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ABSTRACT In order to achieve good connectivity after the cascading failure of a logistics network, this
paper studies the controllability robustness of complex logistics network based on the nonlinear load-capacity
(NLC) model. Firstly, the extended Baraba’ si and Albert (BA) network is constructed as a complex logistics
network for experiments, based on the power law distribution and the agglomeration and sprawl evolution
mechanism. Secondly, the existence of the NLC relationship of the real logistics network is proved, and
then the NLC model of complex logistics networks is proposed. Furthermore, a simulation analysis of the
controllability robustness and influencing factors of the complex logistics network is carried out under four
different cascading failure models. In those models, different scenarios of the NLC and the classical linear
load-capacity (LLC) model with initial load (IL)/initial residual capacity (IRC) load-redistribution strategies
are combined. The research results show that the main influencing factors of the cascading failure of complex
logistics networks for the controllability robustness Pi are the tolerance parameters β and γ . Moreover,
the effect of γ on the load-capacity relationship under the NLC model is more significant than that of β.
Among the four cascading failure models, the one based on the NLC model with IRC strategy is the optimal
for controllability robustness. Based on the optimal model, the simulation considering the perspective of
the logistics economy shows that the relationship among the network cost e, Pi and γ is as follows: under
a fixed cost, the greater is γ , the stronger is Pi. Also, when 2 < γ ≤ 9, the robustness of the network is
controllable. According to the requirements of real logistics networks, both controllability robustness and
the logistics cost can be controlled, and a solution that against cascading failure can be obtained by adjusting
the minimum residual load.

INDEX TERMS Complex logistics network, cascading failure, controllability robustness, nonlinear load-
capacity model.

I. INTRODUCTION
Complex logistics networks represent one of the most impor-
tant fields of the interdisciplinary application of complex net-
work theory [1]–[4]. Complex network theory can reveal the
essence, characteristics and operational rules of real logistics
network activities [5]–[7]. A complex logistics network is a
complex network composed of nodes which carry logistics
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activities such as storage, loading and unloading, handling,
packaging and other logistics functions, and edges which
connect these nodes. Nodes include logistics parks, logis-
tics centers, distribution centers and storage centers, while
edges include transportation lines, transportation pipelines
and communication lines. Therefore, complex logistics net-
works have the agglomeration and sprawl characteristics of
real logistics networks, and feature the power law distribution
of complex network theory. The realization of the function
of a complex logistics network depends on the efficient
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operation of the nodes and the just-in-time transportation of
the edges between any two nodes, which are highly depen-
dent on real-world situations. In real logistics situations,
force-majeure accident situations may occur, such as extreme
weather, political factors, workers taking vacations at the
same time for the Spring Festival, workers’ strikes, etc.,
and can lead to the function failure of a given node in the
network [8], [9]. When a failure occurs, the load of the failed
node needs to be redistributed to the adjacent nodes. Because
of the limitations of real logistics node capacity, the adjacent
nodes will probably surpass their capacity and this will lead
to further failures. The mutual coupling relationship between
nodes will ultimately bring about the collapse of the whole
logistics network. This dynamic process is called the cascad-
ing failure of the complex logistics network, which affects
the normal operation of the logistics network and causes eco-
nomic losses. Therefore, figuring out how to make logistics
networks achieve better connectivity after cascading failure,
i.e. achieving controllability robustness against cascading
failure, has become a hot topic for logistics enterprises and
scholars. In this paper, we study controllability robustness
against the cascading failure of a complex logistics network
based on complex network theory and the cascading fail-
ure load-capacity model, considering the agglomeration and
sprawl evolution mechanism of a real logistics network. The
relationship between the logistics network cost, controllabil-
ity robustness and the residual load of the node is revealed,
providing a solution that lowers the logistics network cost by
flexibly adjusting theminimum residual capacity of the nodes
and ensuring that the robustness of the complex logistics
network is controlled.

To construct a complex logistics network, we first need
to consider the agglomeration and sprawl characteristics of
the real logistics network. The logistics agglomeration is
the phenomenon of logistics activities and facilities being
concentrated in specific areas; the logistics sprawl is the
phenomenon whereby logistics activities and facilities move
from central urban areas to peripheral suburbs [10], [11].
The reason for the logistics agglomeration is that logistics
activity is limited by different factors, such as the eco-
nomic environment, political conditions and geographical
position. The key nodes in some specific areas are differ
greatly from the general nodes in the geographic economy.
Thus, the evolution of the logistics network presents the
power-law distribution characteristic of ‘‘the rich people get
richer’’, which is the Baraba’ si and Albert (BA) network,
and this generates agglomeration-based economic benefits.
To construct a logistics network based on complex network
theory, the BA network is used by authors to simulate a
logistics network based on the logistics network characteristic
of the power law distribution to generate the agglomeration
of economic benefits. The rules by which they construct
the complex logistics network only add nodes, and do not
delete or move them [4], [12]–[14]. However, when the
agglomeration was evolved to a certain scale, the economic
benefits may no longer increase, or may even decrease.

Dablanc demonstrates that the suburbs and remote suburbs
are more attractive than the city center for logistics hubs,
because of the land availability, lower costs and better con-
nections to other regions or countries [11], [15]; Hesse
and Rodrigue [16], Hesse [17] and [18], and Feitelson and
Salomon [19] proposed that logistics activities would have
a long-distance layout, reflected in the key logistics nodes
being moved or deleted due to industrial characteristics such
as the need to avoid traffic congestion, rigid requirements for
logistics planning, trade organization authority, etc. In this
case, logistics nodes will be removed or moved into areas
where the cost is relatively low. Therefore, the BA network
cannot accurately describe real logistics networks because of
the nodes without removed or moved for the logistics sprawl.
This paper intends to extended the BAnetwork into a complex
logistics network considering both agglomeration and sprawl
evolution mechanism.

In order to control the risk of complex logistics network
in the operation process, the controllability robustness of
the network against cascading failure is a crucial problem
to consider. In recent years, the cascade failure analysis of
complex networks has been studied more deeply [20]–[25]
and many kinds of cascading failure model is adopted in
different field [3], [7], [10], [12]–[14], [16], [26]. In the
field of complex logistics networks, the load-capacity model
is the most widely used because of the load capacity char-
acteristics of the logistics system. Moreover, the classical
linear load-capacity (LLC) model is adopt by scholars in
order to simplify the problem, in which the capacity and
initial load of the nodes are defined to have a linear rela-
tionship [1], [11]–[14]. The LLC model is proposed to study
cascading failure by A. E. Motter in 2002 [27] and widely
used by later scholars in logistics, communications and many
other different fields [7], [12]–[14], [21], [28]. However,
Kim and Motter [5] and indicated the feasibility of the non-
linear relationship of load-capacity. This breakthrough work
was focused on the cascading failure problem of communi-
cation and transportation systems based on complex network
theory, and proved that the capacity of the nodes of the
four real-world networks of aviation, highway, power and
Internet routers is nonlinear in their initial loads. In addition,
network nodes with small capacity have large proportions
of residual capacity, which provides a research reference for
the wide application of the nonlinear load-capacity (NLC)
model. Given the above-mentioned circumstances, several
authors have proposed to apply the NLC model to study the
controllability robustness of cascading failures and found that
the NLC model could tackle these difficulties and reduce
the network cost by flexibly adjusting the minimum residual
capacity of the nodes [29]–[32]. Especially, Chen et al. [30]
and Dou et al. [31] proposed the NLC model to research on
the processes and features of cascading failure on complex
networks and proved that the NLC model is helpful to guide
system construction and improve its robustness. But although
the study of controllability robustness of cascading failure
based on the NLC model can be expected to be feasible,
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it is less frequently used in the complex logistics networks.
So, this paper attempts to analyze the load-capacity charac-
teristics of two different real logistics networks and thereby
proves the feasibility of the NLC model.

In addition to the load-capacity model, different load redis-
tribution strategies may also have a significant impact on
the controllability robustness of a complex logistics net-
work against cascading failure [12]–[14], [33]–[35]. The load
redistribution strategy involves distributing the load of the
failed node to its adjacent nodes according to a certain redis-
tribution mechanism, so as to realize the logistics function of
the complex logistics network under cascading failure. The
cascading failure load redistribution strategy of a complex
network is based on the number of adjacent nodes [30], the
ratio of the capacities of the adjacent nodes [14], the initial
load (IL) [12], [13], the initial residual capacity (IRC) [34],
[35], and various other strategies. Among them, the research
in the complex logistics network field mostly adopts the IL
and IRC redistribution strategies [12], [30]. The IL redistri-
bution strategy is a redistribution rule whereby the load of the
failed node is redistributed to its adjacent nodes according to
the initial load. Under the IRC redistribution strategy, the load
of the failed node is redistributed to its adjacent nodes accord-
ing to the difference between the capacity and the initial
load. This paper attempts to explore in depth the influence of
the IL and IRC redistribution strategies on the controllability
robustness of complex logistics networks, based on the LLC
and NLC models.

In view of the above problem, the rest of this paper is orga-
nized as follows: the complex logistics network is defined
and described based on the extended BA network model in
Section 2. In Section 3, the complex logistics network cas-
cading failure model is constructed, based on the NLCmodel,
and the results of applying the model are compared with
those of the LLC model under the IL and IRC redistribution
strategies. Conclusions are drawn in Section 5.

II. COMPLEX LOGISTICS NETWORK
A. DESCRIPTION OF PROBLEM
From the above, we construct a complex logistics network
for experimental purposes, which includes the agglomeration
and sprawl mechanisms and the complex features of logistics
networks. The evolution mechanism characteristics of the
BA network, namely growth and preferential connections,
are adopted [3]. Moreover, the agglomeration and sprawl
mechanisms of the logistics network are considered at the
same time. Thus, an extended BA network model is estab-
lished for constructing the experimental complex logistics
network [32], [36], [37].

B. GENERATION ALGORITHM OF COMPLEX
LOGISTICS NETWORK
We define the complex logistics network as a logistics infras-
tructure network G = (V ,E). V represents the nodes that
realize all of the functions in the logistics system, such

as package sending and receiving, transit and circulation,
processing, warehousing and information processing, etc.,
which include logistics parks, logistics centers, distribution
centers and storage centers. E represent the edges that real-
ize the functions of goods transportation and information
transmission, which include facilities such as roads, trans-
portation pipelines and communication lines required for
logistics operations. Each node and edge have a different
weight related to its service capabilities. Therefore, the traffic
flow generated by each node and edge is defined as the node
weight and edge weight respectively. Since the flow of goods
between adjacent nodes in the logistics infrastructure network
can move in both directions, the micro flow direction of
the material flow is not considered in this paper. Therefore,
the logistics infrastructure network can be abstracted into an
undirected weighted BA network model, whose generation
algorithm is as follows:

(1) The network starts with m0 nodes and adds a new node
at every equal time interval. The new node is connected with
m(m ≤ m0) different old nodes that already exist in the
network to generate m new edges.

(2) According to the aggregation mechanism of the logis-
tics network, the newly added node and edges are connected
according to the preferred connections rules. It is assumed
that the probability that the new node j is connected to the
existing node i is P(ki), and the degree of the node i is ki,
such that:

P(ki) =
ki∑
j kj

(1)

(3) Let si be the node strength, which represents the capability
of the logistics flow processing of node i:

si =
∑

j
aijfij (2)

where aij is the neighbor matrix of the failed node i, and fij is
the edge weight, that is, the scale of the logistics flow between
nodes i and j.

(4)According to the sprawl mechanism of the complex
logistics network, all the nodes in the si > s0 case of the
network are selected, and the partial nodes and all edges
connected to the nodes, are deleted with probability P.

After t time intervals, the model evolves into an extended
BA model with N nodes, simulating the agglomeration and
sprawl evolution of the logistics infrastructure network.

C. AMENDING THE NETWORK MODEL FOR LOGISTICS
Based on the generation algorithm of the complex logistics
network, the extended BA network is generated using a sim-
ulation tool called Python. As shown in Figure 1, the num-
ber of initialization network nodes is 1000, and the average
degree is 4. The node degrees are shown in Figure 2. The
degree distribution of the complex logistics network is shown
in Figure 3. It can be seen from Figures 2 and 3 that the
network conforms to the power law distribution characteristic
of complex networks.
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FIGURE 1. Extended BA network.

FIGURE 2. The degree of the nodes.

FIGURE 3. Distribution of network degrees.

III. MODELING OF CASCADING FAILURE
Based on the complex network theory, the cascading failure
process of a complex logistics network is described as fol-
lows: we delete the node with the largest degree to simulate
the phenomenon of logistics node failure due to some force
majeure accident situation. Then the service coupling rela-
tionship between the failed logistics node and its adjacent
nodes is disrupted, and the load of the failed logistics node

is redistributed to its adjacent nodes; the load-redistribution
process may cause a chain reaction of successive failures in
adjacent nodes, because they too could surpass their own load
capacities. The above phenomenon is called the cascading
failure of the complex logistics network.

The cascading failure model of complex logistics networks
covers the following: the definition of the initial load of
the node, the load-capacity model and the load-redistribution
strategy. Among these, the initial load L0i of node i is defined
as a function of the degree of the node [12], [27], [38]–[40].
If the number of adjacent nodes connected to logistics node i
is ki, then the degree of logistics node i is ki. The initial load
L0i of node i is defined as

L0i = (ki
∑
m∈0i

km)α, i = 1, 2, · · ·,N (3)

where 0i is the set of adjacent nodes of logistics node i; α is
the load parameter which used to control the strength of the
initial load, with α > 0; N is the total number of nodes in the
network.

In consideration of the load-capacity model and the load-
redistribution strategy have different effects on the controlla-
bility robustness of the network, an empirical analysis of the
load-capacity characteristics of the complex logistics network
is carried out in this section. On the one hand, the nonlinear
relationship between load and capacity in the real logistics
network is demonstrated; on the other hand, the characteris-
tics of the NLC model are revealed through an analysis of
the relationship between γ and β. Furthermore, in order to
select the best combination of load-capacity model and load-
redistribution strategy, the results of applying the LLC and
NLCmodels under different load-redistribution strategies are
compared through model analysis, using formulas and simu-
lations applied by means of the MATLAB software tools.

A. EMPIRICAL LOGISTICS AND LOAD–CAPACITY
CHARACTERISTICS OF NETWORK
1) EXISTENCE OF NONLINEAR RELATIONSHIP BETWEEN
LOAD AND CAPACITY OF REAL LOGISTICS NETWORK
The node capacity of the complex logistics network is the
maximum logistics load ability, which is proportional to the
controllability robustness against cascading failure. That is,
the greater is the capacity, the stronger is the controllability
robustness. However, in a real logistics network, the node
capacity cannot be increased indefinitely due to the limita-
tions of the logistics economic cost. Therefore, figuring out
how to obtain the largest residual capacity within a limited
cost range is a key issue when looking at the controllability
robustness of a complex logistics network. The LLC model
is adopted to define node capacity in complex logistics net-
works [1], [27], [28]:

Ci = (1+ β)L0i , i = 1, 2, · · · ,N (4)

where i is the node in the network,Ci is the capacity of node i,
L0i is the initial load of node i, and β is a tolerance parameter,
β > 0.

7996 VOLUME 8, 2020



Y. Yang et al.: Controllability Robustness Against Cascading Failure for Complex Logistics Networks Based on NLC Model

FIGURE 4. The relationship between the load and capacity of a logistics
distribution network of product 1.

FIGURE 5. The relationship between the load and capacity of a logistics
distribution network of product 2.

To analyze the load-capacity relationship characteristics
of real logistics networks, the following two different real
logistics infrastructure networks of a Fortune 500 company
are taken as examples. Figure 4 and 5 shows the relationship
between the logistics storage capacity and the real-time load
of nodes of two different products of logistics distribution
network across the country. The nodes include supply nodes,
transshipment nodes and demand nodes. The abscissa and
ordinate of figure 4 and figure 5 are the number of products
under real-time load and the maximum number of storage
capacity under load of product 1 and product 2, respectively.
It can be seen from the two figures that the relationship
between load and capacity in real logistics networks is very
close to but not exactly linear. Obviously, from an accuracy
perspective, the definition of load-capacity as linear describes
real logistics networks closely, but the nonlinear model is
more accurate.

2) NLC MODEL AND ITS CHARACTERISTICS
The capacity of a complex logistics network is defined based
on the NLC model [29]–[31]:

Ci = L0i + βL
0γ
i (5)

where Ci is the capacity of node i, and β, γ are the toler-
ance parameters, with β ≥ 0, γ > 0. Note that if γ =
1, the NLC model degenerates to the classical linear load-
capacity model (4). By adjusting the tolerance parameters,

FIGURE 6. Load-capacity relationship with β.

FIGURE 7. Load-capacity relationship with γ .

it is possible to simulate the nonlinear relationship between
the capacity and load of the real complex logistics network.
The following figures show the relationship between load,
capacity and parameters β and γ respectively, on a log
scale. Figure 6 shows the relationship between β and load-
capacity, when γ = 0.85. Figure 7 shows the relationship
between γ and load-capacity when β = 600. As can be seen
from Figure 6, β determines the overall approximate ratio
and the amount of the load. When the value of β is lower
than 50, the influence on the relationship between load and
capacity is large, and when the value of β is higher than 50,
the influence on the relationship between load and capacity
is small. As can be seen from Figure 7, the effect of γ on the
relationship between load and capacity is significant, in that
the residual of the node capacity is severely shrunk as γ
increases when the load value is large. Moreover, it can be
seen from the comparison between Figures 6 and 7 that the
effect of γ on the relationship between load and capacity is
more remarkable than the effect of β. Therefore, the NLC
model can adjust the parameters β and γ more flexibly to
control the relationship between the capacity and the initial
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load of the node, so as to obtain a more accurate node residual
capacity.

B. COMPARATIVE ANALYSIS OF RESULTS OF APPLYING
LLC AND NLC MODELS UNDER DIFFERENT
LOAD-REDISTRIBUTION STRATEGIES
After cascading failure, the redistributed load of the adja-
cent nodes of the failed node will differ when different
load-redistribution strategies are adopted under the same
load-capacity model. Thus, a better combination of load-
redistribution strategy and load-capacity model will produce
stronger controllability robustness in the complex logistics
network. In order to compare and analyze the results of apply-
ing the LLC and NLC models under the two different load-
redistribution strategies IL and IRC, the following derivation
proves whether the loads redistributed to the adjacent nodes
of the failed node are the same.

1) IL AND IRC LOAD-REDISTRIBUTION STRATEGIES BASED
ON LLC MODEL
Based on the LLC model of the complex logistics network
under cascading failure, the redistribution results of the IL
and IRC load-redistribution strategies are the same. The for-
mulaic derivations are as follows:

Using Eq. (4), the extra load 1Lji1 of the adjacent node
j, moved from failed node i under the IL load-redistribution
strategy, is defined as

1Lji1 = Li ×
L0j∑
n∈0i L

0
n

(6)

Among them, Li is the load of the failed node i, L0j is the
initial load of the adjacent node j, L0n is the initial load of
the adjacent node n, 0i is the set of adjacent nodes of node i.
It’s worth explaining that the difference between L0i and Li
is that L0i is the initial load of node i which is set before
cascading failure, while Li is the load of node i after cascading
failure. Except that the load of the first attacked node in the
cascade failure experiment is equal to its initial load, the load
of the other failed nodes is not the initial load, but the sum
of the initial load and the load of the assigned failed node.
Equation (6) shows that the load Li of the failed node i is
allocated to the adjacent node according to the proportion of
the initial load of the adjacent node to the total of the initial
load of all the adjacent nodes.

Let Cj denote the capacity of the adjacent node j of node i.
The extra load 1Lji of the adjacent node j, moved from the
failed node i under the IRC load-redistribution strategy, is
defined as

1Lji = Li ×
Cj − L0j∑

n∈0i (Cn − L
0
n
)

(7)

Substituting (4) into (7), the extra load L ′ji1 of the adja-
cent node j, moved from the failed node i under the IRC

load-redistribution strategy, is

1L ′ji1 = Li ×
Cj − L0j∑

n∈0i (Cn − L
0
n
)

= Li ×
(1+ β)L0j − L

0
j∑

n∈0i ((1+ β)L
0
n − L0n )

= Li ×
L0j∑
n∈0i L

0
n

(8)

According to (6) and (8), it can be seen that

1Lji1 = 1L ′ji1 (9)

It can be seen from Eq. (9) that, based on the LLC model
of the complex logistics network under cascading failure,
the extra load of the adjacent node, moved from the failed
node under the IL and IRC redistribution strategies, is the
same. This indicates that the controllability robustness of the
complex logistics network under the IL and IRC redistribu-
tion strategies, based on the LLC, is the same.

2) IL AND IRC LOAD-REDISTRIBUTION STRATEGIES BASED
ON NLC MODEL
Based on the NLC model of the complex logistics network
under cascading failure, the redistribution results of the IL
and IRC load-redistribution strategies are different. Formu-
laic derivations are as follows:

Using Eq. (5), the extra load Lji2 of the adjacent
node j, obtained from the failed node i under the IL load-
redistribution strategy, is

1Lji2 = Li ×
L0j∑
n∈0i L

0
n

(10)

Substituting (5) into (7), the extra load1L ′ji2 of the adjacent
node j, obtained from the failed node i under the

1L ′ji2 = Li ×
Cj − L0j∑

n∈0i (Cn − L
0
n
)

= Li ×
L0j + βL

0γ
j − L

0
j∑

n∈0i (L
0
n + βL

0γ
n − L0n )

= Li ×
L0γj∑
n∈0i L

0γ
n

(11)

Comparing Eq. (10) with Eq. (11), it can be seen that

1Lji2 6= 1L ′ji2 (12)

The above derivation proves theoretically that the redistri-
bution results of the IL and IRC load-redistribution strategies
based on the NLC model are different, which means that the
controllability robustness of the two strategies are different.
Moreover, comparing Eq. (12)with Eq. (9), the controllability
robustness of the two strategies based on the LLC model
are the same, which means that the NLC model is more
flexible than the LLCmodel and provides a greater possibility
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of optimization to improve the controllability robustness of
the complex logistics network. Based on the NLC model,
comparing Eq. (10) with Eq. (11), the extra load 1Lji can
be adjusted flexibly by changing the parameter γ based on
the IRC load-redistribution strategy, which is more flexible
than the IL load-redistribution strategy in terms of altering the
controllability robustness of the complex logistics network.
In conclusion, the IRC redistribution strategy based on the
NLCmodel is theoretically an optimal cascadingmodel when
cascading failures occur, for achieving a better robustness of
network control.

IV. SIMULATION ANALYSIS OF CONTROLLABILITY
ROBUSTNESS AND ECONOMY OF COMPLEX LOGISTICS
NETWORK UNDER CASCADING FAILURE
A. CONTROLLABILITY ROBUSTNESS AND ECONOMIC
EVALUATION INDICATORS
1) CONTROLLABILITY ROBUSTNESS (Pi )
The controllability robustness of a complex logistics network
is the ability of the network to provide critical logistics ser-
vices or functions when a node or edge is damaged due to
an accident that causes cascading failure. In order to describe
the ability of the entire network to resist cascading failures,
one node is removed at a time, and then, the controllability
robustness Pi is selected to measure the effect of cascading
failure [20], [21], [32], [41].

Pi =
Fi

N − 1
(13)

where Fi is the number of failed nodes caused by the
failed node i, N is the total number of nodes in the net-
work and Pi is the proportion of cascading failure nodes
caused by the failed node i which is selected as the indi-
cator of controllability robustness of the complex logistics
network. It can be seen from Eq. (13) that the smaller
is Pi, the stronger is the controllability robustness of the
network.

2) COST (e)
A real logistics network not only relies heavily on control-
lability robustness, but also depends on the economic cost.
While ensuring the stability of the network, designing a more
reasonable cascading failure model with a lower cost and
higher controllability robustness is a practical and significant

problem for a real logistics network. Suppose that
N∑
i=1

Ci is the

total capacity of the network and
N∑
i=1

Li(0) is the total initial

load of the network. The cost of the network e is defined as
in [39]:

e =
N∑
i=1

Ci

/ N∑
i=1

Li(0) (14)

B. CASCADING FAILURE MODEL SIMULATION -
EXPERIMENT DESIGN
A simulation experiment is carried out to model a complex
logistics network after cascading failure, using the cascading
failure model with different combinations of load-capacity
models and load-redistribution strategies, to analyze the
effect of parameters γ and β on the controllability robustness
of the complex logistics network. We test four cascading
failure models:

(1) Model 1: LLC model and IL load-redistribution
strategy.

(2) Model 2: LLC model and IRC load-redistribution
strategy.

(3) Model 3: NLC model and IL load-redistribution
strategy.

(4) Model 4: NLC model and IRC load-redistribution
strategy.

As the probability of multiple nodes failing independently
in a real logistics network is small, this paper assumes that
only one node fails at a time, and the failed node cannot
automatically renew to its normal state. Based on the complex
logistics network constructed in Section II, the cascading
failure simulation process under the above four cascading
failure models is as follows:

Step 1. Select LLC or NLCmodel to define the relationship
between the initial load and capacity of the network.

Step2. Let the most efficient logistics node i fail, such that
ki = kmax.
Step 3. The load of failed node i is redistributed to the

adjacent nodes j in accordance with the IL or IRC load-
redistribution strategy. The extra load of node j is 1Lji.

Step 4. Determine whether node j fails. If1Lji > Cj, node
j fails, then return to step 3; if1Lji ≤ Cj, node j does not fail,
then go to step 5.

Step 5. When there is no failed node, calculate the con-
trollability robustness Pi and network cost e of the complex
logistics network.

C. SIMULATION ANALYSIS WITHOUT
CONSIDERING ECONOMY
The simulation results of the cascading failure of the complex
logistics network based on the four cascading failure models
are shown in the figures below.

Figure 8 shows the relationship between β and Pi in the
complex logistics network underModel 1. It can be seen from
the figure that Pi becomes lower with an increase in β under
the same α. The critical threshold of β becomes smaller with
an increase in α. It can be seen from the figure that every Pi
has only two values, 1 and 0, except on the two lines where α
is 0.4 and 1.0 respectively.When α = 1.0, Pi is 0.6 when β =
0.9; when α = 0.4, Pi is 0.4 when β = 1.2. This obviously
shows that Pi never takes a value in the interval (0, 1) except
when α = {0.4, 1.0}. This indicates that the controllability
robustness after cascading failure, based onModel 1, is nearly
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FIGURE 8. The relationship between β and Pi in the complex logistics
network under Model 1.

FIGURE 9. The relationship between β and Pi in the complex logistics
network under Model 3.

uncontrollable. Since the extra loads of the IL and IRC load-
redistribution strategies based on the LLC model are same,
the simulation results from Model 2 are the same as those
from Model 1, and are thus not described here.

Figure 9 shows the relationship between β and Pi in a
complex logistics network underModel 3. It can be seen from
the figure that Pi becomes lower as β increases, under the
same α, which indicates that the controllability robustness
becomes stronger as β increases, under the same α. Also,
the critical threshold of β becomes smaller with an increase
in α, which means that the controllability robustness of the
network is becoming stronger. The critical threshold of β
differs widely under different values of α. One can see that the
critical threshold of β is 0.02 when α = 1.6 and the critical
threshold of β is 0.1 when α = 1.0, which indicates that
the critical threshold of β is not a fixed value, but changes
as α changes; it can be seen from the figure that Pi does
not only take the two values of 1 and 0, but several other
values within the interval (0, 1), such as {0.2, 0.6, 0.8} when
α = 0.8 and {0.6, 0.8} when α = 1.0. It can be seen that
the controllability robustness after cascading failure based on
Model 3 is controllable. Comparing Figure 8 with Figure 9,
one can see that the controllability robustness after cascad-
ing failure based on Model 3 is more controllable than that
based on Models 1 and 2. This explains the conclusion of

FIGURE 10. The relationship between β and Pi in the complex logistics
network under Model 4 with α = 0.4.

the derivation of the formula in Section III(B) and indicates
that the NLC model is more flexible than the LLC model
in that the controllability robustness can be adjusted to its
optimum by changing α to correspond to different values
of β. Moreover, when α is fixed, the critical threshold of β
based on the NLC model is always better than the one based
on the LLC model. This means that stronger controllability
robustness of the complex logistics network is obtained based
on the NLC model, with lower capacity and cost. So, next
we simulate the cascading failure process based on Model 4
under a fixed value of α, and show the results in Figure 10.

Figure 10 shows the relationship between β and Pi in the
complex logistics network underModel 4with α = 0.4. It can
be seen thatPi = 0.2when γ = 4 and 0.19 < β < 0.25;Pi =
0.4 when γ = 5 and 0.23 < β < 0.26; and Pi = 0.2 when
γ = 7 and 0.29 < β < 0.49. This indicates that Model 4
can control the robustness of the network by controlling the
value of γ and the value interval of β. At the same time, under
the guarantee of the same controllability robustness, we can
be more selective over the value of β, which means that the
capacity of the complex logistics network can be controlled
with flexibility, and the cost can be controlled with precision.
Comparing the values of Pi in Figures 8, 9 and 10 in the range
(0, 1), the controllability robustness of the complex logistics
network based on Model 4 is the most controllable.

In the next section, we present the 3D simulation anal-
ysis of the relationship among controllability robustness,
the logistics network cost and γ based on Model 4.

D. SIMULATION ANALYSIS CONSIDERING ECONOMY
According to the above demonstration and the economy of
the real logistics network, the relationship among the logistics
network cost e, robustness Pi and γ of the complex logistics
network is analyzed in three dimensions, under the cascading
failure Model 4 which is based on the NLC model with IRC
load-redistribution strategy. The reason why γ is chosen over
β is that it is proved in Section 3 that the effect of γ on the
relationship between load and capacity is more remarkable
than the effect of β. The simulation results are shown in the
following figures.
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FIGURE 11. Relationship between Pi and γ under NLC model and IRC
load-redistribution strategy.

FIGURE 12. Relationship between e and γ under NLC model and IRC
load-redistribution strategy.

FIGURE 13. Relationship between Pi and e under NLC model and IRC
load-redistribution strategy.

Based on the NLC model with IRC load-redistribution
strategy in the complex logistics network, the relationship
between Pi and γ is shown in Figure 11, the relation-
ship between e and γ is shown in Figure 12, the rela-
tionship between Pi and e is shown in Figure 13, and the
relationship among Pi, γ and e is shown in Figure 14.
Figures 11, 12 and 13 respectively show the plane view
and the side view in two directions of Figure 14. It can be
seen from Figure 11 that the controllability robustness of the
complex logistics network is not stable in the interval 0 <
γ ≤ 1, is worst in the interval 1 < γ ≤ 2 and is controllable
in the interval 2 < γ ≤ 9. The controllability robustness of

FIGURE 14. Relationship among Pi , γ and e under NLC model and IRC
load-redistribution strategy.

the network can be optimized by controlling γ to fit the actual
economic requirements of the logistics cost e according to
Figure 12. Under the premise of a fixed cost for the complex
logistics network, the controllability robustness is stronger
as γ increases. It can be seen from Figure 14 that, under
the premise of a fixed cost, the controllability robustness is
greatly affected by γ , especially when 2 < γ ≤ 9. Thus,
it is more flexible and can be more precisely controlled.
This indicates that, when the cost is fixed, the controllability
robustness becomes stronger with an increase in γ ; when the
cost is expected to be as low as possible, the critical threshold
of γ should be as low as possible to control the robustness
of the network; the lower is the network cost, the smaller
is the critical threshold of γ needed to ensure the strongest
controllability robustness.

V. CONCLUSION
In this paper, we construct a complex logistics network based
on complex network theory and the agglomeration and sprawl
evolution mechanism; the existence of the nonlinear load-
capacity (NLC) characteristics of a real logistics network is
proved and the NLC model of complex logistics networks
is proposed, which is more suitable than LLC model for
real logistics networks. Controllability robustness simulation
analysis and influencing factors analysis of the complex
logistics network are carried out, under different cascading
failure models. The conclusions are as follows:

(1) The NLC model is more accurate for describing com-
plex logistics networks than the LLC model based on the
analysis of two real logistics networks. (2) The main influ-
encing factors of the NLC model are β and γ , but the effect
of γ on the load-capacity relationship is more significant than
that of β under the NLC model. (3) Formula derivations and
simulation analyses verify that the optimal cascading model
is that based on the NLC model with IRC load-redistribution
strategy when cascading failures occur, as this achieves bet-
ter robustness of network control. (4) From an economic
perspective, the relationship among network cost, control-
lability robustness and the tolerance parameter γ of the
complex logistics network is as follows: the controllabil-
ity robustness is stronger with an increase in γ , and the
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robustness of the network is controllable in the interval 2 <
γ ≤ 9. In short, we can control the residual capacity of
the nodes of the complex logistics network by adjusting the
parameter γ in the interval 2 < γ ≤ 9 according to the real
logistics cost requirements, thus optimizing the controllabil-
ity robustness of the complex logistics network.
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