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ABSTRACT The node selecting problem of traffic network is a significant issue and is difficult to be
solved. In this paper, an artificial slime mold method is proposed to help us solve the problem. First,
the chief components of an artificial slime mold are introduced to simulate the foraging behavior of a
true slime mold, including external food sources, plasmodium, myxamoeba, nucleus, and nutrients. Then
the learning mechanism of nutrient concentration for the artificial slime mold is illustrated, though there
is no brain or neuron in its body. After that, the node selecting approach is described according to the
propagation capabilities of nodes. Second, the algorithm flow is designed to show how to solve this kind
of complex selecting problem. The algorithm flow to select important traffic nodes by artificial slime mold
is composed of 4 main steps, including initialization, food searching, feeding, and selecting for output. Third,
a comprehensive example is designed and derived from references to certificate that the proposed artificial
slime mold can help us select important traffic nodes by their generated traffic topologies. The contributions
of this paper are important both for traffic node selecting and artificial learning mechanism in theoretical
and practical aspects.

INDEX TERMS Traffic network, node selecting, artificial intelligence, slime mold, foraging behaviour.

I. INTRODUCTION
Node selecting is often used in all kinds of networks, includ-
ing traffic networks, to help us select the most important
nodes or edges. As we all know, the important nodes or edges
in a traffic network play a significant role in network opera-
tion. Reference [1] studied the node importance evaluation of
the high-speed passenger traffic complex network based on
the Structural Hole Theory. Congestion or disturbance taking
place in the important nodes or edges will easily soon be
propagated to other parts of the traffic network, and the traffic
network efficiency will also be reduced. The importance of
nodes or edges is strongly related to their positions in the
network, i.e., [2] designed a location-aware and node ranking
value-assisted embedding algorithm for one-stage embedding
inmultiple distributed virtual network embedding. Hence, the
propagation effect is decided by the network topology and
the importance of a node selecting, namely the positions of
different nodes or edges. To solve this problem, [3] used deep
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learning to research incorporating network structure with
node contents for community detection on large networks.

These researches verified that the node selecting of the
traffic network should consider their importance, and the
selecting problem is, in essence, a learning problem [3].
For a traffic network, node importance is connected with
its propagation capability under all kinds of disturbances.
Reference [4] put forward a DeepRank to improve unsuper-
vised node ranking via link discovery. Hence, to evaluate the
propagation capability of a traffic node may help us analyze
the spreading dynamics and reconfigurable topology. In early
1995, [5] surveyed basic routines for the rank-2k update with
2D torus vs reconfigurable network. Spreading dynamics and
reconfigurable topology of traffic networks are so pervasive
that this aspect of researches might shed their light on most
networks in the real world. Reference [6] gave some node
centrality indices in foodwebs for rank orders versus distribu-
tion, and [7] described a virtual network embedding through
topology-aware node ranking.

To rank the node importance, there are many tradi-
tional measures, including degree [1], location-aware [2],
node content [3], link discovery [4], node centrality [6],
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topology-aware [7] and many other topology-based meth-
ods [8]. For example, [8] showed the impact of rank attack
on network topology of routing protocol for low-power and
lossy networks. Different methods can get different evalua-
tions, bringing great difficulty to the optimizing and schedul-
ing of traffic networks. Fortunately, in the past decade,
some researchers used a strange living thing, slime mold,
to solve the traffic network optimization problems. In 2010,
Atsushi, et al., published a paper in Science about the rules
for biologically inspired adaptive network design, where a
slime mold is applied to successfully solve the traffic plan-
ning problem of the Tokyo railway [9]. In the same year,
Adamatzky et al. also used a physarum to build motorways to
route M6/M74 through Newcastle [10]. In 2011, Adamatzky
et al. again depicted approximating Mexican highways with
slime molds [11].

The contributions in this paper are as follows. First, a node
selecting model based on the propagation topology of the
traffic network is proposed after the background analysis.
Second, an artificial slime mold is proposed to rank the
network nodes by their propagation capabilities and topol-
ogy importance. The proposed artificial slime mold includes
the main structural organizations of a true slime mold and
can simulate its expansion and contraction behavior. Third,
a comprehensive example is presented to test the proposed
model, and the results reveal that the artificial slime mold
can help us rank the traffic network nodes. Finally, the paper
is summarized and future research directions are pointed
out. The contributions of this paper are of both theoretical
and practical importance for traffic network optimization and
artificial intelligence theory.

II. RELEVANT WORK
In the past two decades, there are numerous researches and
investments in the traffic network and node selecting. Some
of them have been deployed in practice like railway, highway,
and road systems [1]–[11].Well-designed traffic systems pro-
vide passengers with the least time consumption on traveling
within destination areas through variable route selections.
Reference [12] stated a super edge rank algorithm and its
application in identifying opinion leaders of online public
opinion supernetwork, and [13] concerned a new mutually
reinforcing network node and link ranking algorithm. They
applied ranking algorithms mainly on the important nodes
and areas to optimize the traffic topology according to the
total traffic volume. Other researches typically used spread-
ing ability or destructiveness to rank nodes which have been
proven in practice to effectively utilize traffic space and
decrease traveling time. Reference [14] ranked the spreading
ability of nodes in the network core, and [15] maximized
the destructiveness of node capture attack in wireless sensor
networks.

Most of the research work above focused on how to
detect the node importance to rank node [1]–[15]. However,
those methods still not solved some problems. The selecting

of traffic nodes is decided by the whole traffic network
where unreasonable topology will easily lead to higher traffic
congestion while disturbance or congestion. Also, this may
lead to the most known phenomenon of network conges-
tion or unbalanced traffic flows. Reference [16] proposed a
GEVD-based low-rank approximation for distributed adap-
tive node-specific signal estimation in wireless sensor net-
works, and [17] introduced FRANK as a fast node ranking
approach in large-scale networks. Some researchers found it
is important to collect the data on the traffic network and
adopt a learning mechanism to realize topology develop-
ment [3], [4]. [18] introduced an efficient mapping algorithm
with a novel node-ranking approach for embedding virtual
networks, and [19] used a spectral learning algorithm to
reveal the propagation capability of complex networks. [20]
described an inverse-square law to identify influential nodes
in complex networks, and [21] employed the evidence theory
to identify node importance.

But it is more difficult to efficiently evaluate the propa-
gation capabilities by network data, i.e., [22] described an
automated optimization of intersections using a genetic algo-
rithm. The researches above applied a lot of complex artifi-
cial intelligence algorithms, such as deep learning [3], [4],
spectral learning [19], genetic algorithm(GA) [22]. In 2010,
a novel slime mold method was used for traffic network opti-
mization [9]–[11]. After that, more researchers began to apply
it to solve the optimization problems of traffic networks.
In [23], Andrew Adamatzky’s research team again applied an
improved physarum polycephalum algorithm for the shortest
path problem. Reference [24] designed an efficient physarum
algorithm for solving the bicriteria traffic assignment prob-
lem, and [25] considered physarum machines to imitate a
Roman road network with a 3D approach.

Different from most living things using a brain or neurons
to learn about the environment, the slime mold can only learn
by a single-cell structure without any brain or neurons. The
above learning algorithms [3], [4], [19], [22] are different
from the single-cell slime mold, and cannot illustrate its
operation mechanism. More importantly, the described slime
mold in our paper is an artificial intelligence algorithm to
solve the planning problems of traffic networks by simulating
the foraging behavior of a real slime mold, rather than a true
slime mold in [9]–[11], [23]–[25].

Although [9]–[11], [23]–[25] got great advantages in solv-
ing the network planning problem by a real slime mold, there
are still some apparent shortcomings. First, it will cost a lot
of time for a real slime mold to find a feasible solution (such
as 26 hours in [9], 70 hours in [11], and 96 hours in [23]).
Second, solving precision is too low where the petri dish is
used as a traffic map and the oats are applied as traffic nodes.
Third, it is very difficult to directly operate real slime mold
to solve these problems and the whole experimental process
needs professional biological skills and expensive equipment.
Fourth, a lot of space, time, and materials should be spent
in other activities not directly related to the experiment,
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such as the cultivating of slime molds, living environment
control, and mass data processing. Additionally, until now,
the researches on both the node selecting of traffic networks
and slime mold’s foraging behavior are still very few.

Hence, this paper gives us a new method to solve the node
selecting problems of traffic networks, and the proposed arti-
ficial intelligence algorithm will help us in similar problem
solving and decision making.

III. MODEL DESCRIPTION
A. CHIEF COMPONENTS OF ARTIFICIAL SLIME MOLD
The proposed artificial slime mold is based on refer-
ences [9]–[11], [23]–[25] and simulates the foraging behavior
of a true slime mold to solve the node selecting problem.
In references [9]–[11], [23]–[25], an experimental system of
slime mold includes dish, map, external food sources, and a
slime mold, where a slime mold composes of a plasmodium,
multiple myxamoebas, one or more nucleus, and nutrients,
as shown in Figure 1.

FIGURE 1. An experimental system of slime mold [11].

In our artificial slime mold, the chief components are as
follows.

i) External food sources. They are around the artificial
slime mold and act as the searched goals of traffic network
nodes. The slime mold will look for all the external food
sources to get the nutrients to support its survival. The found
external food sources will be digested to be nutrients in the
body of an artificial slime mold.

ii) Plasmodium and myxamoebas. They are the main tools
for problem solving, and the main operations are expan-
sion and contraction. A single-cell plasmodium without fixed
size or shape can freely move on the food surfaces. The
tentacle-shaped myxamoebas are the deformed structure of
the plasmodium, and multiple myxamoebas can continuously
search the external food sources in parallel. The plasmodium
and myxamoebas will digest the found food sources and
transport them into its body through many myxamoebas by
a parallel probability searching algorithm.

In food searching, the longer and bolder myxamoebas
are very helpful to increase transporting capacity and the
searching probability to find more food sources but will cost

more energy and nutrients at the same time. On the contrary,
shorter and shiner myxamoebas will consume less but can
only find less food. After food searching, the plasmodium and
myxamoebas will tell us the importance of nodes or edges in
the traffic network.

iii) Nucleus. It acts as the center of artificial slimemold and
the starting point of food searching, and a slimemold can only
move or feed around the nucleus or it will not survive without
the nucleus. The nucleus is often acting as the origin node of a
traffic route or the most important node in the traffic network.

iv) Nutrients. They provide the most significant sources
of energy and materials for the survival of slime mold and
play an important role in the learning mechanism of artificial
slime mold or information transmission between different
myxamoebas. The nutrients all over the slime mold’s body
come from the external food sources by feeding behavior and
will be continuously consumed in almost all life activities of
slime mold, such as food searching, moving, the expanding
and contracting of myxamoebas, feeding and digesting, etc.
The nutrients act as the information media for its parallel
computing.

Each component above of the artificial slime mold will
collaboratively work in problem solving, and the whole
solving process for the traffic network includes two main
stages, namely the food searching stage and feeding stage.
The first food searching stage makes myxamoebas contin-
uously expand around the nucleus to search external food
resources, and the expanding behavior is constrained around
the nucleus. The second feeding stage makes myxamoebas
continuously contract to form an optimized traffic network to
transport the absorbed nutrients from the food source nodes
into its body.

The area of a slime mold will continuously change from
small to big in the food searching stage. The artificial slime
mold can sense external nodes in its myxamoebas’ expanding
and interact with the surrounding environment, to simulate
the biochemical reactions betweenmyxamoebas and environ-
ment to identify food sources or non-food sources.

Conversely, the area of a slime mold will continuously
contract from big to small in the feeding stage. Similar to a
true slime mold digesting the external food sources and trans-
porting the digested nutrients into its body, the artificial slime
mold can also form an optimal traffic network by a probability
search algorithm and parallel computing mechanism.

There is a self-learning mechanism in the artificial slime
mold to search multiple food sources and transport the nutri-
ents frommultiple food sources into its body at the same time.
The slime mold will deform its plasmodium and myxamoe-
bas to form an optimal network structure according to the
nutrient concentration, that is, the routes with higher nutrient
concentration are where the plasmodium and myxamoebas
are. After a lot of computing iterations of computing for
expansion and contraction, the artificial slime mold will form
an optimal topology as a feasible solutionwith high efficiency
and robustness.
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B. LEARNING MECHANISM OF SLIME MOLD
A traffic network to be solved can be described as a directed
graph G = (N ,E) with n nodes and multiple edges, there is

G = (N ,E) (1)

The N = [(xi, yi)]n is a node matrix composing of n traffic
nodes; the E = {eij|i, j ∈ N } is an edge matrix describing the
relationship between the nodes. For all known traffic nodes,
the distance matrix of edges can be calculated as:

D = [dij]n×n = [|eij|]n×n = [
√
(xi − xj)2 + (yi − yj)2]n×n

(2)

i) Parallel computing. Multiple myxamoebas search traffic
nodes by parallel expanding in multiple directions, and then
transport the nutrients into its body by parallel contracting
after the finding of traffic nodes. Similar to a true slime mold,
multiple myxamoebas in an artificial slime mold try to find
the traffic nodes in parallel as many as possible. Multiple
myxamoebas will collaborate to search all external traffic
nodes in all directions, and share information of all traffic
nodes and myxamoeba routes.

As a time-varying structure, the traffic network G can be
noted as a n× n matrix at the time t , there is

µ = [µij(t)]n×n (3)

where

µij =

{
1, there is a direct edge from node i to j
0, there is no direct edge from node i to j

Assuming wij is used to describe the flow volume of an
edge between node i and j at the time t , the traffic flow in
every edge eij will also continuously change to form an n× n
weight matrix, there is w = [wij(t)]n×n.
ii) Iterative computing. The myxamoebas will continu-

ously expand to find traffic nodes and contract into optimal
transporting routes to connect all nodes with time-varying.
After many iterations of expanding and contracting, it is pos-
sible to form an optimal traffic network. For all myxamoebas,
it is not compulsory to repeatedly pass through all nodes they
have passed. At the end of iteration computing, the error
varying and topology changing will become less and less,
then the solution can be output as a feasible answer.

The nutrient concentration matrix on the edge V =

{eij|i, j ∈ N } at time t is

τ (t) = [τij(t)]n×n (4)

In every iterative computing, there are two ways to adjust
the nutrient concentration, namely enhancing operation and
decreasing operation.

In the enhancing operation, the nutrient concentration τij(t)
on the corresponding traffic route eij will be enhanced to
simulate nutrient transportation on the shared traffic routes by
multiple myxamoebas in a true slime mold. Then the nutrient
concentration τij(t) on the route will be higher. There is

τij(t) = τij(t − 1)+1ij(t), 1ij(t) ≥ 0 (5)

In the decreasing operation, the nutrient concentration
τij(t) on a traffic route vij will be reduced to simulate the nutri-
ent consumption and energy expenditure in the life activities
of a true slime mold. There is

τij(t) = τij(t − 1)− σij(t), σij(t) ≥ 0 (6)

After iterative computing, the routes can be easily ranked
by the values of nutrient concentration, which will help us
rank traffic nodes.

iii) Shared computing. Although there is no brain or neuron
in its body, a single-cell slime mold can still transmit infor-
mation to learn the environment. The nutrient concentration
in artificial slime mold can timely provide information about
traffic nodes and transporting routes to other myxamoebas.
If there is no traffic node in expanding areas, themyxamoebas
will only contract as a true slimemold used up all the nutrients
and energy on this area. Additionally, when a traffic network
node is found the myxamoebas will tend to use the already
formed transporting routes so as to further strengthen the
nutrient concentrations on the shared routes.

It is assumed that there are m myxamoebas traverse all
traffic nodes or edges, and the k(6 n 6 m) th myxamoeba
has traveled ck nodes. i1 ∼ ick are the nodes it passed through,
and the edge set of the k(6 n 6 m) th myxamoeba to form
its route Lk can be expressed as:

Lk = {ek12, e
k
23, . . . , e

k
l−1,l, . . . , e

k
ck−1,ck } (7)

where Lk is an arrangement of a subset in the edge set
E = {eij|i, j ∈ N }, and the last node ick is the present node
arrived. The whole route length of myxamoeba k(6 n 6 m)
will be calculated by formula (2), there is:

Dk =
ck∑
l=2

dkl−1,l =
ck∑
l=2

|ekl−1,l |

=

n∑
l=2

√
(xkl−1 − x

k
l )

2 + (ykl−1 − y
k
l )

2 (8)

All the m myxamoebas can be calculated in the order of
node number 1 ≤ k ≤ m, and each node will be solved every
time. All myxamoeba traffic routes can be summed up to form
the whole traffic network, that is:

L(t)= [Lk (t)]m
= [{ek12(t), e

k
23(t), . . . , e

k
l−1,l(t), . . . , e

k
ck−1,ck (t)}]m (9)

All myxamoebas can learn the route selection information
of the whole traffic network by the selection matrix, there is:

µ = [µk ]m = [[µkij(t)]n×n]m (10)

iv) Probability computing. The food searching process of
an artificial slime mold is by probable expanding, and the
feeding process to find an efficient traffic network is also by
probable routing. Hence, the myxamoebas can try different
topologies each time to expand the unexplored areas or to
contract to search for more efficient traffic networks.
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The myxamoeba learns two kinds of experience for route
searching. On the one hand, it learns its own experience by
a certain probability αkij(t) ∈ [0, 1], namely self-learning
experience. On the other hand, it learns the experience
from the neighbor’s myxamoebas by another probability
βkij(t) ∈ [0, 1], namely the neighbor-learning experience.
So all myxamoebas will learn from their own and their neigh-
bors to collaboratively build a global optimal route L∗ =
[L∗k ]m = [{ek12, e

k
23, . . . , e

k
l−1,l, . . . , e

k
ck−1,ck

}]m, and the next
transiting probability pkij(t) ∈ [0, 1] of eachmyxamoeba k can
be expressed as a sum of two kinds of experience. There is,

pkij(t) = α
k
ij(t)+ β

k
ij(t) (11)

αkij(t) ∈ [0, 1] (12)

βkij(t) =
τ kij (t)
n∑

i,j=1
τ kij (t)

(13)

where βkij(t) is related to the nutrient concentration τ kij (t),
so each myxamoeba can easily learn the routes with higher
nutrient concentrations; butαkij(t) is used to avoid prematurely
trapping in the local optimal solutions and improve the global
searching ability.

v) Artificial computing. The so-called learning mechanism
of artificial slime mold can imitate the true slime mold to
identify and learn food sources and other non-food objects.
After a very long evolutionary process, learning mechanism
has been built in slime molds, that is why [9]–[11], [23]–[25]
used them to solve traffic planning problem. Similarly, by par-
allel computing, iterative computing, shared computing, and
probability computing, the proposed artificial slime mold can
learn and identify the characteristics of food and non-food
through affinity and biochemical reactions and allows differ-
ent myxamoebas be able to learn the experience of its own
and its neighbors to form an optimal traffic network topology.
The more important thing is a generated optimal network
topology reflects the propagation capability of the node, so it
is believable to apply artificial slime mold to solve the node
selecting problem of traffic network.

C. NODE SELECTING BY PROPAGATION CAPABILITY
The node selecting problem of traffic network is, in essence,
to identify the importance of nodes or edges on a network
topology. According to formulas (1)∼(3), the importance of
traffic network nodes or edges depends on their positions in
the existing topologies, and some indexes can be derived from
the position of nodes and edges.

First, node degree can directly give a reference for node
importance [3]. The greater the traffic volume or the more the
edges pass through a node i, the more important the node is.
Its definition is as follows:

Dgi(t) =
∑

j
µij(t) (14)

where Dgi(t) is the degree of traffic node i. To apply it
in networks with different sizes, Dgi(t) needs to be further

transformed into a ratio of the network size. Because in a net-
work with n nodes, at most n−1 neighbor nodes may connect
to the node i where max{Dgi(t)} = n − 1, the importance
degree index of a node i can be given as:

Dgi(t) =
Dgi(t)

max{Dgi(t)}
=
Dgi(t)
n− 1

(15)

Second, besides the number of connecting edges, the flow
volume is also an important attribute of an edge, namely the
closeness index for node importance [4]. Letwij(t) be the flow
volume of station node i, describing the load of the traffic
network. Hence, the flow volume of a node composes of all
flows running through it, that is

wi(t) =
n∑
j=1

wij(t) (16)

where wij(t) includes the flow volume of in and out traf-
fic on edge eij. So the closeness index can be defined
as follows:

Cl i(t) =
wi(t)∑n
i=1 wi(t)

(17)

Third, the betweenness index notices that the shortest
routes often have an important influence in the traffic net-
work [6]. The more the shortest routes connecting to a node i,
the more important the node i is. Let λjk (t) be the number of
the shortest routes from node j to k passing through a node i
at the time t . The betweenness index Bti(t) of a traffic node i
can be calculated as

Bti(t) =
n∑
j=1

n∑
k=1

λjk (t) (18)

Furthermore, in a network with n nodes, at most n − 1
neighbor nodes may connect to a node i, and the betweenness
degree index of a traffic node i can be given as follows:

Bt i(t) =
Bti(t)∑n
i=1 Bti(t)

(19)

In a complex network, the importance of fringe nodes and
central nodes is mostly not equal, and the topology connec-
tivity can be used to evaluate the node’s importance. If the
average degree of a network topology is relatively higher,
the network is more complex.

Forth, different from the indexes above depending on their
relative positions in the existing topologies, we try to select
the important nodes by a slime mold according to the prop-
agation capabilities of nodes. In our opinion, an important
node easily leads to a simpler topology connecting all nodes,
which reflects its propagation capability or spreading abil-
ity. After several iterations, all nodes may be linked in a
newly generated network by multiple myxamoebas. When
the stopping condition of the solving process is satisfied,
an optimal topology connecting all the nodes will be output.
Now, the total degree of the traffic network can be used
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to evaluate the complexity of the generated network of the
node i:

Dgi(t) =
∑

j
Dgj(t) (20)

Then the number of all edges on the generated network of
the node i can also be gotten

Ei(t) =
∑

j

∑
k
µjk (t) (21)

Then the total distance of all myxamoebas will also be
gotten according to formula (2), and the degree index in
formula (15), closeness index in formula (17), and between-
ness index in formula (19) can all be gotten to evaluate the
generated networks.

According to the index (20) above gotten by artificial
slime mold, a useful new index can be gotten, that is the
average degree of the network originated from node i, called
as redundancy rate index here:

Rri = 6jDgj(t)/n (22)

Different from the degree index, closeness index and
betweenness index of nodes above, the proposed redundancy
rate index depicts the propagation capability or spreading
ability of a node i by its originated traffic network. The
redundancy rate index includes the total degree of all nodes
and the total number of nodes in its generated network, which
can help us rank all nodes by the calculating of an artificial
slime mold.

D. OBJECTIVE FUNCTION OF NODE SELECTING
The whole route of the traffic network includes the total
length of all m myxamoebas and subtracts the length of
overlapping paths of the myxamoebas.

D6m =
m∑
k=1

Dk −
n∑

i,j=1

dij|overlap (23)

After a lot of computing iterations, each node can be
originated to form an optimal traffic network with different
importance degree. In each case, the m myxamoebas can
obtain the shortest routes traversing all nodes:

L∗ = [L∗k ]m = [{ek12, e
k
23, . . . , e

k
l−1,l, . . . , e

k
ck−1,ck }]m (24)

By the optimal routes L∗, it is easy to get the importance
index of each network topology as the objective function.
This selecting method can evaluate the important capability
of each node to form an optimal network with the shortest
routes. When one or more failure takes place in a traffic
network, different nodes can form different topologies to
connect all nodes with the shortest distance instead of only
depending on their relative positions in existing topologies.
There is:

obj : Rank{max(Dgi),max(Cl i),max(Bt i),

min(Rri),min(D∗i6m )}

st : i, j ∈ (1, n), k ∈ (1,m), L ∈ [0,Lmax] (25)

Unlike the traditional node selecting methods with a single
importance index [1]–[8], [12]–[21], the objective function is
a multi-objective function with different objectives and con-
straints. The multi objectives can help us rank different nodes
by their positions and propagation capabilities according to
their originated optimal network topologies with shortest
routes traversing all nodes. This novel selecting method can
tell us which node is the most suitable for building an optimal
network around itself. When an attack or disturbance takes
place on any node or edge, the proposed selecting method
can help us learn the propagation mechanism and find which
node is subject to the attack or disturbance. At the same time,
the new selecting method can also help us build a more robust
traffic network by the iterative calculating of an artificial
slime mold.

IV. ALGORITHM DESIGN OF ASM
A. STEP 1: INITIALIZATION STAGE
Initialization is the first step of the ASM algorithm. It is to
initialize the iterative counter of our algorithm, the parameters
of the traffic network G = (N ,E) to be solved, including the
positions of all n nodes for selecting and the distance matrix
D = {|eij||i, j ∈ N } between all nodes. At the start time t = 0,
the node sets which m myxamoebas have passed through are
set to be empty, there is L = [Lk ]m = [{}]m, and the length
of every myxamoeba is Dk = 0. The nutrient concentration
on each edge is set as τij(0) = 0, meaning no nutrient on
transporting route at the start.

Set the affinity parameter ξi > 0 of the food source node i,
and the affinity matrix is initialized as ξ = [ξi]n. The more
nutrient the traffic node i includes, the larger the ξi is; on
the contrary, the less nutrient the traffic node i includes,
the smaller the ξi is.
Set the consumption parameter ζij > 0 on the edge eij and

thematrix of nutrient consumption rate is initialized to be ζ =
[ζij]n×n. The greater the nutrient consumption on the traffic
route vij is, the bigger the ζij is; otherwise, the less the nutrient
consumption on the traffic route vij is, the smaller the ζij is.
In this stage, the expanding speed and contracting speed of

the myxamoebas are set to be v+ and v− respectively. There
are v+ > v− when the myxamoebas expand, and v+ < v−

when the myxamoebas contract.

B. STEP 2: FOOD SEARCHING STAGE
The food searching stage is the second step of the ASM
algorithm where the myxamoeba will expand. Selecting the
nodes to be ranked as the iteration counter, there are n
iteration circulations. Set v+ > v−, the m myxamoebas
will expand from the nodes to be ranked to other nodes,
simulating the food searching behavior of a true slime mold.
Moreover, the expansion operation of the plasmodium is con-
strained by the originated nodes and the capacity of nutrients.

At the time of t , when a node is selected by a myxam-
oeba into its route Lk (t) = {ek12(t), e

k
23(t), . . . , e

k
l−1,l(t), . . . ,

ekck−1,ck (t)}, the selection parameter will be µkij(t) = 1
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meaning that the edge eij ∈ E is selected into the route Lk ;
otherwise, there is µkij(t) = 0 meaning that the edge eij ∈ E
is not selected into the route Lk . The selecting matrix of
myxamoeba Lk can be gotten as µk = [µkij(t)]n×n. When
µkij(t) = 1, the nutrient concentration on the edge eij ∈ E
of the myxamoeba k will be increased at a speed 1k

ij(t) > 0
according to formula (5), meaning more nutrients flowing on
the edge eij. Conversely, no matter µkij(t) = 1 or µkij(t) = 0,
the nutrients will be continuously consumed at a speed σ kij (t)
by formula (6), often σ kij (t) ≤ 1

k
ij(t). The nutrient concentra-

tion on each edge will be updated.

τij(t) = τij(t − 1)+
m∑
k=1

µkij(t)1
k
ij(t)−

m∑
k=1

σ kij (t) (26)

As we can see, m myxamoebas will connect all nodes,
and the nutrient concentration on the shared transporting
routes by multiple myxamoebas will be strengthened by
1k
ij(t) − σ

k
ij (t) ≥ 0. Different myxamoebas can learn the

node information and route experience of eij, by which the
connections between these shared routes will be enhanced.
Generally, 1k

ij(t) and σ
k
ij (t) are positively correlated with the

affinity ξi of traffic nodes, and negatively correlated with the
distance dij of edges. Hence, the richer the affinity ξi is and
the shorter the distance dij on the edge eij is, the higher the
nutrient concentration τij is.

After the expansion operation of myxamoebas, the origin
node to be ranked can connect all traffic nodes by an artificial
slime mold, and the shortest searching route will be gotten to
prepare the next feeding stage. Some indexes of the traffic
network will be calculated, and different nodes can get dif-
ferent network topologies with different indexes according to
formulas (15), (17), (19), and (22).

C. STEP 3: FEEDING STAGE
After finding all traffic nodes connecting the originated nodes
to be ranked, the artificial slime mold will further search
the optimal network topologies for each originated node
and evaluate the solution to get an optimal traffic network
for selecting. In the third step, each node to be ranked can
be taken as a calculating iteration of an outer loop, and
a calculation error can be predefined as an end condition
for the feeding stage. The myxamoebas will start from the
selected nodes to be ranked to connect all nodes and try to
find an optimal topology. If the calculation is not finished,
the myxamoeba k(1 6 k 6 m) begins to form a route from
the original node, and all myxamoeba routes form a traffic
network L(t) = [Lk (t)]m. At the beginning of the feeding
stage, the routes of myxamoeba k(1 6 k 6 m) will be set as
an empty set L(0) = [Lk (0)]m = [{}]m.
The most important thing in this step is myxamoeba con-

traction, where the total number m of myxamoebas consti-
tutes a calculating loop in the middle layer, trying to search
for an optimal solution for each node to be ranked. According
to the learning mechanism, the myxamoebas will consume
the nutrients τij(t) in the whole process and begin to form

an optimal traffic network to connect all nodes to the orig-
inal node. The nutrient concentration of myxamoebas will
indicate the myxamoebas how to learn the experience of
its own by formula (12) or the experience of neighbors by
formula (13).

The nutrient concentrations on the optimal routes will be
higher and higher, or vise versa. Then, the traffic network will
continue to be optimized according to the learning mecha-
nism. After several iterations of computing, each myxamoeba
learns and contracts by the two probabilities αkij(t) ∈ [0, 1]
and βkij(t) ∈ [0, 1], and then form an optimal solution for each
node to be ranked. The shortest distance and the objective
function can be calculated by formulas (23) and (25).

D. STEP 4: SELECTING FOR OUTPUT
After a lot of iterative computing, the solutions produced by
the learningmechanismwill be evaluated for ranking and out-
put. Different application cases can select different indexes as
the evaluation function, such as degree index in formula (15),
closeness index in formula (17), betweenness index in for-
mula (19), and redundancy rate index in formula (22), or
others. Those traffic topologies with low values of objective
function to connect the origin nodes will be shifted out, and
each node can select an optimal topology as its solution for
selecting.

According to the learning experience and solution eval-
uation, the optimal route L∗ of each myxamoeba will be
gotten by formula (24) to connect all nodes with an optimal
evaluation value. The finishing conditions will be judged
whether the predefined error is fit or the number of itera-
tions is reached. If not, the algorithm will return to repeat
the computing of step 2 and step 3. Finally, all nodes will
get an optimal traffic network originated from themselves
and related indexes of their optimal topologies can also be
gotten. Then, the node selecting can be output according to
the indexes of their optimal traffic networks.

A parallel and probabilistic searching method is employed
to solve the selecting problem of traffic network nodes pre-
venting itself from falling into a local optimum. In every
iterative computing, all myxamoebas will collaboratively get
an optimized solution to connect all nodes around the node
to be ranked. When the computing error between the latest
iterations is less than a preset threshold, the optimal solution
will be output to calculate its performance for node selecting.
Or the algorithm will return to the previous steps to continue
its calculating until the finishing conditions are met.

E. ALGORITHM FLOW
The algorithm flow to select traffic nodes by artificial slime
mold composes of 4 main steps, including initialization, food
searching, feeding, selecting for output. The myxamoebas
can randomly expand around the nodes to be ranked and
search all other traffic nodes in the food searching stage.
Then the myxamoebas will continuously contract around the
nodes to be ranked to optimize the traffic network in the
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feeding stage. The algorithm flow simulates the foraging
behavior of a slime mold in figure 1 and produces an optimal
solution for each node to be ranked which provides us an
effective reference on the propagation capability or spreading
ability of the selected node. The whole algorithm flow is
shown in Figure 2.

FIGURE 2. The algorithm flow of the artificial slime mold.

The proposed selecting method is different from traditional
selecting algorithms [1]–[8], [12]–[22] or other artificial
intelligence algorithms [4], [19], [22]. First, it comprises
the main components of a slime mold, such as external
food sources, plasmodium, myxamoebas, and nutrients, etc.,
as shown in figure 1. Second, it can simulate the basic expan-
sion, contraction, and learning operations of a true slime
mold interacting with the outer environment. Third, the artifi-
cial slime mold can use multiple myxamoebas to implement
parallel, probabilistic, and distributed computing to search
traffic nodes and form optimal traffic networks. Fourth, the
proposed myxamoebas can learn the experience from itself
and its neighbors to form an optimal traffic network for node
selecting. Fifth, it evaluates the performance of the optimal
traffic networks originated from every node to rank these
nodes by the propagation capability or spreading ability.

V. EXPERIMENT ANALYSIS
A. EXPERIMENT RESULTS
Here an experiment is designed to verify the proposed select-
ing algorithm, related data are selected according to the Mex-
ico highways in [11]. In 2011, Adamatzky et al. used 19 oat
flakes as 19 geographical locations of traffic nodes, then used
several true slime molds to draw approximating Mexican
highways [11]. Although the slime mold is so primitive that
there is no brain or neuron in its body, the experimental results

reveal that the true slime mole can successfully depict a map
of Mexico in about 70 hours, as shown in figure 1. Mexico
comprises 31 states and one government center in Federal
District, and there is a fast route linking main highways from
each city to Mexico City. People cost numerous years to
construct such a highway system, as shown in figure 3, but
a slime mold can draw an approximating Mexican highway
map in dozens of hours.

FIGURE 3. The experimental map of Mexico highway [11].

In our experiment, 36 cities in Mexico are selected to
test the artificial slime mold, 17 nodes more than the node
number 19 in [11], where the node No.1 is Mexico City,
as shown in figure 3. To simplify the experimental analysis,
some assumptions are made as follows.

i) Assuming that the positions and parameters of the
Mexican highway system follow the data in reference [11];

ii) 16 nodes are randomly selected from the 36 cities of the
Mexican highway system as an example for node selecting;

iii) For impartial comparison, the topology complexity is
required to be the same in each comparison, such as the
shortest route connecting all nodes without a return circuit.

iv) The number of myxamoebas is the same in each
comparison, and all myxamoebas can learn environmen-
tal information by the self-learning possibility 0.3 and
neighbor-learning possibility 0.4.

v) The end condition includes no more than 100 iterations
and the trialed error less than 0.0001.

At first, 3 myxamoebas are selected to generate a Mexican
highway system, and our artificial slime mold spends less
time(in about 10 seconds) in getting every optimal solution
similar to the results in [11], as shown in figures 4 (a)∼(l).
Our results in figure 4 are almost the same as the experimental
results in reference [11] (figure 1) and the true Mexican high-
way network (figure 3) by human of trial-and-error and recon-
struction for decades. The experimental results in figure 4
present different results by 3 myxamoebas originated from
16 nodes to be ranked, and each node can generate an optimal
traffic network with different shortest total distances. These
may help us rank these nodes by the propagation capability
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FIGURE 4. Simulated Mexican highway maps with 3 myxamoebas. (a) No.1; (b) No.2; (c) No.4; (d) No.5; (e) No.8; (f) No.10; (g) No.15; (h) No.17;
(i) No.20; (j) No.23; (k) No.24; (l) No.27; (m) No.30; (n) No.31; (o) No.34; (p) No.36.

or spreading ability according to their generated topologies,
and extend our mind to think about the learning mechanism
of non-nervous living things.

Our simulation results of the Mexican highway network
running on a personal computer are also based on the basic
principle of the slime mold foraging behavior in refer-
ences [9]–[11], [23]–[25]. Our results in figure 4 and the solu-
tions of [11] in figure 1 are so similar that the effectiveness
of the proposed artificial algorithm can be verified and our
artificial slime mold can successfully simulate the foraging
behavior of a true slime mold in [9]–[11], [23]–[25].

Now, the generated traffic networks can be used for node
selecting. The largest point in the center of figure 4 is
marked as No.1 of Mexico City, and the rests are other traffic
nodes in the Mexican highway system. All the subfigures in
figure 4 use 3 myxamoebas and get the same redun-
dancy rate 1.9444 from formula (22) for fair comparison.

Hence, these nodes will be ranked by their generated topolo-
gies with similar topology complexity.

The proposed artificial slime mold can feed itself around
the selected node by its propagation capability or spread-
ing ability, such as Mexico City in the center of the traffic
map in figure 4(a), and can form different topology con-
nections in figures 4 (a)∼(p) around these highway nodes
to be ranked. However, the total length of the highway net-
work is increasing from 1554.9905 to 1839.1251 in different
topologies of figure 4. According to the total distance in
figure 4, the most important nodes are in turn No.30 with
total distance 1554.9905 (in figure 4 (m)), No.24 with total
distance 1563.1985 (in figure 4 (k)), No.17 with total distance
1563.4889 (in figure 4 (h)), and No.1 with total distance
1573.0600 (in figure 4 (a)), verifying the node No.1 (Mexico
City) is an important node in the highway system. Node
No.30, No.24, and No.17 are also important nodes in the
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FIGURE 5. Simulated Mexican highway maps with 6 myxamoebas. (a) No.1; (b) No.2; (c) No.4; (d) No.5; (e) No.8; (f) No.10; (g) No.15; (h) No.17;
(i) No.20; (j) No.23; (k) No.24; (l) No.27; (m) No.30; (n) No.31; (o) No.34; (p) No.36.

highway system by their propagation capabilities or spread-
ing abilities, and they can be selected as the most important
highway nodes from all traffic nodes according to the total
distances of their generated topologies, i.e., No.30, No.24,
No.17, No.1.

Then, more trial-error results with 6 myxamoebas are
shown in figures 5 (a)∼(p), with different total distances
and the same redundancy rate. Compared with the results
in figure 4, the number of myxamoebs around the nodes
to be ranked in figure 5 increases from 3 to 6, and
more myxamoebas can help us find more routes with the
same redundancy rate. Compared with the true slime mold
in [9]–[11], [23]–[25], it is easier to adjust the experimental
parameters in our artificial slime mold algorithm to get more
solution results.

In figure 5, it is apparent that the traffic network topolo-
gies formed each time are slightly different because of the

propagation capability or spreading ability of different nodes
to be ranked, but the artificial system can find the opti-
mal solution with the same redundancy rate 1.9444 from
formula (22) after several computing iterations. The total
length of the highway network is increasing from 1605.4835
to 2224.6549 in different topologies. According to the total
distance in figure 5, the most important nodes are in turn
No.17 with total distance 1605.4835 (in figure 5 (h)), No.1
with total distance 1633.7076 (in figure 5 (a)), No.23 with
total distance 1636.7746 (in figure 5 (j)), and No.24 with
total distance 1638.9299 (in figure 5 (k)), verifying the node
No.1(Mexico City) is one of the most important nodes in
the highway system. Node No.17, No.23, and No.24 are still
important nodes in the highway system by their propagation
capabilities or spreading abilities, they can be selected as
the most important highway nodes by the total distances of
their generated topologies, i.e., No.17, No.1, No.23, No.24.
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Interestingly, the nodes No.17, No.1, and No.24 are selected
in two cases(3 myxamoebas, and 6 myxamoebas), and the
node No.17 is ahead of No. 1 in both experiments, which may
mean the node No.17 is very important.

Summing up the results in figure 4 and figure 5, the pro-
posed artificial slime mold is verified to be able to connect
all the nodes inMexican highway system after the continuous
learning and optimization of themyxamoebas, and get similar
results as [11] but with shorter calculating time(70 hours is
cost to get a solution in reference [11]). According to the
optimized traffic networks with the same redundancy rate,
the artificial slime mold can help us rank these nodes by the
propagation capability or spreading ability.

B. ANALYSIS AND DISCUSSION
The section of analysis and discussion considers the select-
ing comparisons with different myxamoebas, as shown in
figure 6 and figure 7, where figure 6 shows the total distances
of different network topologies originated from all 36 nodes
with myxamoeba number m = 3, 6; figure 7 presents the
selecting results of all 36 nodes with myxamoeba number
m = 3,6. Compared with the results in figures 1, 3, 4,
5, 6 and 7, the proposed artificial slime mold can accu-
rately simulate the foraging behavior of the real slime mold
in [9]–[11], [23]–[25], and takes advantages over those results

FIGURE 6. Total distance with different myxamoebas.

FIGURE 7. Selecting results with different myxamoebas.

in figure 1 [11] in solving speed and accuracy. The artifi-
cial slime mold can help us build different Mexico high-
way networks with less cost, and the complex biological
operations are all deleted from our method, such as the cul-
tivation of slime molds, experimental design, professional
biological operation steps, and data analysis for biologists
in [9]–[11], [23]–[25].

Even compared with traditional learning algorithms, such
as deep learning [3], [4], spectral learning [19], genetic algo-
rithm(GA) [20], the proposed artificial slime mold will help
us easily try more traffic topologies with better performance,
and at the same time with lower computational errors and
shorter solving period.

The most important thing, by the great advantages in topol-
ogy exploration, the artificial slime mold can help us select
important nodes by their propagation capabilities or spread-
ing abilities according to their originated network topologies.
Different indexes can be chosen as evaluation functions to
meet different requirements, such as degree index in for-
mula (15), closeness index in formula (17), betweenness
index in formula (19), and redundancy rate index in for-
mula (22), or others.

As we can see from figures 6 and 7, the proposed artificial
slime mold can get consistent selecting results in the traffic
networks with different myxamoeba numbers (m = 3, 6).
The proposed selecting method is different from traditional
selecting algorithms [1]–[8], [12]–[22], but our results will
help us to build the most efficient traffic routes in case of
traffic disturbances or great attacks. The selecting results are
based on the network topologies generated by the ranked
nodes themselves (figures 4, 5, 6, 7), and will provide more
significant information about the importance of a node in
a network topology. In our experiment, the importance of
fringe nodes(No.2, No.3, No.4, No.6, No.10, No.15, No.22,
No.36) is lower than that of central nodes (No.1, No.12,
No.13, No.17, No.18, No.24). Among them, No.17 seems
to be more important than No.1 with a better capability of
topology propagation in both cases(m = 3, 6), which can
also be seen in figure 4(h) and figure 5(h). Network manager
can use the tool to search the important nodes which are
often neglected, or the attackers will select these important
but neglected nodes as their first attacking objectives. The
comparison of algorithm performance is shown in Table 1.

TABLE 1. Comparison of algorithm performance.

Traditional selecting methods and optimization algorithms
for traffic networks often cost people a lot of time in repet-
itive planning, construction, and reconstruction. However,
the proposed artificial slime mold can help us easily try many
different traffic topologies with the shortest total distances
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and lowest redundancy rates. Because of its advantages in
topology exploration, it can also be used to solve the more
complex TSP problems, computer networks or routing proto-
cols, and multi-objective optimization problems.

VI. CONCLUSION
In this paper, a novel artificial slime mold is proposed to sim-
ulate the foraging behavior of a true slime mold and extends
our minds about the learning mechanism of single-cell living
things. Its biological behaviors are illustrated here, and it
is employed to solve the node selecting problem of traf-
fic network by the expansion and contraction mechanisms
similar to a true slime mold without a brain or neutron.
The mathematical model of artificial slime mold for node
selecting is built, and is verified by an experiment of Mexico
highways from [11]. The proposed artificial slime mold is
parallel, probabilistic, iterative, and distributed and is fully
different from the traditional artificial intelligence methods
or machine learning algorithms. After continuously expand-
ing and contracting of multiple myxamoebas, the proposed
artificial slime mold will help us solve the node-selecting
problem and give us an important reference to the propagation
capability or spreading ability of every node.

However, the proposed method still has some shortcom-
ings, i.e., the parallel computing on a computer is not com-
pletely the same as a true slime mold, and the amount
of computing will increase with the number of computing
nodes. In future directions, a computer biomimetic optimiza-
tion method for multiple slime molds may be interesting,
the optimization of a 3D network is also provocative, and an
engineering application will also be built to put the proposed
algorithm into practice. Furthermore, the proposed method
may have wider application prospects in decision-supporting,
social network, public opinion, mass emergency response,
fire/flood/earthquake/disaster escaping, and so on.
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