13], which achieves optimal decisions through
interaction with the environment without prior knowledge of
the environment model. Through frequent exploration of the
environment, the agents will continually attain and update the
mapping from a set of environment states to a set of actions
available in these states. In VANETs, the entire VANETs can
be modeled as the environment. Each vehicle and packet in
the VANETs can be regarded as a state and an agent, respec-
tively. The packet forwarding process can be considered as
the interaction between the agent and the environment. Each
packet exchange, whether routing control packet or applica-
tion data packet, means the learning of the newest state of the
network.

The remainder of this paper is organized as fol-
lows. Section II presents an overview of the related
works. Section III introduces the problem background and

motivations of QTAR and is followed by a comprehensive
presentation of QTAR in Section IV. In Section V, we eval-
uate QTAR with a detailed presentation of the simulation
results. Finally, Section VI contains our concluding remarks
and future works.

II. RELATED WORK
Traffic-aware routing is considered to be the most promis-
ing forwarding strategy in the urban VANETs environment.
Many traffic-aware routing protocols have been proposed
that make routing decisions by considering multiple traffic
awareness-related metrics. Anchor-based street-traffic-aware
routing (A-STAR [14]) was proposed based on GSR by
assigning different weights to adjoining streets according to
the probability of keeping vehicular connection within road
streets. However, in the urban environment, only parts of the
streets are for bus routes; thus, it may take a long forwarding
delay for packets to reach their destination due to the lower
density of anchor vehicles. Vehicle-assisted data delivery
(VADD [15]) was proposed for sparse VANETs and aims
to address delay-insensitive applications. However, when the
vehicle density is sparse, the optimal next street may not be
available. Thus, in this case, the packet should be forwarded
through detoured streets. Furthermore, the estimation of the
packet forwarding delay is based on statistical data such as
the vehicle density. Since the vehicle density varies with
time, the least-delay path selected based on the non-real-
time statistical data cannot truly reflect the real situation. The
static node-assisted data-dissemination protocol for vehicular
networks (SADV [16]) was proposed based on VADD, where
static nodes are arranged at intersections to deal with cases in
which vehicle nodes are very sparse. SADV has three mod-
ules, namely, static node-assisted routing (SNAR), link delay
update (LDU) and multi-path data dissemination (MPDD).
Connectivity-aware routing (CAR [17]) was proposed which
adapts the beaconing interval according to the number of one-
hop neighbors of a node. However, the overhead introduced
by the dynamic beaconing mechanism in the high vehicular
density case is considerable.

Improved greedy traffic-aware routing (GyTAR [18]) is a
vehicular traffic-adapted routing protocol designed for urban
VANETs. In GyTAR, the cell data packet (CDP) is used to
collect the real-time vehicular density information between
adjacent intersections. However, the CDP may suffer from
network partition of the inner street, resulting in difficulties
in updating traffic information in a timely manner. This could
lead to further inaccurate calculation of the score for the
neighbor intersections. In addition, the CDP also introduces
excessive extra overhead to the network. Road-based routing
using vehicular traffic (RBVT [19]) was proposed to compute
street-based routing paths by collecting real-time vehicular
traffic information through proactive and reactive strategies,
which is distinct from the traditional strategies adopted in
most of the existing literature. Similar to A-STAR, the spatial
and traffic-aware routing (STAR [20]) protocol was proposed
to collect real-time vehicle traffic information on the street
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and dynamically forward packets with the help of rated
digital maps in a distributed manner. The intersection-based
geographical routing protocol (IGRP [6]) was proposed to
forward packets to the nearest fixed gateway station while
satisfying specific quality of service (QoS) requirements.
Zhang et al. [21] introduced a street-centric opportunistic
routing protocol for urban VANETs combining a novel link
correlation model with street-centric opportunistic routing.
Zhang et al. [22] also proposed a spatial distribution-based
connectivity-aware routing protocol that utilizes the uneven
position distribution of vehicles moving on small-length road
segments.Wu et al. [23] presented a vehicle-to-roadside com-
munication protocol integrated with distributed clustering
based on a coalitional game approach and a route selection
strategy based on reinforcement learning. However, these
protocols cannot take full advantage of combining dynamic
traffic information within road segments with the global
static road topology information to further improve network
performance.

Intersection-based traffic-aware routing (iCar-II [7], [8])
was proposed to enable infotainment applications for urban
VANETs and aims to improve the packet delivery ratio and
reduce the end-to-end delay via LTE networks. However,
iCar-II needs a real-time update of locations and mobility
information at location centers. Furthermore, running the
shortest-path algorithm between two arbitrary vehicles in a
connected weighted graph is impossible since it involves
unlimited unknown intermediate intersections, especially in
large urban VANETs. A street-centric routing protocol based
on the novel concept of microtopology (SRPMT [24]) was
proposed for urban VANETs scenarios. However, the collec-
tion of dynamic characteristics of road segments for building
the packet transfer graph in an MT can easily become invalid,
especially for a long road segment. In [25], the authors
proposed a reliable traffic-aware routing (RTAR) protocol,
which introduces a reliable next-hop selection scheme within
road segments and at intersections through road area reli-
able routing and intersection area reliable routing algorithms,
respectively. However the real-time traffic and network status
measurement (RTNSM) process for adjacent road evaluation
only considers the adjacent road segments and ignores the
segments from the adjacent roads to the destination roads.
In addition, the extra overhead introduced in the different
phases of RTNSM cannot be neglected, especially in the
result announcement phase.

Many routing protocols based on reinforcement learn-
ing have been proposed in recent years [10]. Boyan and
Littman proposed QRouting [26] for a wired network. Dowl-
ing et al. introduced a routing protocol called SAMPLE [27]
for MANETs based on reinforcement learning. Celimuge
WU et al. proposed QLAODV [28] and PFQ-AODV [29] to
address adaptive routing in a highly dynamic network envi-
ronment. However, the learning process is triggered based on
the route discovery process, which cannot sense the dynamic
changes of the network in time and introduces more over-
head. The authors in [11], [30] proposed a Q-learning and

grid-based routing protocol–QGrid. However, QGrid only
focuses on the forwarding issue from the source vehicle to
the fixed destination. In addition, it is difficult to determine
the size of each grid for different network scenarios, and the
greedy selection strategy for intragrid forwarding is ineffi-
cient, especially near or within the intersection areas. More
importantly, the Q-table for intergrid forwarding is learned
offline, which cannot adapt well to the dynamic character-
istics of urban VANETs. To the best of our knowledge, this
is the first work that studies traffic-aware routing based on
reinforcement learning in urban VANETs. Table 1 presents
the summary of routing strategy comparison between related
existing routing protocols and our proposed work from the
context of routing strategy perspective.

III. PROBLEM BACKGROUND AND MOTIVATIONS
Classical topology-based routing protocols [32]–[34]
designed for MANETs depend on the distribution of network
topology information between network nodes and are not
suitable for VANETs due to the frequent topology changes.
Geographic routing (GR) [2]–[4] is a promising alternative
routing paradigm that utilizes only position information.
Unfortunately, many of the existing GR protocols adopt the
greedy forwarding strategy based on vehicle location infor-
mation, which does not fully consider urban road network
information. To overcome the shortcomings of GR, a vari-
ety of intersection-based traffic-aware routing protocols [5]
have been proposed to further improve the adaptability to
highly dynamic traffic conditions. Nevertheless, such traffic-
aware approaches have no reliable next forwarder selection
in urban intersection areas. Some related works [10] based on
Q-learning exist that can learn and adapt to the dynamics
of networks very well. However, Q-learning-based routing
encounters scalability limitations for large highly dynamic
networks because of the slow convergence of the learning
algorithm; therefore, the forwarding decisions cannot keep
up with the road traffic and network topology changes.

To this end, in this paper, we propose a novel RSU-assisted
Q-learning-based Traffic Aware Routing (QTAR) protocol
designed for urban VANETs to enhance the awareness of
road traffic conditions and reduce the impact of the rapid
mobility of vehicles on the network performance by provid-
ing an efficient packet forwarding mechanism for a variety
of applications in scalable urban VANETs. The high-rate but
short-range V2V communications within the road segments
through the V2V channel are guided by low-rate but long-
range R2R communications through the R2R channel. More
specifically, the next forwarding vehicle selection within
the road segments is implemented according to Q-greedy
geographical forwarding based on V2V Q-learning, while
at each intersection, it is completed according to Q-greedy
intersection forwarding based on R2R Q-learning. In the case
of a network fragment, store-carry-forward is adopted. The
main contributions of this paper are as follows:

1) A novel high mobility adaptive traffic-aware routing
protocol suitable for urban VANETs based on the
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TABLE 1. Summary of routing strategy comparison between related existing routing protocols and QTAR.

multilevel Q-learning algorithm is proposed, in which
a routing path consists of a succession of road segments
and intersections are learned with high connection reli-
ability and low average end-to-end delay in dense and
sparse traffic cases, respectively.

2) For packet forwarding within road segments, a novel
distributed V2V Q-learning-based traffic-aware learn-
ing approach is proposed through exchange of V2V
HELLO packets, which underlies the forwarding pro-
cess at dynamic intersections.

3) For packet forwarding at intersections, an RSU-assisted
dynamic adjacent intersection selection strategy based
on distributed R2RQ-learning is proposed to reduce the
possibility of packet loss and the effect of fast vehicle
movements on routing sensitivity.

In the following sections, we first provide an elaborated
description of QTAR and then present comprehensive experi-
mental results compared with other existing related protocols.

IV. THE PROPOSED PROTOCOL
In this section, we first describe the network model and
hypothesis. Then, we present the main functionality of
QTAR, which mainly consists of the following components:
first, deciding the first intersection to which packets are

forwarded from the source vehicle Vs; second, packet for-
warding at each intermediate intersection to the next adjacent
intersection until reaching the last intersection that connects
the road segment on which the destination vehicle Vd is mov-
ing; and finally, packet forwarding within the road segment
from the last intersection to Vd .

A. NETWORK MODEL AND ASSUMPTIONS
We consider the urban road network as a directed graph
G = (V ,E), in which V is the set of intersections and E
is the set of road segments RSij, i, j ∈ V . An RSij begins at
the intersection Ii, ends at Ij and has two lanes in each driving
direction. The routing path in G from Vs to Vd consists of
a sequence of road segments and intersections that connect
these road segments.

In QTAR, we assume that each intersection Ii owns a static
RSU nodeVRSUi to assist packet forwarding. Therefore, in the
context of QTAR, the terms Ii and VRSUi are often used inter-
changeably to represent an intersection or an RSU node that
resides on Ii statically. Each VRSUi provides partial coverage
to road segments, and multihop forwarding is required to
communicate with vehicle nodes that are not in range.

Each Vi knows its real-time position, direction and speed
using a pre-installed GPS device, and vehicles communicate
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with each other or with a radio-in-range RSU node through a
pure V2V wireless channel. Furthermore, each Vi also knows
its entered and upcoming intersection and the coordinates of
each VRSUi in advance. Each Vi also maintains a table where
each neighbor vehicle’s mobility information, such as posi-
tion, direction and velocity, is recorded and updated through
the periodic exchange of V2V HELLO packets. Meanwhile,
each VRSUi knows the real-time entered intersection IVdenter
and corresponding upcoming intersection IVdupcoming of the Vd
through GLS [35], and it communicates with vehicle nodes in
its radio range through a V2V wireless channel and neighbor
RSU nodes through an R2Rwireless channel. Finally, each Vi
maintains only oneV2VQ-table for packet forwardingwithin
the road segment to whichVi belongs, while eachVRSUi stores
a neighbor RSU’s table and two Q-tables, in which one is
a V2V Q-table for road segment traffic-aware forwarding
and the other is an R2R Q-table for dynamic intersection
forwarding.

B. QTAR OVERVIEW
Considering the specific characteristics of urban VANETs,
QTAR is designed to deal with routing issues by combin-
ing the advantages of QGGF within road segments and
Q-learning-based dynamic selection of the intermediate inter-
sections through which packets will pass to reach their desti-
nations. To forward packets effectively from Vs to Vd , QTAR
includes three efficient steps:

1) Packet forwarding from Vs to the first intersection
based onV2VQ-learning through exchange of HELLO
packets between vehicles moving in the same road
segment as Vs;

2) Packet forwarding in each intermediate intersection
based on R2RQ-learning through exchange of HELLO
packets between RSU nodes;

3) Packet forwarding from the last intersection to Vd
based on V2V Q-learning.

Store-carry-forward is adopted to improve the forwarding
reliability in the case of a local optimum to minimize the
possibility of packet loss. Hence, in QTAR, packets can reach
their destinations as fast as possible when there are enough
vehicles providing connection. An example of the packet
forwarding process from Vs to Vd through a routing path
Vs → I2 → I5 → I6 → I9 → Vd is shown in Fig. 1.
As mentioned above, the routing process in QTAR can be
mainly divided into three steps, whereVs→ I2 is the first step
while I2 → I5 → I6 → I9 is the second step and I9 → Vd
is the third step. It is worth noting that at I2, I2→ I5→ I6 is
selected instead of I2 → I3 → I6 as the next forwarding
path. This is because the road segment RS23 is already in
a congested state, and RS25 will have less delay than RS23
because of the channel collisions that occurred in the MAC
layer. At I5, the path I5 → I6 → I9 is selected due to the
shorter time of store-carry-forward caused by the network
partition that occurs from Vi to Vd in Step 3 compared with

FIGURE 1. An example scenario of packet forwarding in QTAR.

that of RS58 from Vj to I8 in Step 2 and then from I8 to Vd in
Step 3.

In the following sections, we first describe in detail the
basic principles underlying the functions of QTAR; then,
we elaborate the main novel packet forwarding mechanisms
of QTAR.

C. ROUTING BASED ON Q-LEARNING
According to Q-learning [13], [29], [36], the unicast routing
problem can be modeled and solved as follows. The entire
VANETs can be considered as the environment in Q-learning.
Each packet can be modeled as an agent, with the neighbors
of Vi or VRSUi as the agent’s available states. Specifically, for
a Vi in V2V Q-learning, the set of its neighbor vehicles can
be mapped to the available actions for Vi to be executed in
the form of forwarding of packets to one of Vi’s neighbors.
For a VRSUi node in R2R Q-learning, the set of neighbor
intersections of VRSUi is the available actions for VRSUi . The
process of packet forwarding can be modeled as the inter-
action process in Q-learning. Therefore, the routing problem
can be intuitively formalized as Eq. (1):

Qc (d, x) ← (1− α)Qc (d, x)

+ α

[
Rewardc,x + γ max Qx (d, y)

y∈N (x)

]
(1)

where for V2V Q-learning,Qc (d, x) is the Q value of current
vehicle node c for destination vehicle node d through one of
c’s neighbor vehicle nodes x. N (x) is the one-hop neighbors
of x. Rewardc,x is the obtained reward of c from the action of
packet forwarding to x. In R2R Q-learning, for current RSU
node VRSUc residing at Ic, c denotes VRSUc , while d and x
denote the destination intersection and one of the neighbor
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intersections of Ic, respectively. α is the learning rate that
determines the Q value update rate in each step. In other
words, it reflects the adaptability ability of the Q-learning
algorithm to the dynamic environment. The larger the value
of α is, the stronger the learning ability, and the more suitable
it is for the environment with severe dynamic characteristics.
However, if α is too high, small fluctuations can cause large
deviations in Q values, which cannot reflect the real state
of the network. If α is too small, Q values cannot keep up
with the change of the network. γ is the discount factor that
determines the importance of multistep Q values. A larger
value of γ means that more future steps are considered.
For scenarios with less dynamics, a larger γ is reasonable,
while for frequently changing scenarios, a smaller γ is more
advisable due to the fast failure of multistep Q values.

D. HELLO PACKET FORMAT FOR V2V AND R2R
Q-LEARNING
In QTAR for V2V Q-learning, each vehicle Vi moving in
a road segment RSij maintains a Q-table reflecting the cur-
rent traffic state of RSij via exchange of HELLO packets.
Each HELLO packet in V2V Q-learning contains the follow-
ing fields: the unique identifier vehicle/RSU ID, the broad-
cast timestamp, the coordinates X and Y , the velocity Vel,
the entered intersection Ienter along with the corresponding
optimal Q value QMAX to reach Ienter through the next hop
vehicle NH , and the upcoming intersection Iupcoming along
with the corresponding optimal Q value QMAX to reach
Iupcoming through the next hop vehicleNH , as shown in Fig. 2.
It is worth noting that each of the HELLO packets broadcast
from an RSU node only includes the RSU ID and timestamp
fields to reduce overheads and collisions in the intersection
area. A vehicle node receiving the HELLO packet will update
the Ienter or Iupcoming Q value according to the driving direc-
tion relative to the RSU node.

FIGURE 2. HELLO packet format for V2V Q-learning.

For R2R Q-learning, each HELLO packet consists of the
fields as depicted in Fig. 3. As shown in Fig. 3, these fields
include the sender RSU ID and the broadcast timestamp,
the total number of QMax items and their corresponding
content. Each QMax item includes three parts: the destination

RSU – Dest RSU – and the corresponding optimal Q value to
reach it through one of its neighbor RSUs – Next RSU.

FIGURE 3. HELLO packet format for R2R Q-learning.

Algorithm 1 Packet FORWARDINGWithin Road Segments
Require:

Pk : A packet that is transmitting in the network.
VRSUi : The RSU node deployed at Ii.
Vi: A vehicle node.
Vs: The source vehicle of Pk .
Vd : The destination vehicle of Pk .
Vc: The current vehicle that is processing Pk .
Ii: An intersection that connects two or more road seg-
ments.
Ix : A set of Ii.
Itemp: The temporary destination intersection of Pk .
N (Vi): The set of neighbor nodes of Vi.
RS(Vi): The road segment on which Vi is moving.
RSU (Vi): The two end-side intersections of RS(Vi) or the
RSU within radio range of Vi .
Upon Vi having a packet Pk to SEND/FORWARD to Vd

1: Vc← Vi;
2: Ix ← RSU (Vc)
3: Itemp← Obtain the temporary destination intersection of
Vc according to Eq. (2);

4: if Vc == Vd then
5: Deliver Pk to the upper layer;
6: else if Vd ∈ N (Vc) then
7: Send Pk directly to Vd ;
8: else if Itemp ∈ N (Vc) then
9: Send Pk directly to Itemp;
10: else
11: Forward Pk to Itemp based on QGGF and SCF;
12: end if

E. V2V Q-LEARNING FORWARDING WITHIN ROAD
SEGMENTS
When the source vehicle Vs has a packet Pk to send or an
intermediate vehicle Vi receives Pk , it forwards Pk to the next
hop based on V2V Q-learning until Pk reaches Itemp or its
final destination vehicle Vd . For the sake of simplicity, here,
we denote Vs or Vi as the current vehicle Vc that is processing
Pk for further forwarding work if needed. Without loss of
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FIGURE 4. An example scenario of V2V Q-learning within RS12.

generality, the current vehicle Vc (corresponding to vehicle
Vp marked in red in Fig. 4) moving within a road segment RSij
(referring to RS12 in Fig. 4) with two end-side intersections
Ii and Ij (referring to I1 and I2 in Fig. 4) will forward its
received packets Pk to the temporary destination intersection
Itemp (referring to I2 for VP in Fig. 4), which is one of the end-
side intersections of RSij. The first intersection in the routing
path, denoted as If = Itemp, is determined as shown in Eq. (2):

Itemp← argmax
Ix

QVc (Ix ,Vn), Vn ∈ N (Vc) (2)

where Ix specifically denotes the IVcenter (referring to I1 for Vp
in Fig. 4) or IVcupcoming (referring to I2 for Vp in Fig. 4). Vn is
one of the neighbors of Vc (referring to V3 or V4 in Fig. 4),
and QVc (Ix ,Vn) indicates the V2V Q-table of Vc (referring
to the V2V Q-table of Vp, shown at the middle bottom of
RS12). For the vehicles moving on the same road segment as
Vc, QGGF or SCF is used until Itemp or Vd is reached.
The pseudocode of the forwarding process within road seg-

ments is given in Algorithm 1. As illustrated in Algorithm 1,
Lines 4-5 mean that packet Pk is successfully forwarded to its
destination Vd . The two lines 6 and 7 indicate that Vd is Vc’s
neighbor. Lines 8 and 9 indicate that Pk has arrived at Itemp.
Lines 10 and 11 indicate that Pk needs to be forwarded to the
temporary destination intersection Itemp.
To better understand the packet forwarding process within

a specific road segment based on V2V Q-learning, Fig. 4
shows an example scenario that includes some local optimum
cases in RS12. As shown in Fig. 4, network partition has
occurred in the V2V routing path from I1 to I2. In this case,
the V2V packet forwarding process within RS12 consists
of two parts: QGGF is employed when the next hop link
exists, and SCF is employed when local optimum is reached.
Take V3 as an example. Its Q-table at the current moment
in Fig. 4 is shown at the middle top of RS12 (indicated

by the red cell in the upper left corner of the Q-table).
From the Q-table of V3, we can see that the next hop to
I2 is VP = argmax

Vn
QV3 (I2,Vn), while that to I1 is Me =

argmax
Vn

QV3 (I1,Vn), as indicated in the last yellow column,

which means that the next hop to I1 from V3 does not exist
according to QGGF, and SCF is adopted in this case. Each
optimal next hop for each intersection is marked in green
in the Q-table cell. When there is a packet at I2 that needs
to be forwarded to I1, V6 is selected, and then, the QGGF
forwarding path (denoted as V6 → V5 → V4 → VP → V3)
is selected based on V2V Q-learning. At V3, the local opti-
mum has occurred, and SCF is adopted to complete the final
forwarding process from V3 to I1.
More generally, for the current vehicle Vc, its Q-table is

initialized to 0 and updated based on the V2V Q-learning
algorithm. When receiving a HELLO packet from Vn ∈
N (Vc), the Q value QVc (Ix ,Vn) is updated as Eq. (3):

QVc (Ix ,Vn)←(1− α)QVc (Ix ,Vn)

+ α

[
RewardVc,Vn+γ ·max QVn(Ix ,Vn′)

Vn′∈N (Vn)

]
(3)

where Ix represents one of the two end-side intersections of
road segment RSij on which Vc is moving, and the instant
reward value RewardVc,Vn is defined as Eq. (4):

RewardVc,Vn
= ω1 · LQVc,Vn + ω2 · LETVc,Vn + ω3 · DelayVc,Vn (4)

in which ω1, ω2 and ω3 are weight factors that satisfy ω1 +

ω2+ω3 = 1 for corresponding parts of LQ (link quality), LET
(link expiration time) andDelay, respectively. It can be found
from Eq. (4) that if the next hop link selected by an action
has good quality, a long survival time and a short delay, then
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the reward is high, and vice versa. ω1, ω2 and ω3 represent
different QoS requirements for different applications. If the
application requires high reliability, the values of ω1 and
ω2 can each be 0.5. If the application is sensitive to delay,
the value of ω3 can be set to 1. If the application requires
good overall performance, the values of ω1, ω2 and ω3 can
each be 0.333. LQVc,Vn denotes the link quality in the form of
the distance between the sender and receiver and is defined
as Eq. (5):

LQVc,Vn = 100 ·
(
1− abs(

dis(Vc,Vn)
R

− κ)
)

(5)

Here, dis(Vc,Vn) means the two-dimensional Euclidean dis-
tance between Vc and Vn. R represents the wireless radio
line-of-sight transmission range. The parameter κ represents
the optimal normalized distance position with respect to R.
The function abs( ) takes the absolute value of its parameter.
LETVc,Vn denotes the link expiration time [37] and is defined
as Eq. (6):

LETVc,Vn

=


100 a = 0, b = 0

min

100,
−(ab+ cd)+

√(
a2+c2

)
R2−(ad − bc)2

a2 + b2


(6)

where

a = vc cos
(
θvc
)
− vn cos(θvn )

b = xc − xn
c = vc sin

(
θvc
)
− vn sin(θvn )

d = yc − yn

in which vc and vn represent the speeds of Vc and Vn with the
velocity angles of θvc and θvn and the coordinates (xc, yc) and
(xn, yn), respectively. DelayVc,Vn is defined as Eq. (7):

DelayVc,Vn = 100 ·
lp
/
BW +

dis(Vc,Vn)
/
C

trecvVc − t
send
Vn

(7)

Here, lp is the HELLO packet length. BW is the link available
bandwidth. C is the electromagnetic radiation propagation
speed. trecvVc and tsendVn represent the sending and receiving
timestamp of the HELLO packet at Vc and Vn, respectively.

There are two situations that need to be considered specifi-
cally in V2V Q-learning. One is the local optimum, as shown
in Fig. 4 from V3 and V8 (the cars marked in yellow in Fig. 4)
to I1 and I2, respectively. In this case, the next hop does not
existing and SCF is used. At this point, let Ix denote a virtual
vehicle node Vn in Eq. (3). Obviously, we have LQVc,Ix = 0
and LETVc,Ix = 0 in Eq. (4), and finally the RewardVc,Ix can
be calculated as Eq. (8):

RewardVc,Ix = DelayVc,Ix

= 100 ·
(
1−

dis (Vc, Ix)
L

)
(8)

Algorithm 2 Packet FORWARDING at Intersections
Require:

Pk : A packet that is transmitting in the network.
VRSUi : The RSU node deployed at Ii.
Vd : The destination vehicle of Pk .
Ii: An intersection that connects two or more road seg-
ments.
Ic: The intersection where Pk is processing.
Id : The destination intersection of Vd for Pk .
Ix : A set of Ii.
Itemp: The temporary destination intersection of Pk .
N (Vi): The set of neighbor nodes of Vi.
RS(Vi): The road segment on which Vi is moving.
RSU (Vi): The two end-side intersections of RS(Vi) or the
RSU within radio range of Vi.
Upon VRSUi receiving a packet Pk

1: Ic← VRSUi ;
2: if Vd ∈ N (Ic) then
3: Send Pk directly to Vd ;
4: else
5: Ix ← RSU (Vd )
6: Id ← Obtain the destination intersection according to

Eq. (10);
7: if Id == Ic then
8: Itemp← {Ii| Ii 6= Id , Ii ∈ Ix}
9: else
10: Itemp ← Select the next intersection according to

Eq. (9);
11: end if
12: Forward Pk to Itemp based on V2V Q-learning;
13: end if

where L represents the length of RSij. The other situation
involves those vehicles that are within the coverage of the
RSU node, such as V1 and V7 in I1 and V5 and V6 in I2. In this
circumstance, Eq. (3) is optimized by setting α = 1 to boost
the convergence of the V2V Q-learning algorithm.

F. R2R Q-LEARNING FORWARDING AT INTERSECTIONS
R2R Q-learning is adopted for each intermediate temporary
destination intersection Itemp selection except for If , which is
selected as described in section IV-E. Each Itemp is dynami-
cally selected if needed based on Eq. (9):

Itemp← argmax
In

QIc (Id , In), In ∈ N (Ic) (9)

where

Id ← argmax
Ix

QIc (Ix , In) (10)

in which Ix ∈
[
IVdupcoming, I

Vd
enter

]
and Ic is the current intersec-

tion where the packets are processing and will be forwarded
to one neighbor intersection of Ic. When receiving a HELLO
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FIGURE 5. An example scenario of R2R Q-learning.

packet from In, Ic updates QIc (IVd , In) as Eq. (11):

QIc(Id , In)←(1−α)QIc (Id , In)

+ α

{
RewardIc,In+γ ·max QIn(Id , In′)

In′∈N (In)

}
(11)

in which RewardIc,In is defined as Eq.(12):

RewardIc,In =

{
maxQVn (In,Vn′ ), In = Ix
0, otherwise

(12)

Here, Vn ∈ N (Ic) ,Vn′ ∈ N (Vn).
The pseudocode of the forwarding process at each interme-

diate intersection is given in Algorithm 2. Lines 2-3 indicate
that Vd is within the coverage of Ic. Lines 4-13 represent the
forwarding process based on R2R Q-learning. In this case,
lines 5-6 obtain the destination intersection Id of Pk , while
lines 7-11 select the next hop intersection, denoted as Itemp,
from the adjacent intersections of Ic according to the R2R
Q-table of Ic in the row indexed by Id . The last step is to
forward Pk to Itemp, as indicated in line 12.

Fig. 5 shows an example scenario of R2R Q-learning.
In Fig. 5, we assume that the source vehicle Vs located in the
west road segment of I1 and the destination vehicleVd located
in the north road segment of I4. For brevity, we focus only

on the packet forwarding process from the assumed source
intersection I1 (marked as a green RSU node) to the assumed
destination intersection I4 (marked as a red RSU node). The
main goal of R2R Q-learning is to choose the optimal next
adjacent intersection (which denotes the intersection with the
maximum Q value) to the destination intersection. As shown
in Fig. 5, there are two paths from I1 to I4 (denoted as I1 →
I2 → I4 and I1 → I3 → I4), and when a packet Pk arrives
at intersection I1, I1 compares the Q values (QI1 (I4, I2) and
QI1 (I4, I3)) at row I4 in its R2R Q-table, where QI1 (I4, I2)
and QI1 (I4, I3) are learned and updated from those of I2
and I3 (denoted QI2 (I4, I4) and QI3 (I4, I4)) through the
R2R links I1 ↔ I2 and I1 ↔ I3, respectively, which are
marked by directional arc lines as shown in Fig. 5. Obviously,
QI2 (I4, I4) andQI3 (I4, I4) are learned and updated by I2 and
I3 through V2V Q-learning in RS24 and RS34, respectively.
More specifically, for I2, QI2 (I4, I4) is updated based on the
Q value QV3 (I4, V4) from one of its neighbor vehicles V3,
while for I3, QI3 (I4, I4) is updated based on the Q value
QV1 (I4, V2) from its neighbor vehicle V1.

V. EXPERIMENTAL RESULTS
In this section, we present simulation-based evaluation results
of QTAR. The performance of QTAR is compared with
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those of existing protocols such as GPSR [2], LAR [31],
GyTAR [18], iCar-II [7], [8] and RTAR [25]. GPSR and
LAR are the classic position-based ad hoc routing protocols
commonly employed as performance benchmarks. GyTAR,
iCar-II and RTAR are intersection-based traffic aware routing
protocols designed for urban VANETs. iCar-II is the closest
to our work and is modified to have the same network infras-
tructure hierarchy as QTAR for a fair comparison. Therefore,
the LTE eNBs in iCar-II are ignored, while the location cen-
ters are replaced by the corresponding mobility-related APIs
provided in QualNet [38] to obtain the real-time coordination
of all vehicle nodes. We choose QualNet as our network per-
formance simulation platform and VanetMobiSim [39], [40]
as the urban traffic generator, for which the first 1000s of
output of the mobility trace were ignored to reflect real
movements of vehicles.

The performance of QTAR and the corresponding com-
parative protocols are evaluated based on the commonly
used metrics of Average Packet Delivery Ratio (APDR) and
Average End-to-End Delay (AEED). In addition, we have
conducted a comprehensive performance evaluation through
multiple group experiments to study the impact of different
parameters on these protocols. In each group experiment, all
of the vehicle’s movements are randomly generated through
VanetMobiSim. Each of the data points presented is the aver-
age value of five experiments, with error bars indicating the
95% confidence interval. In the following, we first present
simulation settings and then analyze the simulation results.

A. SIMULATION SETTINGS
The simulation urban environment scenario map is config-
ured as in [8], the vehicles’ mobility traces are generated

FIGURE 6. The simulation map of the urban VANET environment.

with VanetMobiSim, but only 4-lane roads remain, as shown
in Fig. 6.

The initial location and destination of each vehicle is ran-
domly selected, and the vehicle speed is uniformly set within
the maximum allowable velocity. The data traffic patterns are
generated by 20 randomly selected CBRflows. TheMAC and
PHY layer are configured according to the WAVE (wireless
access in vehicular environments) protocol [41]. The other
key simulation parameters are summarized in Table 2.

TABLE 2. Simulation parameters.

B. PERFORMANCE FOR VARYING α AND γ

In this section, we evaluated the performance sensitivity of
the learning rate α and discount factor γ to obtain a good
trade-off between them. We varied α and γ from 0.1 to 1 at a
step size of 0.1 while fixing κ at 0.7. We also set the number
of vehicles to 300, themaximum allowable velocity to 10m/s,
the number of CBR connections to 20, and the data generation
interval to 1 s.

Fig. 7 shows the correlation between α and γ values and
the QTAR routing performance. FromFig. 7a, we can observe
that the APDR increases when α and γ increase from 0.1 to
0.8 and from 0.1 to 0.9, respectively, and then decreases as
α and γ further increase to 1. This is expected because a
suitable value of α can not only ensure the learning awareness
of the dynamic characteristics of the urban VANETs but also
achieve resistance to some local small fluctuations that can
result in learning Q values with large deviations. It is worth
noting that for γ = 1, the APDR drops drastically regardless
of the value of α. This is because the largest value of γ = 1
denotes that future steps is considered equally and many
redundant loops are learned.

Fig. 7b shows the trend of theAEEDofQTARwith varying
α and γ from 0.1 to 1.0. From Fig. 7b, we can see that the
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FIGURE 7. The effect of α and γ on the performance of QTAR. (a) Average packet delivery ratio. (b) Average end-to-end delay.

FIGURE 8. The effect of parameter κ on the performance of QTAR. (a) Average packet delivery ratio. (b) Average end-to-end delay.

AEED increases as α and γ increase in most cases. Moreover,
it is interesting that APDR begins to decrease but AEED
begins to increase when α increases from 0.8 to 1.0. This is
because the unique characteristics of urban VANETs, such as
tall concrete buildings, various trees, and vehicles of different
sizes, further increase the uncertainty of learning, and a high
value of α will result in a drastic change in the learning
process that will further increase the likelihood of network
loops occurring.

C. PERFORMANCE FOR VARYING κ

In this section, we evaluated the effect of parameter κ on the
performance of QTAR. We varied κ from 0.1 to 1 at a step
size of 0.1 while fixing α and γ to 0.8 and 0.9, respectively.

We also set the number of vehicles to 300, the maximum
allowable velocity to 10 m/s, the number of CBR connections
to 20, and the data generation interval to 1. Fig. 8 depicts the
trend of the QTAR routing performance with variation of the
parameter κ from 0.1 to 1.0.
Fig. 8a shows the variation of APDR with κ . From Fig. 8a,

we can see that the APDR increases in most cases as κ
increases from 0.1 to 0.7. This is because the larger the
value of κ is, the longer the optimal reward distance while
the stability of the link can still be guaranteed. However,
the APDR decreases to a minimum value as κ increases from
0.7 to 1.0. This means that the optimal reward distance has
an increasingly significant impact on the APDR as κ varies
from 0.7 to 1.0. When κ = 1, the optimal reward distance
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FIGURE 9. Performance of QTAR, RTAR, iCar-II, GyTAR, GPSR and LAR as the number of vehicles is varied from 50 to 500. (a) Average packet delivery ratio.
(b) Average end-to-end delay.

is equal to the wireless communication range R, and the
learned optimal next hop always preferentially selects the
node whose distance is close to R, which will result in lower
link reliability. Furthermore, κ = 0.7 improves the APDR by
19.5% (as shown in Fig. 8a) and reduces the AEED by 3.3%
(as shown in Fig. 8b) compared with κ = 1. Therefore, we set
κ to 0.7 in the subsequent experiments.

D. PERFORMANCE FOR VARYING DENSITY OF VEHICLES
To study the performance of the proposed QTAR and corre-
sponding compared protocols under different node densities,
in this section, we vary the number of vehicles in the network
from 50 to 500 at a step size of 50. We also randomly select
20 CBR flows with the data generation interval of 1 s and the
maximum allowable velocity fixed to 20 m/s, while α, γ and
κ are set to 0.8, 0.9 and 0.7, respectively.
Fig. 9 demonstrates the performances of each routing pro-

tocol for the different densities of vehicles. Fig. 9a shows
the APDR performance of each protocol as the number of
vehicles is varied from 50 to 500. From Fig. 9a, it can be
observed that the trend of the APDR of all five protocols
increases in a zigzag manner as the number of vehicles
increases from 50 to 450 and decreases as the number of
vehicles increases from 450 to 500. This can be interpreted
by the fact that the probability of the network connectivity
increases with increasing number of vehicles, and the zigzag
change is mainly caused by the complicated channel environ-
ment at the intersections in urban VANETs. In more detail,
however, the APDR begins to decrease when the vehicle
density is sufficiently high (450 or more). This is because
the higher the vehicle density is, the higher the probability

that a packet collision occurs in the MAC layer. In general,
QTAR has a higher APDR than the other four protocols in
all situations. The reason is that SCF is adopted to reduce
the possibility of packet loss in the sparse vehicle density
case, while QGGF is adopted in the high vehicle density
case. In addition, QTAR achieves better performance in terms
of APDR than that achieved by RTAR, especially in low
and high vehicular density cases. This is due to the full
consideration of the road traffic for each road segment in
the path in QTAR. Furthermore, the RSU nodes deployed
at each intersection can stably learn and distribute the traffic
flow information of each road segment throughV2V andR2R
Q-learning, respectively. LAR and GPSR have the lowest
APDR in most cases. This is because the local area flooding
used by LAR cannot find an optimal path whether the vehicle
density is sparse or dense, while GPSR only depends on
the location information of the destination and its one-hop
neighbors to find the path, which very easily falls into a local
optimum, especially in the environment of urban VANETs.
Overall, QTAR improves the APDR by 7.9%, 10.74% and
16.38% compared with that of RTAR, iCar-II and GyTAR,
respectively.

Fig. 9b depicts the AEED performance of each protocol as
the number of vehicles is varied from 50 to 500. From Fig. 9b,
it can be observed that LAR has the highest AEED in all cases
compared with the others because of the increasing degree of
collisions and the consequent number of re-transmissions of
the MAC layer incurred by the local flooding route discovery
mechanism. Furthermore, the AEED of the LAR protocol
also varies severely as the vehicle density increases. This
is attributed to the instability of the channel condition in
complex urban VANETs and the rapid fading of the signals
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FIGURE 10. Performance of QTAR, RTAR, iCar-II, GyTAR, GPSR and LAR for varying maximum allowable velocity from 5 m/s to 35 m/s. (a) Average packet
delivery ratio. (b) Average end-to-end delay.

caused by tall buildings, as well as the rapid movement of
vehicles, which leads to high latency and a low delivery
rate of the LAR protocol. GPSR achieves the lowest AEED
at the expense of the lowest PDR because of the frequent
occurrence of local optima. Regarding iCar-II and GyTAR,
they have a much lower AEED than LAR in all cases. This
is because packets are forwarded through intersections one
by one and are dynamically selected according to the real-
time traffic information on each adjacent road. In more detail,
iCar-II has lower AEED than GyTAR in most configurations.
This is due to the minimum one-hop transmission delay
record in the CP packet of iCar-II, while only roads with
higher vehicle density are preferred in GyTAR. Furthermore,
RTAR achieves lower AEED in low and medium vehicular
density cases than that of iCar-II because of the reliable
next-hop selection scheme in the road and intersection area
reliable routing. In general, QTAR achieves 30.96%, 34.78%
and 46.19% lower AEED with respect to RTAR, iCar-II and
GyTAR, respectively. This is mainly because QTAR not only
considers the road segment forwarding delay when selecting
the next hop adjacent intersection but also considers the delay
from the next hop intersection to the destination intersection
that the destination vehicle has just entered or is upcoming to
through the R2R learning process.

E. PERFORMANCE FOR VARYING MAXIMUM ALLOWABLE
VELOCITY
In this section, to evaluate the performance under different
degrees of vehicle mobility, we vary the maximum allowable
velocity from 5 to 35 m/s at a step size of 5 m/s while
fixing the number of vehicles to 300, the number of CBR

connections to 20, and the data generation interval to 1 s. α,
γ and κ are set to 0.8, 0.9 and 0.7, respectively.

Fig. 10 demonstrates the performances of each protocol
for varying MAV (maximum allowable velocity) from 5 m/s
to 35 m/s. As shown in Fig. 10a, the APDR decreases
as the MAV increases in most configurations for all six
protocols. This is because an increase of the MAV will
causes frequent network topology changes and increased
instability of wireless link connections. In more detail, QTAR
shows the best APDR performance, while LAR achieves the
worst. The reason is that the R2R learning-based dynamic
intersection forwarding strategy and V2V learning-based
road segment forwarding in QTAR can effectively allevi-
ate the impact of vehicle mobility on the APDR perfor-
mance, while local flooding with poor mobility adaptability
is the main cause of the lowest APDR performance of LAR.
Moreover, RTAR shows slightly higher APDR than that of
iCar-II in the high mobility case. This is mainly because
RTAR selects the next forwarder based on multiple improved
criteria and utilizes the traffic and network status measure-
ment scheme for adjacent roads. Furthermore, iCar-II shows
higher APDR than GyTAR and GPSR, especially when the
MAV is less than 20 m/s. This is because iCar-II has global
network connectivity awareness, while GyTAR and GPSR
are not acutely aware of the full connected path. In gen-
eral, QTAR improves the APDR by 7.92%, 14.44% and
24.24% compared with that of RTAR, iCar-II and GyTAR,
respectively.

Fig. 10b depicts the AEED performance of each protocol
for varyingMAV from 5 m/s to 35 m/s. As shown in Fig. 10b,
the AEED of each protocol basically remains constant as the
MAV increases except for that of GyTAR. This is because
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FIGURE 11. Performance of QTAR, RTAR, iCar-II, GyTAR, GPSR and LAR for varying CBR packet transmission interval from 0.1 s to 10 s. (a) Average packet
delivery ratio. (b) Average end-to-end delay.

GyTAR cannot obtain the vehicle density information in time
through the generation of CDP messages when the MAV
exceeds 15 m/s, which will further lead to the possibility
of adopting the storage-carry-forward strategy, and hence,
the AEED of GyTAR increases with increasing MAV in the
case of high-speed mobility. It is worth noting that GPSR
shows the lowest AEED at the expense of a lower APDR
because of the local optimum due to the frequency void
occurrence in the complicated urban VANET environment.
Furthermore, LAR has the highest AEED but still has the
lowest APDR, as shown in Fig. 10a, because of the inefficient
flood-based broadcast strategy. In more detail, in the case
of low mobility, QTAR shows lower AEED than that of
GyTAR in high mobility cases and slightly lower AEED than
that of RTAR in high mobility cases. This is because the
V2V learning algorithm deployed within each road segment
can obtain the traffic information in a more timely manner
compared with the generation of CP messages of RTAR and
CDP messages of GyTAR while considering the experienced
transmission delay in both the V2V and R2R learning pro-
cesses. However, in the case of high mobility, the routing
loop is still not completely avoided, which is why the delay of
QTAR is slightly increased. On average, QTAR reduces the
AEED by 4.22%, 18.68% and 45.94% compared with that of
iCar-II, RTAR and GyTAR, respectively.

F. PERFORMANCE FOR VARYING CBR PACKET SEND
INTERVAL
In this section, to evaluate the performance under different
network payloads, we vary the data generation interval from
0.1 s to 10 s while fixing the number of vehicles to 300,
the number of CBR flows to 20, and the maximum allowable

velocity to 20 m/s. α, γ and κ are set to 0.8, 0.9 and 0.7,
respectively.

Fig. 11 demonstrates the performance of each protocol for
the different CBR transmission intervals. Fig. 11a shows the
APDR performance of each protocol for varying CBR packet
transmission interval from 0.1 s to 10 s. From Fig. 11a, we can
see that the APDR of QTAR, RTAR and GyTAR increases
as the data traffic load increases (the shorter the packet
transmission interval is, the higher the data traffic load).
This is because the packet delivery efficiency is improved
with the increased data traffic loads. Moreover, the APDR
of iCar-II increases and then decreases while that of RTAR
remains almost constant (when the data transmission interval
is less than 0.4 s) as the data traffic load increases. This
is mainly because a large number of CP and CBR pack-
ets gradually cause channel congestion. On the other hand,
the APDR of GPSR remains almost the same as the data traf-
fic increases, while, unlike the other five protocols, the LAR
APDR decreases as the data traffic load increases. This is
expected because the frequency of route discovery based
on flooding increases as the frequency of data transmission
increases. In more detail, QTAR has a higher APDR than that
of the other four protocols in all configurations. The reason
is that the LET (link expired time) is considered while the
R2R and V2V learning strategies jointly alleviate the effects
of vehicle mobility on the APDR performance. In summary,
QTAR improves the APDR by 9.85%, 12.8% and 21.14%
compared with that of RTAR, iCar-II and GyTAR, respec-
tively.

Fig. 11b shows the AEED performance of each protocol
for varying CBR packet transmission interval from 0.1 s
to 10 s. Since the delay of LAR is too different from the
other five protocols, we considered the double Y-axis scale to
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more clearly distinguish the AEED difference between them.
LAR uses the Y-axis scale on the right, while the others the
one on the left. From Fig. 11b, we can see that the AEED
of LAR, GyTAR, iCar-II and RTAR increases as the data
traffic load decreases (the shorter the packet transmission
interval is, the higher the data traffic load). For LAR, this
is because the longer the interval is, the more times route
discovery is required, which increases the latency of the
packet. For RTAR, GyTAR and iCar-II, this can be explained
by the fact that most of the data packets are transmitted to
their destination with a relatively low delay in the high data
traffic load case in contrast to most of the packets having a
relatively high delay in the low data traffic load case because
of the contention of the MAC layer. The AEED of GPSR and
QTAR remains the same in all configurations because routing
information is updated by periodically broadcasting HELLO
packets, and therefore, they are independent of data traffic
conditions. In particular, QTAR achieves lower AEED than
that of RTAR, GyTAR and iCar-II, especially in low data traf-
fic load cases. This is because the road traffic learning process
in QTAR is more adaptable to the dynamic urban environ-
ment. In more detail, QTAR integrates the traffic information
into Q values by combining the V2V learning strategy within
the road segments and the R2R learning strategy between
the intersections, while iCar-II and GyTAR only consider the
adjacent road segment traffic. In summary, QTAR reduces the
AEED by 28.54%, 29.41% and 50.25% compared with that
of RTAR, iCar-II and GyTAR, respectively.

VI. CONCLUSION AND FUTURE WORK
We have proposed a novel RSU-assisted Q-learning-based
Traffic-Aware Routing (QTAR) protocol that improves the
urban VANETs comprehensive routing performance through
optimized Q-greedy geographical forwarding based on V2V
Q-learning within the road segments and intersection for-
warding based on R2R Q-learning. Simulation evaluation
results have demonstrated that QTAR outperforms other
existing related routing protocols in terms of a higher packet
delivery ratio in sparse and dense traffic cases and a reduced
packet delivery delay, with a negligible communication over-
head in moderate traffic cases.

To further refine QTAR, our future work will mainly
focus on the following aspects. First, an in-depth analysis of
some key protocol parameters for adaption to more complex
VANETs scenarios will be considered. Second, dynamically
selecting anchor vehicle nodes at each intersection to remove
the dependence on RSUs for packet forwarding at intersec-
tions can also be considered. Finally, in order to better adapt to
the inconsistency of the length of the road segments in urban
VANETs, we will consider merging multiple shorter and nar-
rower road segments and deploying RSU nodes only at cer-
tain critical intersections for these crowded roads. At the same
time, for long-length and spacious road segments, we will
consider splitting these long and wide road segments into
multiple shorter ones to adapt to the rapidly changing cases

when traffic is sparse and the congestion cases when traffic
is dense.
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