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ABSTRACT Automatic speaker verification (ASV) is an emerging biometric verification technique with
more and more applications. However, both verification accuracy and anti-spoofing should be considered
carefully before putting ASV into practice, where anti-spoofing is also called replay detection in which
voice is recorded, stored and replayed to deceive ASV systems. Cascaded decision of anti-spoofing and
ASV is a straightforward solution to tackle the two issues. In this paper, joint decision of anti-spoofing
and ASV was investigated in a multi-task learning framework with contrastive loss in order to improve
the cascaded decision approach. A modified triplet loss was firstly constructed to supervise deep neural
networks to extract embedding vectors containing information of both speaker identity and spoofing. The
embedding vectors were subsequently taken as input features by back-end classifiers towards speaker and
spoofing classification. The experimental results on both ASVspoof 2017 and ASVspoof 2019 showed that
the proposed joint decision approach with triplet loss outperformed the corresponding baselines, a recent
work on joint decision with Gaussian back-end fusion and our previous joint decision approach with
cross-entropy loss.

INDEX TERMS Anti-spoofing, speaker verification, replay detection, multi-task learning, triplet loss.

I. INTRODUCTION
With the development of engineering applications of artificial
intelligence, biometric authentication is becoming popular
in scenario of protecting the security of computers, smart
devices, and networks, such as fingerprint and face recog-
nition. Voiceprint is an emerging biometric with poten-
tial advantages given its hands-free, liveliness and dynamic
nature. Automatic speaker verification (ASV) is a conven-
tional way to put voiceprint into practical usage, where it
verifies the claimed identity of a speaker by recording voices,
extracting voiceprints and computing similarities.

However, spoofing is a great threaten to the safety of
biometric authentication, which is attributed to the biometrics
can be copied [1]. Among spoofing attacks, the most accessi-
ble ones are attacks at the sensor and transmission levels [2],
which are called physical access (PA), e.g. attacking a face
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recognition system by showing a photo of an authenticated
user to the camera, or attacking an ASV system by playing
back a recording of a verified user [3], [4]. The replayed
voices are not only from recordings but also generated by
state-of-the-art professional tools of text-to-speech synthe-
sis (TTS) and voice conversion (VC). Since replay attacks are
easy to implement and highly similar to bona fide speech, it is
difficult to detect and bring serious threats to ASV systems
[5]. Therefore, anti-spoofing should be considered carefully
before putting ASV into practical usage.

In recent years, many works have been done to
study anti-spoofing problems, among which the automatic
speaker verification spoofing and countermeasures chal-
lenge (ASVspoof) is the most comprehensive one.
ASVspoof 2015 focused on the discrimination between
bona fide speech and voices generated by TTS or VC
[6]. ASVspoof 2017 focused on the detection of PA
attacks to discriminate whether the given speech was the
voice of an in-person human or the replay of a recorded
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FIGURE 1. A cascaded system of anti-spoofing and ASV.

speech [7]. ASVspoof 2019 considered tasks from both
ASVspoof 2015 and ASVspoof 2017 [8]. The challenges
provided us extensive data to make thorough comparison and
evaluation.

A large number of anti-spoofing methods have been
proposed and have achieved quite good results in ASVspoof
challenge these years. By introducing deep learning into
anti-spoofing, deep neural networks (DNN) have achieved
promising results in anti-spoofing of ASVspoof 2017
[9]–[11] and ASVspoof 2019 [12]. ASV as a standalone task
has also gained great improvement from deep learning [13],
[14]. Given those achievements and in order to make ASV
and anti-spoofing a step forward to practical usage, some
early studies have proposed that a separately designed anti-
spoofing system is implement before ASV, only the utter-
ances which have passed spoofing detection are verified again
by a ASV system [4], [14], which is in fact a cascaded
structure as is illustrated in FIGURE 1.

Though it is straightforward to cascade two classifiers to
accomplish the tasks of ASV and anti-spoofing, redundant
computation is actually introduced when analyzing the input
voices twice, i.e. one for anti-spoofing and the other for ASV.
Furthermore, possible mutual enhancement of the two tasks
cannot be explored when treating them separately, which
seems not elegant in the point of machine learning. Therefore,
a joint decision system, which is able to conduct ASV and
anti-spoofing simultaneously, is elegant in theory and concise
in practice, as is depicted in FIGURE 2. Recently, a joint
ASV and anti-spoofing system was studied in an i-vector
framework by A. Sizov, et al. [2]. Promising results were
obtained on the dataset of NIST 2006, which demonstrated
the feasibility and advantage of the joint decision of ASV and
anti-spoofing, which is one of the motivation of this paper.

In light of the success of deep learning on both ASV [15]
and anti-spoofing [2], a joint ASV and anti-spoofing system
with deep learning has been proposed and studied in our
previous work [16]. The joint system has shown its effec-
tiveness by obtaining better results than both the cascaded
system with Gaussian back-end fusion in [17] and the joint

Joint ASV and Anti-
spoofing system

Yes/No

Threshold

FIGURE 2. A joint system of anti-spoofing and ASV.

systemwith i-vector features [2]. In this paper, inspired by the
great improvement of contrastive loss on speaker verification
accuracy in [18], triplet loss [19] is introduced to replace
the conventional cross-entropy loss on classification tasks.
As far as we know, this is the first time that contrastive loss
is investigated on anti-spoofing tasks as well as on the joint
ASV and anti-spoofing tasks.

By contrasting FIGURE 1 and 2, it is straightforward to see
there are at least two obvious advantages of the proposed joint
decision approach of ASV and anti-spoofing by using deep
learning with triplet loss. Firstly, only one decision procedure
is required which reduces the number of thresholds to make
subjective decisions on yes or no. Secondly, speakers’ voices
are analyzed only once to extract time-frequency features as
inputs of classifiers, which reduce the computational com-
plexity. Moreover, the two tasks may learn from each other
to perform mutual enhancement as observed in many other
multi-task learning works [20]. By introducing triplet loss to
maximize the margin between bona fide target speaker and
the spoofing or non-target ones, discriminative and represen-
tative features on both speaker identification and spoofing
classification would be extracted.

The remaining part of the paper is organized as follows.
The proposed joint anti-spoofing and ASV system based
on triplet loss are presented in Section II, where the neces-
sary parts of the deep learning baseline with cross-entropy
loss in our previous work is also introduced. In Section III,
the implementation of the proposed joint decision approach
is described. The experimental results and their discussion are
given in Section IV. Section V is the conclusion of the paper.

II. JOINT DECISION ON ANTI-SPOOFING AND ASV
A. HYPOTHESES
As a biometric, every spoken utterance has two attributes, one
of which is the speaker identity, and the other of which is
whether the audio is bona fide or spoofing. In order to define
the decision problem formally, let observation O denotes the
feature sequence of an utterance from speaker s, χ the target
speaker and η the bona fide speech. The decision on ASV
and anti-spoofing is thus equivalent to a hypothesis testing
problem where the null hypothesisH(χ,η) represents thatO is
bona fide speech from the target speaker s and the alternative
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FIGURE 3. Illustration of the four hypotheses and two configurations of
joint decision problems.

hypothesis H(χ,η) is the union of three choices,

H(χ,η) = H(χ̄ ,η) ∪ H(χ,η̄) ∪ H(χ̄ ,η̄), (1)

where (χ̄ , η) represents bona fide speech from a non-target
speaker, (χ, η̄) spoofed speech from the target speaker, and
(χ̄ , η̄) spoofed speech from a non-target speaker.

ASV aims at optimizing the boundary B1 + B3 while anti-
spoofing tries to find the boundary B2 + B4 in FIGURE 3.
However, the joint decision on ASV and anti-spoofing boils
down to find the classification boundary B1 + B2 as shown
in (a) of FIGURE 3. Towards this goal, mapping function
from the observed feature sequence O to H(χ,η) and H(χ,η)
should be constructed directly. Considering the imbalance of
the number of samples between H(χ,η) and H(χ,η), a mirror
joint decision problem to distinguish (χ, η̄) and the union
of (χ, η),(χ̄ , η), and (χ̄ , η̄) is also configured for training
purpose, which would strengthen the learning performance
of B2.
By taking deep convolutional or neural networks as

mapping functions, the extracted vectors at their final lay-
ers should contain information of both speaker identity and
spoofing, multi-task learning is thus a natural choice to ful-
fill this requirement. In subsection B, multi-task learning
with cross-entropy loss will be introduced firstly together
with its joint decision procedures. Triplet loss which is able

!

!
!

Embedding

Speaker
prediction

Spoofing 
prediction

LspeakerLspoofing

Total loss

FIGURE 4. A multi-task learning network to extract embedding vectors
from speech that contain information of both speaker identity and
spoofing.

to maximize the margin between H(χ,η) and H(χ,η) in (a)
of FIGURE 3 (or H(χ,η̄) and H(χ,η) ∪H(χ̄ ,η) ∪H(χ̄ ,η̄) in (b) of
FIGURE 3) will be utilized to replace the cross-entropy loss
in subsection C.

B. JOINT DECISION BY MULTI-TASK LEARNING
WITH CROSS-ENTROPY LOSS
Towards the goal of joint decision, a unified network is
designed to extract embedding vectors that contain infor-
mation of both speaker identity and spoofing, which is the
network performs two tasks in a single learning framework.
Cross-entropy is a commonly utilized loss for classification,
where softmax is usually taken as the activation of the final
layer to yield exclusive activation probabilities. Therefore,
cross-entropy with softmax is chosen as loss functions on
both tasks. The cross-entropy loss for ASV task is,

Ls = −
1
N

N∑
i=1

log
ew

T
yi
Xi∑C

j=1 e
wTj Xi

, (2)

whereN is the number of training utterances,C is the number
of speakers, wj is the weight vector corresponding to the
j-th category, Xi is the embedding vector of the i-th utter-
ance, yi is the true label index of the i-th utterance. In anti-
spoofing task, the cross-entropy loss is basically the same
as (2) by just replacing the speaker labels by spoofing labels
and C = 2.

Let Lspeaker represents the cross-entropy loss for ASV, and
Lspoofing represents the cross-entropy loss for anti-spoofing.
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FIGURE 5. The enrollment and testing stages of ASV and anti-spoofing.

The total loss for the multi-task learning is hereby,

Ltotal = α1Lspeaker + α2Lspoofing, (3)

where α1 and α2 represent the weight of Lspeaker and Lspoofing
in the total loss, and satisfy α1 + α2 = 1.The two cross-
entropy losses on ASV and spoofing detection are fused
to obtain an unified loss, which works together at the end
of the last layer of deep convolutional or neural networks,
and then the loss is propagated back to the entire network.
In our experiments, we set α1 = α2 = 0.5, because the
two subtasks have the same status in the entire task. Through
training, embedding vectors would be obtained which pre-
serve the information of both speaker identity and spoofing.
In the network, voice signals are analyzed only once and only
one embedding vector is extracted to represent both kinds
of information. Therefore, the complexity is reduced in the
multi-task learning scheme w.r.t. that of the learning of two
separate tasks.

In the enrollment and testing stages, by putting the
embedding vectors into linear discriminative analysis (LDA),
feature dimension is further reduced. A probabilistic
LDA (PLDA) is subsequently learned as the backend clas-
sifier to facilitate the speaker verification and anti-spoofing,
as shown in FIGURE 5. For the detailed usage of embedding
vectors and the adaptation in the enrollment of new speakers,
please refer to [16] for more details.

C. JOINT DECISION BY MULTI-TASK LEARNING WITH
TRIPLET LOSS
Contrastive loss has been studied extensively for speaker
verification. With the learning or training with contrastive
loss, embedding vectors of the utterances from the same
speaker would be pushed together and embedding vectors
of the utterances from different speakers would be allocated
apart. Triplet loss is one of the conventional realizations of
contrastive loss, which is defined over triplets of embedding
vectors: an anchor sample (i. e. an utterance in this paper)
ua, a positive sample up sharing the same class label of the
anchor, and a negative sample un holding a different class
label from the anchor. The loss is thus derived by following

the idea that un should be further away from the anchor ua

than up by some margin, that is to minimize,

L(ua, up, un)

= max(
∥∥f (ua)− f (up)∥∥22 − ∥∥f (ua)− f (un)∥∥22 + margin, 0)

(4)

where f (u) denotes the embedding vectors of utterance
u, ‖f (a)− f (b)‖22 the Euclidean distance between the two
embedding vectors f (a) and f (b), and margin a constant.
However, for the multi-task learning of ASV and anti-

spoofing, each utterance contains two kinds of labels, the
speaker identity and spoofing or not. Therefore, the original
triplet loss in (4) cannot be used for discrimination purpose
directly. A modification on (4) should firstly be made to fit to
the multi-task problem. Based on the hypotheses introduced
in Section II A, two choices of creating triplets are given as
follows.

1) Two bona fide utterances from the same speaker are
randomly selected as anchor and positive samples, respec-
tively. A spoofing utterance from the same speaker, or an
utterance from a different speaker no matter which is bona
fide or spoofing, is randomly selected as negative sample,
as is shown in (a) of FIGURE 3.

2) Two spoofing utterances from the same speaker are
randomly selected as anchor and positive samples, respec-
tively. A bona fide utterance from the same speaker, or an
utterance from a different speaker no matter which is bona
fide or spoofing, is randomly selected as negative sample,
as is shown in (b) of FIGURE 3.

By summarizing 1) and 2), the negative sample is always
chosen from three sets. Different from the task in speaker
verification that the triplet loss in speaker verification only
needs to select an anchor, a positive type sample and a nega-
tive type sample each time, a triplet in multi-task learning of
anti-spoofing and ASV has three types of negative samples.
When selecting negative samples, it is necessary to select
three types of negative samples at the same time, and calculate
the distance between the three types of negative sample and
one positive sample respectively to obtain the loss. Therefore,
the triplet loss in (4) was updated to,

Lm(ua, up, un)

= L(ua, up, un1 )+L(ua, up, un2 )+L(ua, up, un3 ), (5)

where n1, n2 and n3 denote the three kinds of negative sam-
ples. The derivatives in back propagation are subsequently
given (6), as shown at the bottom of this page.



∂Lm
∂f (ua) =

∂L(ua,up,un1 )
∂f (ua) +

∂L(ua,up,un2 )
∂f (ua) +

∂L(ua,up,un3 )
∂f (ua) = 2f (un1 )+ 2f (un2 )+ 2f (un3 )− 6f (up)

∂Lm
∂f (up) =

∂L(ua,up,un1 )
∂f (up) +

∂L(ua,up,un2 )
∂f (up) +

∂L(ua,up,un3 )
∂f (up) = 6(f (up)− f (ua))

∂Lm
∂f (un1 ) =

∂L(ua,up,un1 )
∂f (un1 ) +

∂L(ua,up,un2 )
∂f (un1 ) +

∂L(ua,up,un3 )
∂f (un1 ) = 2(f (ua)− f (un1 ))

∂Lm
∂f (un2 ) =

∂L(ua,up,un1 )
∂f (un2 ) +

∂L(ua,up,un2 )
∂f (un2 ) +

∂L(ua,up,un3 )
∂f (un2 ) = 2(f (ua)− f (un2 ))

∂Lm
∂f (un3 ) =

∂L(ua,up,un1 )
∂f (un3 ) +

∂L(ua,up,un2 )
∂f (un3 ) +

∂L(ua,up,un3 )
∂f (un3 ) = 2(f (ua)− f (un3 )),

(6)
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FIGURE 6. The role of triplet loss in training: pulling positive samples closer while pushing negative ones further. (a) and (b)
correspond to subfigure (a) and (b) in FIGURE 3, respectively.

TABLE 1. Profile of ASVspoof 2017 Version 2.0.

FIGURE 6 visually illustrated a set of triplet selections
and the expected results through optimization. As for the
training stage of joint ASV and anti-spoofingwith triplet loss,
since the triplet loss integrates the speaker information and
the spoofing information into the same target, the embedding
vectors obtained by deep neural/convolutional networks con-
tain the information of both speaker identity and spoofing.

III. EXPERIMENTAL SETUP
A. DATASETS
Two datasets, ASVspoof 2017 version 2.0 from [21] and
ASVspoof 2019 from [8] were taken for the evaluation
of the ASV and anti-spoofing tasks. ASVspoof 2017 was
designed based on RedDots [22], [23] under various envi-
ronments. The detailed information is listed in TABLE I.
ASVspoof 2019 was designed to evaluate logical access (LA)
and physical access (PA), both of which were derived from
VCTK. LA contains bona fide speech of real-world record-
ings and spoofed speech data generated by using 17 differ-
ent TTS and VC systems. Speech data of PA is assumed

TABLE 2. Profile of ASVspoof 2019 PA.

to be captured by a microphone in a physical, reverber-
ant space. Replay spoofing attacks are recordings of bona
fide voices which are assumed to be captured, possibly
surreptitiously, and then re-presented to the microphone
of an ASV system using a replay device. In contrast to
ASVspoof 2017, PA of ASVspoof 2019 was constructed
from a far more controlled simulation of replay spoofing
attacks, e.g. smart home devices, whose detailed information
is presented in TABLE 2.

B. EVALUATION METRICS
Equal error rate (EER) is a commonly used criterion to eval-
uate the performance of the joint system on speaker verifica-
tion and spoofing detection. As for speaker verification task,
EER is the error rate for a specific value of a threshold where
the false rejection rate (FRR) is equal to the false acceptance
rate (FAR). False rejection is a target speaker that erroneously
classified as an impostor. False acceptance is the opposite
case when an imposter is misclassified as a target. In anti-
spoofing task, false rejection is a bona fide utterance that is
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TABLE 3. CNN Architecture of the unified network.

classified as spoofing, while false acceptance is a spoofing
utterance that is discriminated as bona fide.

For the joint ASV and anti-spoofing system, it can only
be accepted when an utterance is classified as target speaker
and bona fide. The false rejection is thus the case that a bona
fide utterance from the target speaker is discriminated as the
hypothesis H(χ,η) in Section II. A. The false acceptance is
an utterance from the hypothesis H(χ,η) is discriminated as a
bona fide utterance from the target speaker.

C. FEATURES
Three different features were extracted for ASV and
anti-spoofing, log mel filter bank (Fbank), mel-frequency
cepstral coefficients (MFCC) and constant Q cepstral coef-
ficients (CQCC). After removing the silent parts by voice
activity detection (VAD), a frame-length of 25ms and
15ms sliding window was applied to extract acoustic fea-
tures. The Fbank feature was 128-dimensional and MFCC
was 19-dimensional with 1st and 2nd order delta features
(57-dimension in total). For the problem that each utterance
had different numbers of frames, a 10 frames’ length with
3 frames’ sliding window was applied on the frame-level
features to divide each utterance into several fragments with
the same size. Given the good performance of CQCC on anti-
spoofing, 30-dimensional CQCC with its 1st and 2nd order
delta features (90-dimension in total) were also extracted as
input features.

D. NETWORK ARCHITECTURES
We used three different network architectures with
cross-entropy/triplet loss to extract embedding vectors. One
of the network was convolutional neural network (CNN)
followed by a two-layer fully-connected for classification
purpose. The detailed architecture of CNN is given
in TABLE 3.

Another network was a six-layer fully-connected DNN
network. The output of the embedding layer is also called d-
vector [24]. The architecture of DNN is shown in TABLE 4.

The third architecture was time-delay deep neural network
(TDNN) [25]. The embedding vector extracted from TDNN
was also called x-vector [26]. The TDNN structure we used
was the same as that in [26] and was shown in TABLE 5.
The embedding vectors from TDNNwe used were from layer
Segment6.

TABLE 4. DNN Architecture of the unified network.

TABLE 5. TDNN Architecture of the unified network.

DNN/CNN/TDNN

Cross-entropy/
Triplet

Embedding

DNN classifier/
LDA-PLDA

FIGURE 7. The overall framework and its options of joint system.

The overall framework of our joint system is shown in
FIGURE 7. Boxes with slashes show the options of network
architectures, objective losses or back-end classifiers.

After extracting the embedding vectors, two methods of
classification were applied on the back-end of the extracted
vectors (see the top-right part of FIGURE 7).

One was two 3-layer adaptive DNN classifiers which were
utilized to train two sub-networks on speaker verification and
spoofing detection tasks separately. In enrollment and testing
stage, 20 utterances per speaker from the evaluation set were
taken for speaker enrollment [16].

The other was LDA-PLDA. The LDA was used to reduce
the dimension of extracted x-vectors to 200. For PLDA, there
are two choices when performing ASV and anti-spoofing.

1) Train two PLDAs on the x-vectors, one for speaker
verification and the other for anti-spoofing. The final results
come from the fused discrimination of the two PLDAs;
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TABLE 6. Results on Asvspoof 2017 (EER [%]) where The Baselines of Cascaded Combination and Gaussian back-end Fusion are from [17].

TABLE 7. Results on Asvspoof 2019 (EER [%]).

2) Train one PLDA on the x-vectors to discriminate
whether the tested speech was the target speaker’s bona fide
utterance or not. It is clear to see that this choice is just what
we want to make a joint final decision.

IV. RESULTS AND DISCUSSION
TABLE 6 presents the EER results obtained from differ-
ent features with CNN, DNN or TDNN networks based on
cross-entropy or triplet loss on ASVspoof 2017. A cascaded
combination and joint decision of Gaussian back-end fusion
were taken as baselines as reported in [17]. For ASV, our
joint system achieved the best EER of 4.43% on speaker
verification by using MFCC+CQCC and TDNN with triplet
loss, while [17] achieved the EER of 5.36% by using MFCC
with cascaded decision approach and 3.26% with a Gaussian

back-end fusion. For anti-spoofing, our system achieved an
EER of 11.89% by using MFCC and TDNN with triplet loss
compared to 24.35% in [17]. Detailed comparison is shown in
TABLE 6 and the results of the same group of experiments on
ASVspoof 2019 are given in TABLE 7. By reading TABLE
6 and TABLE 7, several conclusions could be drawn as listed
below.

1) For the results of speaker verification and anti-spoofing
with cross-entropy and triplet loss, the best performance
always came from MFCC+CQCC, which demonstrated the
advantage of using multiple features w.r.t. using one single
feature. ASV could benefit from CQCC while anti-spoofing
could also benefit from MFCC.

2) The performance of TDNN was better than those of
CNN and DNN in both joint or the two separate tasks

VOLUME 8, 2020 7913



J. Li et al.: Joint Decision of Anti-Spoofing and Automatic Speaker Verification

(i.e. ASV and anti-spoofing), thanks to its strong ability
on modeling time series data. Therefore, only TDNN was
experimented with triplet loss.

3) By replacing cross-entropy with triplet loss, the per-
formance of TDNN was further improved, which validated
the idea of the paper: multi-task learning with triplet loss
improves joint decision.

4) Advantages were also overserved from training a single
PLDA for joint decision over training two separate PLDAs
for each task and fusing them. One possible reason could
be speaker identity and spoofing information were already
merged together in the extracted x-vectors from TDNN,
which could confuse PLDA when the PLDA was only
designed for each of the two tasks.

5) The consistent performance of the proposed approach
on both ASVspoof 2017 and ASVspoof 2019 justified the
robustness of the algorithm across data distributions.

V. CONCLUSION
In this paper, a multi-task learning approach based on
contrastive loss was proposed and experimented to make
a joint decision of ASV and anti-spoofing. Firstly, embed-
ding vectors containing speaker identity and spoofing infor-
mation were extracted by deep networks with triplet loss.
LDA-PLDA was trained subsequently from the extracted
embedding vectors to make the final discrimination. The
performance of the proposed approach was evaluated
on the ASVspoof 2017 v2.0 and ASVspoof 2019 PA
datasets. The experimental results showed that the joint
decision approach outperformed some recently proposed
baselines.

The proposed approach validated the feasibility of the
contrastive loss with deep learning on the multi-task learning
of ASV and anti-spoofing. In a general view, the work pro-
vided a primary idea for modeling multi-task learning, joint
decision and contrastive loss. The further work will study
other ways of choosing triplets or other margin functions to
further improve the performance on joint decision.
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