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ABSTRACT Accurate channel models are essential to evaluate mobile communication system performance
and optimize coverage for existing deployments. The introduction of various transmission frequencies for 5G
imposes new challenges for accurate radio performance prediction. This paper compares traditional channel
models to a channel model obtained using Deep Learning (DL)-techniques utilizing satellite images aided
by a simple path loss model. Experimental measurements are gathered and compose the training and test
set. This paper considers path loss modelling techniques offered by state-of-the-art stochastic models and
a ray-tracing model for comparison and evaluation. The results show that 1) the satellite images offer an
increase in predictive performance by ≈ 0.8 dB, 2) The model-aided technique offers an improvement
of ≈ 1 dB, and 3) that the proposed DL model is capable of improving path loss prediction at unseen
locations for 811 MHz with ≈ 1 dB and ≈ 4.7 dB for 2630 MHz.

INDEX TERMS 5G mobile communication, channel models, wireless communication, computer vision,
machine learning, supervised learning.

I. INTRODUCTION
The fifth generation of mobile networks, 5G, seeks to expand
the current mobile architecture with densification of base
stations, also known as Heterogeneous UltraDense Network
(H-UDN), to offer improved capacity and coverage for
users. The densification results in low inter-site distances
between terminals and base stations. Such a decrease in
distance allows for improved radio conditions when oper-
ating at higher frequencies. For instance, Millimeter Waves
(mmWaves) is expected to be an essential part of New Radio
(NR) due to the large quantity of available spectrum but
suffers over longer distances due to the increased path loss.
The densification requires a change to the classic cellular
architecture of having macrocells for coverage and capacity.
AHeterogeneousmindset is set to replace the classical mind-
set where smaller base stations such as micro, pico, and even
femtocells [1], [2] manage user data and the macrocells man-
age control signals and wide-area coverage. However, this
approach poses a significant challenge in terms of network
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management and deployment strategies [3]. An essential
element of planning and deploying mobile communication
systems is the modelling of signal propagation and losses
thereof. The task of such propagation models is two-fold, 1.
to predict propagation for proposed deployment scenarios
allowing evaluation before practically deploying such solu-
tions and 2. be capable of improving the coverage and capac-
ity of existing systems by dealing with so-called coverage
holes.

Through recent years, as more advanced transmission tech-
nologies have made their way into mobile communication
systems, more detailed channel modelling techniques have
been required. While stochastic models are computationally
simple and fast while keeping satisfactory accuracy, mar-
gins limit the predictive capabilities [4]. The rigid format of
stochastic models causes coarse and inaccurate propagation
prediction for scenarios different from the originated mea-
surements. Such predictive inaccuracies result in calibration
studies that seek to refit the empirically obtained models
to different propagation scenarios. Ray-tracing is another
method for accurately predicting the channel state given
a propagation scenario. Ray-tracing, however, has one big
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FIGURE 1. A complex coverage situation requires complex channel models for coverage prediction. A Deep Neural
Network is proposed utilizing satellite images and position indicators for improved path loss prediction. The learned
model can be queried using a satellite image and a position for the expected received power.

draw-back it is computationally expensive and geographical
data exhaustive [5].

In the context of cellular planning and optimization,
the purpose and application of channel modelling are vast.
The complexity of channel models is highly relevant to
the specific planning phase. For instance, in greenfield
deployments, simple empirical path loss models are used.
In urban settings where coverage already exists, the deploy-
ment and interference management increases in complexity,
thus more advanced channel models are required. Accurate
channel models are essential to evaluate future generation
mobile communication systems. Channel models have strin-
gent requirements and must consider a diverse selection of
propagation scenarios to limit the need for time-consuming
calibration and measurement studies.

Furthermore, cognitive networking is considered a nec-
essary and essential element of future solutions [6]. Cog-
nitive networking is expected to set forward tight require-
ments on channel models, not only in terms of accuracy
but also in terms of computational performance. Thus, new
channel models that can offer improvements in both aspects
are of great interest. The primary focus of this work is the
mean received power under slow fading impairments such as
shadowing. Thus, the focus is on improving channel mod-
els for coverage modelling, where accurate link-budgets are
essential.

A. CONTRIBUTIONS
In [7], Deep Learning (DL) is shown to be capable of inferring
radio quality parameters using satellite images and can offer a
metric of uncertainty using Bayesian approximation. The aim
and novelty of this paper are to investigate the proposed DL
method for radio propagation prediction and compare them
to existing methodologies. More specifically:
• We propose an improved model for path loss prediction
for use in mobile communication systems based on a
DL framework utilizing satellite imagery and position
indicators.

• We show how the proposed DL framework is capable
of inferring features from satellite images and thereby

produce improved prediction even in new/unseen envi-
ronments.

• We compare the prediction of path loss at unseen loca-
tions for the proposed DL method and state-of-the-art
channel models.

Stochastic models use an empirical-based path loss model.
Such models are obtained and based on interpolation of
experimental measurements. Thus they are regression meth-
ods that seek to predict a continuous value of path loss for a
given distance of transmission.

The DL proposed is also of the type regression. However,
we show that by using automated feature extraction of satel-
lite images aided by a simple path loss model, we can approx-
imate the large-scale attenuation by learned latent continuous
variables. Furthermore, this achieves low data complexity as
compared to traditional ray-tracing methods. It is thus inter-
esting to compare the DL based models to traditional channel
models such as empirical-based and ray-tracing-based.

B. STATE-OF-THE-ART
Mean path loss prediction has been subject to much research,
both in terms of accuracy but also complexity. It is rele-
vant to mention the latest empirical-based path loss models,
as documented in 3GPP TR 38.901 and ITU-R M. 2412 [8],
[9]. Single-slope distance path loss models characterize both
models, and the Large-Scale Parameters (LSPs) are deter-
mined by a Gaussian distribution, thus making them simple
and computationally fast.

To combat the rigid margins of the stochastic models,
Neural Network (NN) have been successfully demonstrated
to offer high performance and low complexity alternative
to predicting path loss for wireless communication systems.
The authors in [10] use inputs such as antenna separation
distance, antenna height at both the transmitter and receiver,
the clearance of the terrain, and the angle hereof and veg-
etation information. Most of such inputs are the result of
features engineering by, e.g., inspecting satellite images. The
authors in [11] document the use of NN with inputs such as
clutter height, at 1800 MHz, and demonstrate predicting in
routes different and not included in the training set. However,
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it remains challenging to determine how inherently different
the routes used for testing are from the routes included in
the training set. Thus it is difficult to conclude that sufficient
generalization is achieved. It is reasonable to assume that
extrapolation is partly achieved for unknown propagation
situations, which is not an ideal outcome. The primary reason
for this is the problematic aspect of quantifying parame-
ters (features) that are generalizable for radio propagation in
the majority of propagation scenarios. In other words, which
features should be engineered or selected to model radio
propagation impairments effectively. Several features have
a significant impact on the overall mean of path loss - for
instance, the height of the transmitter and the receiver and the
antenna separation. However, also impactful are large-scale
fading impairments caused by vegetation and buildings. Such
impairments are tricky to represent, i.e., engineer features for
since they require statistical knowledge of the propagation
scenario. For example, a feature to engineer could be the dis-
tance to the closest building. A comprehensive comparison of
features and engineered features for NNs can be found in [12].
For frequencies below 1 GHz, features related primarily to
distance achieve the best performing NN. For frequencies
above 1 GHz, building and clutter related features have a
significant impact on the predictive capabilities of the NN,
related to the use of shorter wavelengths. It is well docu-
mented that the performance of adaptive models such as NN
are limited by the features used [12], [13]. It is thus relevant
to investigate approaches for feature engineering to improve
predictive performance. Achieving generalization using such
approaches is essential and paramount; otherwise, the trained
models have little purpose. In this paper, we look at Deep
Learning-based methodologies for achieving such properties.

DL has accelerated the field of Machine Learning (ML)
and has offered significant improvements to model accuracy.
The availability of raw data enables automated feature engi-
neering through deep and layered network structures. Several
authors have documented utilizing DL in Wireless communi-
cation and should be highlighted [14]–[16], however, to the
best of the author’s knowledge no one has utilized DL for
propagation modelling using satellite imagery as we propose
in this work.

C. PAPER OUTLINE
In Section II we introduce the basic principles of path loss
modelling. Additionally, we detail how a Deep Neural Net-
work (DNN) is used to learn a mapping function between
input features, such as distance, position, and satellite images,
to a received signal strength parameter. Finally, the pro-
posed model architecture is described. In Section III, the
experimental setup is detailed along with the structure of the
finalized data set. Training of the DNN model and the result-
ing experiments are detailed in Section IV along with the
best-found hyper-parameters. Additionally, in Section IV, tra-
ditional channel modelling methods used for validation and
evaluation are explained. Results are presented in Section V,

and the work is discussed in Section VI. Finally, a conclusion
is presented in VII

NOTATION
Gtx Transmission power and gain
PL(d) Path loss
L(d) Link budget
X0 Gaussian noise with zero mean
σ Local variability
w Vector of adaptive weights
θ Hyperparameters
ε Observation noise
Btx Transmitter indicator
dlat,lon Distance in latitude and longitude
d 3D Distance
A Satellite Image asW × H × C matrix
xn Single input vector
x Vector of input vectors
tn Single target/observation
t Vector of targets/observations

II. DEEP LEARNING FOR PATH LOSS PREDICTION
The curve-fit provided by traditional mean path loss mod-
els are based on a theory of cause and effect, meaning the
intent is to find the best parameters that can explain the
observations. For instance, research has shown a single-slope
distancemodel (Eq. 1) is capable of describingmean path loss
satisfactory [17].

PL(d) = A+ B log 10(d)+ X0 (1)

Some values of A and B as a function of features (such as
frequency, transmitter height) have been found using inter-
polation of obtained measurements. Additionally, LSP can
be modeled by a Gaussian distribution X0 (log-normal) with
mean zero and some σ denoting the local variability. Such a
path loss model does not consider fast variations and assumes
an average over samples obtained over a route with a length
equal to tens of wavelengths [18]. This approach is a contrast
to ML where the model is unknown. Machine Learning (ML)
provides an extensive toolbox of adaptive models that are
capable of learning representations and mapping functions.
Thus the goal of ML is not only to discover the best parame-
ters, but also the best model f (·). In this case, the best model
that represents the path loss.

Supervised ML has the objective of mapping and learn-
ing representations between features and observations. For
instance, how input relates to the outputs of a system.
Discovering essential features can be difficult, and most
times, it is difficult to formalize features. Such difficulties
especially arise when considering the geo-statistics of the
propagation area. A feature that adds useful information
about buildings and their height for predicting path loss,
how would it best be formalized? Would it be average build-
ing height in a straight line between the transmitter and
receiver? Such a feature, in an urban scenario, would pos-
sibly be useless since multipath fading and scattering are
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dominant [19]. So maybe the distance to the nearest build-
ing is more informative. In short, it can be challenging to
engineer useful and representative features, which is why
generalization of path loss prediction is an issue. Performing
regression-based prediction of path loss can turn into a series
of extrapolation models since the geostatistics are difficult
and time-consuming to formalize.

DL provides with automated feature engineering through
complex and deep-layered structures. In this work, features
are learned from satellite images that can aid in predicting
the received power of mobile communication systems. Geo-
graphical coordinates and a simple path loss model assist the
model in the learning process. The selection of inputs are
based on the following intuition and hypothesis:
• Local coordinates - contains scenario-specific informa-
tion. Assists the model in deducing local propagation
characteristics, like bearing of the transmitter and inter-
ference sources.

• Satellite images - contains information of local variabil-
ity, e.g. large-scale fading impairments. Must be high
enough resolution to be able to observe buildings, vege-
tation, and other structures that influence the magnitude
of local variability.

A so-called Convoluted Neural Network (CNN) is used
to obtain useful features from satellite images. Such net-
works use convolutions instead of regular multiplications.
The aim is to obtain a regression model that can predict
signal strength continuously; thus, the model is formalized as
follows:

tn = y(xn,w, θ)+ ε (2)

where y is the function to learn, x is the input, w are the
adaptive weights, θ are the model hyper-parameters and ε is
Gaussian distributed noise. We measure the LTE-A refer-
ence parameter, Reference Signal Received Power (RSRP),
the observation is tn = RSRP.
Different models and approaches can be used to learn such

a function y. The model hyper-parameters (related to the
complexity of the model) are tuned to the problem and the
data. In this work, we use methodologies related to NN. Thus
a hyper-parameter could, for instance, be the number of layers
used.

We furthermore define the input to the model as follows:

xn = [lat, lon,Btx , dlat , dlon, d,A] (3)

where lat, lon are the geographical coordinates of the
receiver. Btx indicates the transmitter (the dataset contains
several transmitters). dlat , dlon denote the distance in the lat-
itude and longitude direction respectively between the trans-
mitter and the receiver. d denote the distance straight as the
crow flies. All distance metrics are features and are computed
based on the coordinates. A denote the corresponding satellite
image. Thus the model is tasked with learning RSRP as a
function of positions, distance, and satellite images.

A. DEEP NEURAL NETWORKS
NN, and in particular DNN, has proven to be useful in many
nonlinear mapping problems [20]. NNs is a linear combina-
tion of basis functions which are transformed using nonlinear
activation functions. A two-layered NN has the following
form:

yk (x,w) =
M∑
j=1

w(2)
kj h

(
D∑
i=1

w(1)
ji xi + w

(1)
j0

)
+ w(1)

k0 (4)

where yk is considered the k’th output. w are considered
the adaptive weights for both layers with size M and D
respectively, denoted (2) and (1). h(·) indicates the nonlinear
activation function. In this work, the Rectified Linear Unit
(ReLU) activation function is used. [21], [22].
A training set of inputs and observations are used to find the

adaptive weights. The observations are denoted tn while the
inputs xn. Given the training set, we thus seek to minimize the
error provided by the sum-of-squares error function between
themodel output, given a set of weights, and the observations.

E(w) =
1
2

N∑
n=1

||yn(xn,w)− tn||2 (5)

Minimizing the above cost function corresponds to max-
imizing the likelihood function given the targets have noise
that is Gaussian distributed. (E.g. ε in Eq. 2 is Gaussian
distributed.) This is a fair assumption given the distribu-
tion of slow/large-scale variations (such as shadowing) are
Gaussian distributed [18]. Minimizing the cost function is
done iteratively with the use of the error backpropagation
algorithm. In this work, the well known Adam optimizer is
used [20].Mini-batch training is furthermore used to compute
the gradient of the cost function with respect to the weights
for several data points. To combat over- and underfitting,
the model, is regularized using standard principles such as
batch normalization, dropout layers, and weight decay [21].

B. IMAGE PROCESSING
In order to effectively deal with satellite images, convolu-
tional layers in the NN are used. The operation of convolu-
tions in combination with NN structures has revolutionized
image processing and gains hereof [23]. The operation of
convolution can be defined as

s(t) =
∫
x(a)w(t − a)da (6)

In the context of CNN x is the input and w is the kernel.
The kernel is an adaptive filter that the network learns. Thus
the layer can be seen as a filter bank with adaptive taps. If the
training set contains representative examples, e.g., the image
is related to signal attenuation, the cascaded architecture of
these layers will result in useful latent features at the final
layer. In this work, i ∈ 0, 1, ..3 layers are used. Each layer di
consists of several basic operations used in CNN. As illus-
trated in Fig. 2 a structure of 2D convolutions, nonlinear
transformations (ReLU), batch normalization and maximum
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FIGURE 2. A cascaded structure of convolutional layers are used di . Each
layer consists of several basic operations, such as ReLU activation, Batch
normalization and max pooling. A linear set of weights is connected to
the output of d3.

pooling is sequentially used. A linear set of weights is added
as an output layer. The architecture and the depth of the
layers, and the kernel sizes used are detailed in Section IV.

C. TRAINING ARCHITECTURE
NN and DNN are universal approximators, and can be shown
to be capable of approximating any continuous function
in Rn [21]. The challenge remains in tuning such models
and their hyper-parameters to achieve state-of-the-art perfor-
mance. The search for such hyper-parameters is computation-
ally expensive and is a major bottleneck in the training of
deep models. The idea of introducing a residual path loss into
the proposed model is similar to the work carried out in [24]
where increased performance is observed training the model
not only on the data but also using a simple physics model to
assist in learning. The intuition here is that themodel is tasked
with learning the correction of the observations to the simple
physics model. Such a learning task is easier and simpler
than learning all possible explanations for all observations.
It has been shown in [25] that expert knowledge (model-
aided learning) can be embedded into wireless systems for
optimization. Additionally, such hybrid-based models have
shown to be effective for path loss prediction as documented
in [26].

In this work, the proposed DL model uses a simple path
loss model for assisting in the learning process. More specif-
ically, we define the output of the simple path loss model as
an estimated link budget, thus L(d) = PL(d) + Gtx , where
Gtx is the estimated transmission power and related gain. The
UMa_B model is used as a path loss model, and the link
budget estimate is given as an input to the DNN. Furthermore,
it is added to the output of the DNN, as illustrated in Fig. 3.

FIGURE 3. A simple path loss model is used in combination with a deep
neural network. The DNN is thus tasked with learning a correction of a
received power estimation. The structure of the DNN can be seen in Fig. 4.

In other words, the model is to learn a correction of the
estimated path loss produced by the simple path loss model.
Thus we can define

y(xn,w, θ) = z([xn,L(d)],w, θ)+ L(d) (7)

where z(·) is the DNN as detailed in the section below.

D. DEEP NEURAL NETWORK ARCHITECTURE
The proposed model z(·) consists of two NN and a CNN. The
CNN is tasked with processing the satellite images, and a NN
formanaging engineered features and positional locators. The
model concatenation can be observed in Fig. 4. Additional
dense layers are added in sequence to the output of the CNN
and the NN, termed NN2. One layer is used for adding the
outputs of CNN and the NN. The sequentially used layers are
added for enabling latent features to be a function of weighted
positional locators and image features. This layer is directly
connected to an output layer. The size of the layers and the
overall architecture can be observed in Table 1 and 2.

FIGURE 4. The DNN consists of a convolutional part, dealing with satellite
images, and a regular dense NN dealing with the continuous features and
inputs. The output of each module is added and condensed into several
sequentially connected layers.

TABLE 1. Architecture of the CNN used for processing satellite images as
detailed in Fig. 4.

TABLE 2. Architecture of the sub-models considered in the final model
architecture.

III. EXPERIMENTAL SETUP
The campus area of the Technical University of Denmark
was selected for conducting measurements as it consists of
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suburban and urban characteristics such as abundant vegeta-
tion and condensed collections of 3 tall story buildings with
very different building materials. Fig. 5 shows a map of the
measurement area.

FIGURE 5. Measurement area where drive tests have been performed. The
area is split into a training and test area. Measurements from the training
area are used for the training set, while the measurements from the test
area are used for the test set. The route used for training is not visualized.

A. RADIO MEASUREMENTS
Radio measurements were obtained using a Rohde &
Schwarz (R&S) TSMW [27]. The hardware equipment is
used along with the ROMES software from R&S [28], which
is commonly used for drive testing. The area where measure-
ments have been conducted can be seen in Fig. 5. A GPS
module is integrated allowing for synchronization between
radio measurements and GPS coordinates. The radio mea-
surements were focused on downlink LTE-A frequencies in
bands 20 and 7, more specifically EARFCN 6350 and 2850,
which corresponds to frequencies 811 Mhz and 2630 MHz,
respectively. Three base stations in the campus area were
selected for the study. Transmitting from the same position,
but with different configurations. PCI 64 and 65 are both
operating at band 20 but considered two sectors of a cell site,
while PCI 302 is operating at 2630 MHz and considered a
single sector. 20 MHz of bandwidth is considered.

ROMES offers a parallelized capture of radio measure-
ments, allowing for up to 32 independent measurements, each
synchronized with GPS positioning. Roughly 14 km of road
was driven, and a measurement was taken approximately
every 2-4 ms. The speed of the vehicle was kept constant
on longer stretches of road, thus approximated equal distance
between measurement points. Parking lots and turning areas
resulted in a reduced distance between measurements.

The resulting dataset (for both training and testing) was
thus of size ∼ 60000 data points. The route used for testing
is highlighted in Fig. 5. The bearing of 811 MHz cell resulted
in fewer drive-able roads than the bearing of the two cells
of 2630MHz, which is the reason for fewer data points above
1100m.

B. SATELLITE IMAGES
Satellite images have, in recent years, been accessible with
close to no cost. Even high-resolution satellite images can be
obtained for free through services such as Mapbox [29]. For
each GPS position (and thus radio measurement), a satellite
image is obtained. Given the number of radio measurements,
the same amount of satellite images is required. For this
work, the static image rest API from Mapbox was used.
The only pre-processing of the satellite images done was
a rotation. The images were rotated according to the trans-
mitter. More specifically, the direction of the transmitter is
always down/south in the images. The bearing (the rotation
angle) was computed using the GPS coordinates of the known
measurements. Thus the centre of the corresponding satel-
lite image is the GPS position. An example of this is seen
in Fig. 6. The rotation of the images is primarily based on the
intuition behind propagation, e.g., if the link state is Line-of-
Sight (LOS), the majority of the signal propagation is given
in a direct and straight line as the crow flies. A Mercator
zoom level of 17 was chosen for each image. This constitutes
0.75 meter/pixel, thus the area covered by the satellite images
of size 256 × 256 pixels is roughly ∼ 185 × 185 m [30].
Such a zoom level enables a clear indication of buildings,
vegetation, and roads. This also means that nearby measure-
ments have significant similar images causing an overlap of
the area covered. The intuition here is that large-scale fading
has a decorrelation distance. e.g., nearby spatial positions

FIGURE 6. The images are rotated according to the position of the
transmitter. Down/South in the image is towards the transmitter.
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experience a similar magnitude of, for instance, shadowing.
Thus the overlap of the satellite images is to increase the
magnitude of latent features able to explain such large-scale
fading impairments.

Each measurement is mapped to an image of resolution
256 × 256 × 3 (three colour channels, RGB) producing the
final dataset.

C. DATASET
The route illustrated in Fig. 5 is used for testing and
remains unseen during training. The size of the test route
is ∼ 7000 samples, meaning the remainder 60000− 7000 =
53000 was using for training. A training/validation split
of 75:25 was selected.

The complete and final dataset is a combination of both
engineered features and obtained satellite images, as detailed
in Eq. 3. A few features have been engineered, such as
distance to the transmitter in both latitude and longitude
direction. The transmitters have been denoted using a binary
one-hot encoding to separate information from different
transmitters at identical positions. The dataset can be found
at [31].

IV. MODEL TRAINING AND VALIDATION
The model is implemented with the framework Pytorch [32],
which enables easy use of NN methodologies and error
minimization using back-propagation. The source code for
the model and the dataset can be found here: https://
github.com/jakthra/PathLossPredictionSat
elliteImages.

Experiments were conducted for most hyper-parameters
such as dropout probability, layer sizes, the minibatch size,
the regularization magnitude (L1 and L2). The experiments
were conducted using a random search (not exhaustive) of
the hyper-parameters. Such a search entails sampling the
hyper-parameters using a uniform distribution [33].

Data augmentation has been used for improving general-
ization, thus minimizing the gap between training error and
test error. A random affine transformation is used, which
keeps the centre of the image invariant but rotates and shears
the image randomly. An example of such can be observed
in Fig. 7. Random rotation of ±20 degrees has been used,

FIGURE 7. Examples of augmentation. Top row are satellite images
rotated according to the transmitter but without
transformation/augmentation applied. The bottom row is with
transformation, thus the original images are augmented.

FIGURE 8. The route used for drive-testing is imported into a ray-tracing
model, where buildings of the area have been imported using LIDAR and
known vegetation areas are approximated.

with a ±10 degree of shear. Data augmentation furthermore
increases the size of the dataset as it produces many copies
of the same measurement, but offers slightly different input
images. Data augmentation is applied at every training iter-
ation by applying a random transformation of the original
image. Several epochs of training thus result in several train-
ing examples, with different transformations, of the original
input image.

Additionally, the conversion to grey-scale, e.g., one chan-
nel instead of 3, offered improved generalization. A batch
size of 30 was used, along with a weight decay of 0.0028.
A learning rate scheduler was furthermore used, stepping the
learning rate with a factor of 10 if no improvement on the test
set is observed for several epochs. More details are available
in the Github repository.

The final architecture of the model, as proposed in Fig. 4
are detailed in Table 1 and Table 2. In the remainder of this
section, we describe and detail the ray-tracing and empirical
model used for validating and evaluating the trained model.

A. RAY-TRACING
Ray-tracing requires GIS data such as radar data. This data is
relatively inexpensive (if not able for free); however, obtain-
ing updated newly scanned datasets can be expensive. If the
datasets are too old, it does not constitute a fair reflection of
the propagation environment. Urban environments are espe-
cially prone to outdated datasets since frequent construction
is common. The authors in [34] highlight this by showing the
poor resulting accuracy when not maintaining and updating
GIS data. Additionally, the authors in [35] show that a sig-
nificant improvement for path loss prediction (indoor) can be
achieved by managing how the rays are launched depending
on the receiver locations.

A ray-tracing model of the University Campus was con-
structed using a procedure as follows:

1) Obtained LIDAR scans of University Campus with a
resolution of ∼ 4.5 points per m2 [36]

2) Obtained footprints of buildings in the study area from
OpenStreetMap [37]
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FIGURE 9. 25 Propagation paths for a single receiver point simulated by Remcom Wireless Insite. The polygon faces in the simulation define the
propagation paths and are furthermore limited to a maximum of 25 paths. The 25 most likely propagation paths are computed for all ∼ 60000 data points.

3) Open-source software QGIS was used to extract vector
shapes of buildings and their respective height.

4) Vector shapes and terrain data was added to the 3D
model in the ray-tracing software. In this case, the Rem-
com ray-tracing solution was used [38]

5) Approximations of materials and their permittivity
were defined along with transmitter and receiver con-
figurations.

The above procedure produces a 3D model of the Univer-
sity campus. The position of measurements for 811 and
2630 MHz were imported to the model and simulated. The
resulting dataset offers received power at measured loca-
tions according to the defined 3D model. Such an approach
allows for a direct comparison of ray-tracing and experimen-
tal measurements. We have previously shown in [39] that
state-of-the-art empirical path loss models achieve similar
performance, and in some cases, outperform, that of an imple-
mented ray-tracingmodel. In this work, the ray-tracingmodel
is evaluated concerning LSP.

Remcom Wireless Insite [38] is used as the ray-tracing
engine, and the properties of the simulation environment can
be observed in Table 3. The number of paths is limited to 25,
propagated from a standard half-wave dipole antenna array.
The antennas in the ray-tracing engine were modelled to
approximate the configuration of the measured cells and the
respective sectors. The transmission power is set to 43 dBm

TABLE 3. Properties of the ray-tracing model implemented in Remcom.

with a sectorized SISO antenna definition (120 degrees of
bearing with three sectors). The antenna is placed at the
height of 30 m. The permittivity of the building materials
(Concrete/Brick) is 4.4 to 5.3 F/m. A full 3D ray-tracing
approach is used, accelerated by a GPU. Thus the number of
faces define the overall complexity. The number of successful
paths vary from Rx point to Rx point, and is determined
by the number of faces present in the simulation environ-
ment. An example of the computed propagation paths can be
observed in Fig. 9 for a single receiver point.

B. EMPIRICAL PATH LOSS MODELS
The general parameter generation of 3GPP 38.901 and ITU-R
M. 2412 consists of similar steps and input parameters. The
path loss models used for the 3GPP 38.901 and ITU-R
M.2412 are similar and are based on one same studies with
small differences. In short, ITU-R M.2412 offers 2 channel
models A and B, each for different propagation scenarios
such as urban, suburban, or rural. The latter of the models (B)
is identical to that of 3GPP 38.901. Thus, we refer to Urban
Macro (UMa)_A as the definition in ITU-R M.2412 and
UMa_B as the definition in TR 38.901 by 3GPP. Fig. 10
shows the predictive capability of the UMa_B along with the
measurements conducted.

V. RESULTS
We compare the predictive performance of the proposedmod-
elling technique with traditional modelling approaches on the
forementioned test set. The error in terms of Root-Mean-
Squared-Error (RMSE) (lower is better) can be observed
in Fig. 11. The final obtained model utilizing satellite images
is thus seen to offer a performance increase (of ≈ 1 dB for
811 MHz, and ≈ 4.7 dB for 2630 MHz) compared to the
traditional approaches.

We compare the different learned models as follows; 1) a
data-driven approach (no path loss model, thus no correction
to be learned), where both images and features are utilized.
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FIGURE 10. Experimental measurement of RSRP for 811 and 2630 MHz as
a function of distance. The path loss model UMa_B is shown for both
frequencies.

FIGURE 11. RMSE comparison of the proposed method to traditional
modelling techniques. The standard deviation σ for the different
experiments of training the DNN model is shown as errorbars.

FIGURE 12. RMSE comparison of each modelling approach. A fully
data-driven model (without the simple path loss model), and the
proposed method without satellite images is included for reference.

2) a model using only features and 3) The full model where
both images and features are used. These are compared
in Fig. 12. A performance increase is observed when includ-
ing images to the finalized model, as opposed to just utilizing
the engineered features. By including images, an increase in
predictive performance is observed to be ≈ 0.8(±0.2) dB.
This illustrates the improved generalization by including
images to the model. The model-aided approach, where the
model is tasked with learning a correction factor, offer an
increase in the predictive performance of ≈ 1(±0.15) dB
for both 811 and 2630 MHz. Additionally, the data-driven

approach is more prone to over/underfitting as highlighted
by the increased σ . It was observed during training that data
augmentation is necessary and effective for reducing the over-
fitting properties of the model during training. An example of
the test and training error with and without data augmentation
can be observed in Fig. 13. It can be seen that a severe overfit
is present if no data augmentation is applied. This is observed
by the test error diverging from the training error, also known
as the generalization gap. This was remedied in [7] using reg-
ularization hyperparameters. However, data augmentation in
combination with tuned regularization parameters has since
shown to be the better performing approach.

FIGURE 13. Example of the test error with and without data
augmentation applied (shown in solid). The training error is shown as the
dashed line for both approaches.

FIGURE 14. Histogram of path loss correction for RSRP given by the
model for 811 and 2630 MHz on the test set.

The distribution of the learned correction of the trained
model is observed in Fig. 14. The distributions are Gaussian-
shaped, which corresponds to the distribution of large-scale
fading. The model has thus learned that the correction is
Gaussian distributed around the mean predicted power by the
simple path loss model. The slight offset of the distributions
from having a mean zero illustrates an offset in calibrating
the simple path loss models. The correction distribution thus
indicates the need for re-calibrating by≈ 4 dB for 811 MHz,
and ≈ −3 dB for 2630 MHz. It is important to note that
no prediction improvement was found by re-calibrating the
distributions to have mean zero.

The distributions of both the model output and the mea-
surements are shown in Fig 15. A significant better distribu-
tion fit (visually) is observed for 2630 MHz than 811 MHz.
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For 811 MHz (Fig. 15a), a cluster of measurements seem to
be difficult to predict (at around −95 dBm).

FIGURE 15. Distribution of RSRP for 811 (a) and 2630 (b) MHz on the test
set and the model output.

VI. DISCUSSION
The satellite images offer much information, and the entirety
is not necessarily relevant for radio performance prediction,
especially at lower frequencies. The use of such images
results ultimately in a model that is harder to train since the
latent features obtained by the CNN might be sparse and,
to some extent, memorization of the training data. The use of
other information sources such as LIDAR scans seem appro-
priate and might offer an improved level of information to
predict the propagation of radio waves. Furthermore, a time-
line of images is required to consider the influence of seasonal
changes on radio propagation, for instance, the leaves on
trees.

Finally, given the size of the training set, it is believed that
simplistic satellite images or even just vectorized maps might
offer comparable or even improved results. This approach
will also require less complicated model selection techniques
which will thus lead to reduced training time. Finally, more
experimental data is required to validate and assess the per-
formance of the proposed method. The results provided in
this work does indicate the use of satellite images enable
interpolation between unseen areas and measurements, thus
presenting a generalization of signal attenuation at higher
frequencies.

The optimization of Hyper-parameters, for instance,
the number of convolutional layers and their respective
size, is challenging. Deep Learning models have many
hyper-parameters and doing a systematic grid search for
each is not feasible in terms of training time. Obtaining
a better choice of hyper-parameters, than documented in
this paper, is a possibility. The completed hyper-parameter
optimization and thus model selection procedures of this
work consist of 300 experiments and is considered the
most time-consuming aspect of obtaining such a solu-
tion. For such reasons comparing complexity can be tricky.
We experienced roughly 240 minutes of training time. For
comparison, we experienced roughly 120 minutes for pro-
ducing ray-tracing results for the test route, e.g. the approxi-
mately 7000 data points. Both accelerated with a GPUNvidia
1080 Ti. Predicting the test route using the DL model was
completed in ∼ 3 minutes.

We argue that a reduction of the overall data complexity is
achieved while improving the prediction accuracy, as satellite
images and the features used are simple and easy to obtain.
In terms of model complexity, it is difficult to argue that any
gains have been achieved. These gains suffer significantly
due to expensive model selection experiments. The model
selection and training of the model can, in principle, only
be done once, due to the improved generalization properties
of including images. If done so, the model complexity lies
only in the prediction time and the memory required, both of
which, is significantly lower than a ray-tracing approach.

Future work will be invested in obtaining a dataset that is
decoupled from the campus area, as has been used for train-
ing. A difference in building placement and overall architec-
ture could have a significant impact on the test performance
of the system. However, this remains to be tested. The dataset
and model have been made public and can be downloaded
for free. Any extension to either the model architecture,
hyper-parameters or the dataset is welcomed.

VII. CONCLUSION
Accurate path loss prediction with improved generalization
using satellite images can be achieved with the use of convo-
luted neural networks. A gain of ≈ 1 dB has been achieved
at 811 MHz, and ≈ 4.7 dB at 2630 MHz, compared to tradi-
tional modelling techniques such as ray-tracing and empirical
models. Additionally, utilizing a simple path loss model to
assist the neural network with learning offer improved pre-
dictive performance with a gain of≈ 1 dB. Including satellite
images increase the predictive performance additionally by
≈ 0.8 dB. Additionally, we conclude that the complexity
of such deep neural networks is primarily associated with
model selection principles and the run-time hereof. Finally,
the proposed approach would benefit from an increase in
data, as to quantify the generalization achieved by including
metadata such as satellite images.

ACRONYMS
Notation Description
CNN Convoluted Neural Network.
DL Deep Learning.
DNN Deep Neural Network.
H-UDN Heterogeneous UltraDense Network.
LOS Line-of-Sight.
LSP Large-Scale Parameter.
ML Machine Learning.
mmWave Millimeter Wave.
NN Neural Network.
NR New Radio.
R&S Rohde & Schwarz.
ReLU Rectified Linear Unit.
RMSE Root-Mean-Squared-Error.
RSRP Reference Signal Received Power.
UMa Urban Macro.
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