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ABSTRACT Unmanned aerial vehicles (UAVs) have played an important role in recent high-tech local wars.
Seizing air control rights with UAVs will undoubtedly be a popular topic in future military development.
Autonomous air combat is complex, antagonistic and mutable, and consequently, the decision-making that
depends on unmanned systems is extremely challenging with very little research having been conducted on
it. An intelligent air combat learning system inspired by the learning mechanisms of the brain is proposed
in this paper. In accordance with research on learning, knowledge and memory, we constructed a cognitive
mechanism model of the brain. Based on this model and the inferential abilities of humans, a long short-
term hierarchical multi-line learning system is established. Then, the bio-inspired architecture and the basic
learning principle of the system are clarified. Taking advantage of the conclusions of studies on information
theory, the relationship between the knowledge updating cycle and the system learning performance is
analysed. The updating cycle length adjustment problem is transformed into an optimization problem
optimization problem, and system performance improvement is guaranteed. Experiments show that the
system designed in this paper can acquire confrontation abilities through self-learning without prior rules;
the parallel universe mechanism can significantly improve the system’s learning speed when the number
of parallels is within 40, and the performance of the system improves gradually and continuously. The
system can master actions similar to classical tactical manoeuvres such as the high yo-yo and the barrel-roll-
attack without prior knowledge. Compared with the Bayesian inference and moving horizon optimization
(BI&MHO) method, the learning system proposed in this paper is more flexible in situation assessment and
in the prediction of opponents’ actions. Although it cannot be deployed quickly, it has a continuous learning
ability.

INDEX TERMS Autonomous air combat, bio-inspired, cognitive mechanism, long short-term memory,
learning system, unmanned aerial vehicles.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have emerged as a new
force in recent high-tech local wars. The interweaving of
ground and air firepower will greatly threaten the survival of
pilots and fighter aircraft in modern warfare. In future wars,
if UAVs are used to achieve air supremacy, it will undoubtedly
result in another profound military revolution.

Despite the increasing importance of stand-off strikes in
modern air operations, state-of-the-art fighters such as the
F22 and F35 are still equipped with guns for close combat.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Moreover, future UAVs may have stronger stealth capability
and smaller size, and wemay need to deal with enemy aircraft
suddenly appearing at close range in future battlefields. The
US Defence Advanced Research Projects Agency (DARPA)
is seeking proposals to automate air-to-air combat as part
of its Air Combat Evolution (ACE) programme. The ACE
programme is intended to exploit developments in artificial
intelligence (AI) to enable the automation of within-visual-
range air-to-air combat and bring UAVs to the dogfight [1].
Therefore, study on autonomous confrontation within the
visual range is crucial for future UAVs.

Virtanen et al. used an influence diagram to model the
air combat process and combined an autonomous inference
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ability and human pilot experience in [2]; extended methods
to acquire better goals were introduced in [3], [4]. Zhong
et al. [5] took into account the decision maker’s prefer-
ences under uncertain conditions and considered an active
opponent; they solved the multistage influence diagram by
converting it into a two-level optimization problem.

Game theory [6]–[8], the moving horizon optimization
method [9] and the trial input method [10], [11] were intro-
duced to explain and solve this problem. The general ideas of
these methods are similar. They begin by using factors such
as sight angle, distance, height advantage, velocity advantage,
the weapon engagement zone and the kill probability [12]
in a prediction time domain to build an objective function.
Then, they find the optimal decision in the feasible region by
online methods. McGrew [13], [14] and MA [15] proposed
an approximate dynamic programmingmethod [16], [17], the
dimension explosion of traditional dynamic programming has
been improved. In particular, they constructed the objective
function through iterative learning. This idea provided uswith
inspiration.

There are also artificial intelligencemethods such as expert
systems [18], the artificial immune system method [19]
and others. These methods usually work by establishing a
manoeuvre database using basic fighter manoeuvres (BFM)
or elementary manoeuvres [9] so that decisions can be
made quickly. The database can be extended manually or
selected by an immunity rule. Ernest et al. presented a genetic
fuzzy tree (GFT) method [20]–[22] utilizing a collection of
fuzzy inference systems (FIS). By breaking up the prob-
lem into many sub-decisions, the solution space is signifi-
cantly reduced. The in-development simulation environment
ALPHA was highly praised by a colonel of the air force who
has been an opponent of ALPHA.

To address complex multi-step decision-making problems,
researchers have attempted to findmethods with higher levels
of intelligence. Taking into account the complex dynamics of
UAVs, Emel’Yanov et al. [23] proposed a cognitive architec-
ture control system. It can solve a broad range of tasks and
can raise the degree of autonomy of the control object signif-
icantly. Rollo et al. [24] built a modular architecture frame-
work for complex unmanned aircraft systems. They tested
the system in a cooperative collision avoidance task and
achieved good results. Furthermore, the framework enables
the study of further concepts such as additional payload and
interaction amongUAVs. Sanchez-Lopez et al. [25] presented
an open-source software framework for the development of
aerial robotic systems, which can provide higher degrees of
autonomy and is more versatile in application to different
types of hardware and different types of missions. Inspired
by a biological model of the human cognitive system, a high-
level processing approach for understanding human activities
is proposed in [26] that allows the adaptation of the flight plan
and fully autonomous surveillance in limited areas. Chithapu-
ram et al. [27], [28] developed a new guidance scheme using
Q-learning. The new guidance scheme performs better than
standard existing guidance schemes in the presence of sensor

noise and computational delays. Moreover, studies have been
performed that aim to find solutions based on the structure
and working principles of the human brain [29]–[31]. These
explorations inspired us to solve the problem of air combat
decision-making by imitating the cognitive mechanism of the
brain.

We proposed a learning architecture that imitates the cog-
nitive mechanism of the brain in our previous work [32]. The
system can learn independently through simulated training.
The training achievement is a mapping between situations
and decisions. This paper is an extension of the previous one.
The contributions of this paper are as follows:

1) A cognitive mechanism model, including multilevel
memory and different knowledge content, describing
how the brain learns and stores knowledge quickly
from practise and interaction, is proposed in this paper.
Applying this working principle to decision-making
in autonomous air combat manoeuvres, we build an
architecture that can learn by itself using interactive
data. To our best knowledge, this is the first study to
propose such a data-learning cognitive architecture.

2) Imitating the multi-line reasoning ability of humans,
a simulation and data acquisition mechanism, which
we call parallel universe, is designed. Increasing the
number of parallel universes within a certain range can
significantly improve learning efficiency.

3) Using relative entropy [33] (Section 2.6) to express the
differences between the two policies, we analyse the
relationship between the new and old policies under
practical operation sampling conditions and prove that
an appropriate length of the consolidation learning
cycle (CLC) can ensure the stable increase in the learn-
ing performance. Transforming the CLC length adjust-
ment problem into an optimization problem, a feasible
method to guarantee learning performance improve-
ment is given.

This paper is organized as follows. In Section II, we intro-
duce some basic definitions. In Section III we introduce
the biological study of learning, memory and knowledge,
establish a model of the brain, and present the architecture
of the learning system inspired by the cognitive mecha-
nism of the brain. Next, the basic bio-inspired learning princi-
ple of the system is illustrated. Then, we add restrictions to the
update of short-term procedural knowledge so that the perfor-
mance of the system can be non-decreasing. Then, a detailed
implementation of the method is presented. In Section IV,
experiments are presented to illustrate the effectiveness of the
proposed method. Conclusions are drawn in Section V.

II. PRELIMINARIES
First, some relevant definitions are given. We use an
infinite-horizon Markov process to describe air combat
confrontations. The elements are represented by the tuple
(S,A,P,R, π, γ ), where S is a finite situation space; A
is a finite action space; P : S × A × S → R is the
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situation transition probability matrix; R : S → R is
the reward matrix; and π : S × A ∼ N

(
µ, σ 2

)
denotes

a stochastic action policy, which is a Gaussian distribution
with mean µ and variance σ 2. γ ∈ (0, 1) is the discount
factor [34], the closer it is to 1, the higher proportion of the
afterwards situation is. First, we define the situation-value
and the situation-action-value in the form that is commonly
used in reinforcement learning [35], [36].
Definition 1: The situation-value is the expected dis-

counted reward in the rest of the Markov process:

Vπ (st) = Eat ,st+1,at+1,...

[
∞∑
l=0

γ lr (st+l)

]
(1)

where at , at+1 . . . ∈ A ∼ π , at denotes the action at time
t , st+1, . . . ∈ S ∼ P , st+1 is the situation at time t + 1,
r (st+l) ∈ R, and r (st+l) denotes the reward in the situation
st+l .
Definition 2: The situation-action-value is the expected

return of doing action at in situation st :

Qπ (st , at)

= Est+1,at+1,...

[
r (st , at)+ γ

[
∞∑
l=0

γ lr (st+1+l)

]]
= Est+1,at+1,...

[r (st , at)+ γVπ (st+1)] (2)

In some situations, the actions do not have obvious influence
on the situation-value or the situation-action-value. For exam-
ple, when two aircraft are very far apart, most manoeuvres
do not cause a significant change in the value of Vπ (st) or
Qπ (st , at). To make learning more sensitive in these situ-
ations, we separate the action-value and give the following
definition.
Definition 3: The action-value is the expected profit of

doing action at at time t:

Aπ (st , at)

= Qπ (st , at)− Vπ (st)

= Est+1,at+1,...
[r (st , at)+ γVπ (st+1)− Vπ (st)] (3)

Then, we can see that in a continuous Markov process, if we
haveVπ (st+1) andVπ (st), the action-valueAπ (st , at) can be
obtained. A similar idea can be found in [37]; we expand it
to a continuous problem, and we do not need neural networks
with special structures for the calculation of Aπ .

III. PROPOSED BRAIN-INSPIRED AIR COMBAT
LEARNING SYSTEM
A. COGNITIVE MECHANISM OF THE BRAIN
Conventional methods seem to be less reliable and effective
in dealing with complex decision-making problems. Some
researchers have been trying to find answers from the brain.
The Schultz team found that the error between the expected
situation and the actual situation could activate midbrain
dopamine neurons [38], whichmight be amotive force behind
learning activity in the brain [39]. In recent years, additional
studies have confirmed this view [40]–[43], which indicates

that the distinction between cognition and real situations is
one of the most important motivations for the brain to learn.
These findings also provide a biological and neurological
basis for reinforcement learning [44]–[46]. In our opinion,
the learning process in the brain is not completely similar to
reinforcement learning, so we look for other evidence in the
study of biological neurology.

Learning achievement, that is, knowledge, is stored in
short-term and long-term memory [47]–[49]. Short-term
memory is a preliminary product of rapid learning; if the
short-term knowledge can be proved to correctly represent
the world in continuous learning, it will consolidate into long-
term knowledge. Long-termmemory is stable knowledge that
cannot easily be changed by isolated experience. It is the
type of memory we rely on to guide practice and to assess
situations. Some studies suggest that long-term memory and
short-term memory are stored in the same neural struc-
ture, differing in the method and extent of activation [47].
Moreover, there is another special type of memory in our
brain called working memory [39], [47]. The working mem-
ory retains sequences of events temporarily. It stores exter-
nal information obtained from the environment and internal
information generated by the brain itself for some time during
the learning process. To learn how to deal with a complex
decision-making task, the brain divides knowledge into two
types, declarative and procedural knowledge, and assigns
them to different brain regions, so that complex learning
tasks are simplified, and sub-tasks are allocated to different
regions [47], [50]. By synthesizing the evidence from the
study of the brain, a cognitive mechanism model of the brain
in the decision-making learning process is established, as
shown in Figure 1.

FIGURE 1. Cognitive mechanism of the brain during the decision-making
learning process.

B. ARCHITECTURE OF THE LEARNING SYSTEM
The brain guides practice according to long-term knowledge,
acts in the environment, stores the interactive information in
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FIGURE 2. Architecture of the brain-inspired air combat learning system.

working memory, and then transforms the interactive infor-
mation into error signals according to long-term knowledge.
The error signal is converted into embryonic knowledge
quickly and stored in short-term memory. As learning goes
on, the short-term knowledge is consolidated gradually into
stable knowledge, and the updated long-term knowledge will
play a role in subsequent interactions and learning. This
cognitivemechanism of the brainmakes it possible for human
beings to learn quickly from practice. The long- and short-
term learning mechanism allows us to obtain knowledge
quickly and to avoid the mutation of knowledge structure
caused by low-probability events. Expecting the machine to
have the ability to learn how to make decisions, we designed
an air combat learning system by drawing lessons from the
cognitive mechanism of the brain. The architecture of the
system is shown in Figure 2.

Knowledge is divided into procedural and declarative parts.
Pilots can clearly describe why a manoeuvre should be exe-
cuted in a situation and what will happen after this action.
Declarative knowledge plays the main role in this process.
Outstanding pilots can respond in a very short time, as if
the ability to fight is inborn, and they seem to defeat their
opponents using intuition rather than thinking. This process
is mainly based on procedural knowledge. Thus, declarative
knowledge can be represented as a mapping: S → Ṽ :
Ṽπξ (st), where the superscript symbol �̃ represents an esti-
mation by the knowledge, ξ is a matrix that determines the
value of Ṽπξ (st) and ξ is fitted by learning. The content of
procedural knowledge can be represented as S → π : πω (s),
where ω is a parameter matrix that determines the value of
πω (s). The goal of learning is to obtain a policy which can
maximize the profit [36]:

max
ω

J (πω) =
∫
S
γ tPπ (s)

∫
A
πω (a|s)A (s, a)dads

= Es∼Pπ ,a∼πω

[
γ tA (s, a)

]
(4)

where Pπ (s) is the situation transition probability under the
policy π . Thus, an accurate valuation A (s, a) and an excellent
action policy πω (a|s) mean that both declarative and proce-
dural knowledge will be promoted in learning. It has been
proved that artificial neural networks can approximate func-
tions with arbitrary complexity [51]. It is appropriate to use
neural networks here to describe two kinds of knowledge; ξ
and ω are the weights of the neural networks. The knowledge
structures in long and short-term memory are identical, and
the differences are learning principle and frequency.

In addition, we noted that human beings could make mul-
tiple predictions about a future time based on the current
situation. For example, excellent boxers can roughly predict
several possible actions of their opponents and formulate a
variety of coping strategies, as if he has performed several
mock fights in multiple parallel universes. This is not an
actual process occurring in the real world but a speculative
process simulated in the mind. This means that the brain
can store multi-branch simulation information in the working
memory in parallel. The prediction of multiple steps and
multiple possibilities in the future enables us to understand
the value of the current situation more accurately and make a
better decision. This is why only one who can predict many
moves can be a top chess player. This mechanism could
be used to improve learning efficiency. Therefore, we add
a parallel universe that contains n identical training envi-
ronments to the system. Different training environments are
responsible for simulation on different timelines. Because
the action policy π ∼ N

(
µ, σ 2

)
is a random distribution,

the situation in each training environment will develop in
different directions. The working memory stores the data
generated by the parallel universe for a short period of time.
Taking training environment i (1 ≤ i ≤ n) as an example, the
working memory takes a first-in-first-out principle to record
the interactive data; the information flow diagram is shown
in Figure 3.
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FIGURE 3. Information flow diagram of the working memory when
recording the interactive data of the i th training environment.

We focus on building a system that can use data for self-
learning. Compared with the existing cognitive frameworks,
the functions of our system do not cover all features of
cognition, such as social, reflective, deliberative, executive,
reactive and physical layers. We perform self-learning using
interactive data, including the architecture design, the simu-
lation environment design, the data structure design and the
method to ensure performance improvement.

In contrast to the existing research on autonomous air com-
bat, there is no need to summarize the tactical manoeuvres
created by human pilots, and because it is not dependent
on exercise data, the system can learn from simulated train-
ing by itself. There is no need to construct a cost function
or a score function artificially, and the system can learn a
more objective data-driven optimization goal. The format
of the decision outputs can meet the input requirement of
general flight control systems for aircraft. Compared with
the BFM or elementary manoeuvres, it has higher flexibility.
From the experiment, we found that without prior knowledge,
the system could master strategies such as classical tactical
manoeuvres created by human pilots.

C. BASIC LEARNING PRINCIPLE OF THE SYSTEM
Long- and short-term memory have the same structure; both
contain declarative and procedural knowledge. Long-term
memory does not update as frequently as short-term memory.
Short-term memory uses the data in the working memory
for learning directly while long-term memory comes from
the enhancement of short-term memory. Thus, the learning
principle for long-term memory is designed as follows. Once
the short-term knowledge has been updated nclc times, the
long-term knowledge clones the short-term knowledge in one
round that we called a consolidation learning cycle (CLC);
nclc is called the length of the CLC. The parameters of the
network in long- and short-term memory are recorded as
ξL, ωL, ξS and ωS, and the consolidation learning can be
expressed as: {

ξL = ξS

ωL = ωS
(5)

In Section III-D, we will illustrate that the length of the
CLC nclc has an impact on learning performance (see The-
orem 1). Thus, finding a method of deciding of the CLC
becomes an important problem. The detailed principle will
be clarified in the next section. Humans use stable knowledge
to guide practice, imitating this mechanism, and the learning
system selects actions and assesses situations according to the
knowledge in long-term memory, that is:{

at+1 ∼ πωL (st+1)
Ṽ (st) = ṼξL (st)

(6)

The motivation of short-term learning, similar to what
occurs in the biological brain, comes from cognitive bias,
in other words, it comes from the error signal in this digital
learning system. The short-term knowledge updates more
often than that in long-term memory. Using the data stored in
the working memory to build the error signals is an impor-
tant problem in this stage of learning. In actual operation,
calculating the situation-value according to Equation (1) is
difficult because it must wait until the mission has ended.
In fact, human beings also cannot obtain information about
the whole process when dealing with a complex dynamic
task. We usually only depend on the temporary information
stored in working memory. On the one hand, this is because
the capacity of working memory is limited; on the other hand,
events closer to the current moment have greater impact on
decision-making, and the farther the events are in time, the
weaker the impact will be. Drawing lessons from this mech-
anism, the situation-value on a single timeline is estimated
using the data in the working memory as:

V̂ (i) (st) = r (i)t + γ r
(i)
t+1+. . .+γ

kr (i)t+k + γ
k+1Ṽ

(
s(i)t+k+1

)
(7)

where 1 ≤ i ≤ n. This equation indicates how to use the data
from the ith training environment to estimate a new approxi-
mate situation-value. Then, the error signal for the declarative
knowledge produced by this timeline is as follows:

δ̂
(i)
D = V̂ (i) (st)− Ṽ

(
s(i)t
)

(8)

There are n training environments in the parallel universe,
and the multiple steps and multiple possibilities simulated
allow us to give a more accurate error signal for the declara-
tive knowledge; that is:

δ̂D =
1
n

n∑
i=1

[
V̂ (i) (st)− Ṽ

(
s(i)t
)]

(9)

Let α be the learning rate of short-term declarative knowl-
edge and use ∇ to represent a gradient. The iterative learning
principle of the declarative knowledge in short-term memory
can be written as:

ξS = ξS + α∇
ξS

δ̂D (10)

The eventual aim of learning is to obtain a policy to max-
imize the profit; therefore, the gradient of the optimization
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target in Equation (4) can intuitively be the learning error of
the procedural knowledge:

δP = ∇
ω
J (πω) =

∫
S
γ tPπ (s)

∫
A
∇
ω
πω (a|s)A (s, a)dads

= Es∼Pπ ,a∼πω

[
∇
ω
log (πω (a|s)) γ tA (s, a)

]
(11)

The A (s, a) here can be obtained by the long-term knowl-
edge, according to Definition 3:

Ât (st , at) = −ṼξL (st)+ rt + γ ṼξL (st+1) (12)

Then, the practical error signal for procedural knowledge
learning is as follows:

δ̂P = Es∼PπL ,a∼πωL

[
∇
ωs
πωS

πωL

γ t Ât

]
(13)

Let β denote the learning rate of short-term procedural
knowledge; the basic iterative learning principle can be
expressed as follows:

ωs = ωs + βδ̂P (14)

Under this learning principle, one single CLC can be con-
sidered as a process during which the short-term area learns
new knowledge based on old knowledge. In the next section,
we will illustrate how to guarantee the growth of the learning
effect under this long- and short-term asynchronous learning
principle.

D. MECHANISMS TO GUARANTEE IMPROVEMENT
In this section, we explore a way tomake learningmore stable
and effective. The most intuitive criterion for evaluating a
policy is the reward it can obtain; then, we have the following
definition:
Definition 4: The criterion for evaluating the policy π

could be defined as starting from the situation s0 to the ter-
mination of the mission, and the expected discounted reward
obtained by the policy is:

κ (π) = Ea0,s0,a1,s1,....∼π

[
∞∑
t=t0

γ t−t0r (st)

]
(15)

Theorem 2: For different policies π1 and π2, their criteria
have the following relationship:

κ (π2)=κ (π1)+Ea0,s0,...∼π2

[
∞∑
t=t0

γ t−t0Aπ1 (st , at)

]
(16)

Proof: According to Definition 3, we can obtain:

Ea0,s0,...∼π2

[
∞∑
t=t0

γ t−t0Aπ1 (st , at)

]

=Ea0,s0...∼π2

[
∞∑
t=t0

γ t−t0
(
r (st , at)+γVπ1 (st+1)−Vπ1 (st)

)]

= Ea0,s0,...∼π2

[
−Vπ1 (s0)+

∞∑
t=t0

γ t−t0r (st)

]

= −Es0
[
Vπ1 (s0)

]
+ Ea0,s0,...∼π2

[
∞∑
t=t0

γ t−t0r (st)

]
= −κ (π1)+ κ (π2) (17)

Rearranging, Theorem 1 has been proved.
Theorem 1 can be written as:

κ (π2) = κ (π1)+

∞∑
t=t0

∑
S

Pπ2 (st)

×

∑
A
π2 (at |st) γ t−t0Aπ1 (st , at) (18)

Let

ϑπ = Pπ (s0)+ γPπ (s1)+ γ 2P (s2)+ . . . (19)

where s0, s1, s2 . . . is a situation trajectory sampled from π .
Now, Theorem 1 can be rewritten as follows:

κ (π2) = κ (π1)+
∑
S
ϑπ2

∑
A
π2 (a|s)Aπ1 (s, a) (20)

According to Section 4, the short-term area takes further steps
learning and produces a new policy πωS based on the old
policy πωL during each CLC. Using Theorem 1, we have:

κ
(
πωS

)
= κ

(
πωL

)
+

∑
S
ϑπωS

∑
A
πωS (a|s)AπωL (s, a)

(21)

If the learning improves in every CLC, that is, κ
(
πωS

)
≥

κ
(
πωL

)
, at the end of each CLC, we can conclude that the

learning is effective. However, ϑπωS is determined by the
new policy πωS , and the new policy keeps updating during
the learning process, so using Equation (20) to judge the
learning effect is inoperable. In fact, during the practical
learning process, we use long-term knowledge to guide action
and to assess the situation in a single CLC. According to
Equations (11), (12) and (13), what we truly have in practical
learning is:

κ ′πωL

(
πωS

)
= κ

(
πωL

)
+

∑
S
ϑπωL

∑
A
πωS (a|s)AπωL (s, a)

(22)

Next, the relationship between κ
(
πωS

)
and κ ′πωL

(
πωS

)
is

analysed. Using T ∼ π to denote a trajectory sampled
from π , and it is evident that A (s) = Ea∼πωS

[
AπωL (s, a)

]
,

κ
(
πωS

)
and κ ′πωL

(
πωS

)
can be rewritten as:

κ
(
πωS

)
= κ

(
πωL

)
+ ET∼πωS

[
∞∑
t=0

γ tA (s)

]

κ ′πωL

(
πωS

)
= κ

(
πωL

)
+ ET∼πωL

[
∞∑
t=0

γ tA (s)

]
(23)

The following theorem can describe the relationship between
κ
(
πωS

)
and κ ′πωL

(
πωS

)
:
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Theorem 3: Under the learning principle in Section 4,
κ ′πωL

(
πωS

)
can be an approximate substitute for κ

(
πωS

)
to

judge the learning effect.
Proof: Policies in long- and short-term memory are

identical at the starting point of every CLC, so κ ′πωL
(
πωS

)
and

κ
(
πωS

)
are first order approximations at ωS = ωL, that is:

κ ′πωL

(
πωS

)∣∣∣
ωS=ωL

= κ
(
πωS

)∣∣
ωS=ωL

∇
ωS
κ ′πωL

(
πωS

)∣∣∣∣
ωS=ωL

= ∇
ωS
κ
(
πωS

)∣∣∣∣
ωS=ωL

(24)

κ ′πωL

(
πωS

)
and κ

(
πωS

)
have the same initial value and

change direction at the beginning of each CLC, so the gradi-
ent direction of κ ′πωL

(
πωS

)
is approximately the same as that

of κ
(
πωS

)
near πωL in each CLC. Combined with Equation

(13), we have:

∇
ωS
κ
(
πωS

)
=∇
ωS

[
κ
(
πωS

)
−κ

(
πωL

)]
≈∇
ωS
κ ′πωL

(
πωS

)
= δ̂P

(25)

We use the error signal δ̂P to drive the short-term procedu-
ral knowledge learning. δ̂P directly affects the change of the
value of κ ′πωL

(
πωS

)
. In each CLC, near πωL , the development

of κ ′πωL
(
πωS

)
can represent the real worth of the new policy

κ
(
πωS

)
. If the length of CLC nclc is too large, the signs of

∇
ωS
κ ′πωL

(
πωS

)
and ∇

ωS
κ
(
πωS

)
may be opposite, and the error

signal δ̂P sampled by the old policy πωL cannot guarantee the
improvement of learning performance. On the other hand,
if nclc is too small, long-term memory will be updated fre-
quently and brief data variations will have an impact on the
long-term memory, making the stability of the system weak.

Theorem 2 does not give an explicit constraint. To ensure
that κ ′πωL

(
πωS

)
is always representative in the learning pro-

cess, we must give further constraints.
Definition 5: Let π1 be the marginal distribution of a1 and

π2 be the marginal distribution of a2; that is, P {a1|s} = π1 (s)
and P {a2|s} = π2 (s). If P {a1 6= a2|s} = ε, we call the joint
distribution (π1, π2) ε − coupling policies.
If we use the ε − coupling policies πωS and πωL to

sample and obtain two trajectories (aSi, aLi) |s, where i =
0, 1, 2, . . . t , and let nt denote the number of times aSi 6= aLi
when i < t , then we have:

Es∼πωS [A (st)] = P (nt = 0)Est∼πωS |nt=0 [A (st)]
+P (nt > 0)Est∼πωS |nt>0 [A (st)]Es∼πωL [A (st)] = P (nt = 0)Est∼πωL |nt=0 [A (st)]
+P (nt > 0)Est∼πωL |nt>0 [A (st)] (26)

Obviously, P (nt = 0) = (1− ε)t and P (nt > 0) = 1 −
(1− ε)t . When nt = 0,

Est∼πωS |nt=0 [A (st)] = Est∼πωL |nt=0 [A (st)] (27)

Then, Equation (26) becomes:

Es∼πωS [A (st)] = (1− ε)
t Est∼πωS |nt=0 [A (st)]

+
[
1− (1− ε)t

]
Est∼πωS |nt>0 [A (st)]

Es∼πωL [A (st)] = (1− ε)
t Est∼πωL |nt=0 [A (st)]

+
[
1− (1− ε)t

]
Est∼πωL |nt>0 [A (st)]

(28)

We can obtain∣∣∣Es∼πωS [A (st)]− Es∼πωL [A (st)]
∣∣∣

=
[
1− (1− ε)t

] ∣∣∣Est∼πωS |nt>0 [A (st)]
−Est∼πωL |nt>0 [A (st)]

∣∣∣
≤
[
1− (1− ε)t

] ∣∣∣Est∼πωS |nt>0 [A (st)]∣∣∣
+

∣∣∣Est∼πωL |nt>0 [A (st)]∣∣∣
≤ 2

[
1− (1− ε)t

]
max
s
|A (st)| (29)

Then,∣∣∣κ (πωS

)
− κ ′πωL

(
πωS

)∣∣∣
=

∞∑
t=0

γ t
∣∣∣Es∼πωS [A (st)]− Es∼πωL [A (st)]

∣∣∣
≤

2εγ
(1− γ ) (1− γ (1− ε))

max
s
|A (st)|

≤
2εγ

(1− γ )2
max
s
|A (st)| (30)

In addition, using the fact that Ea∼πωL
[
AπωL (s, a)

]
= 0,

we have

A (s) = Ea∼πωS
[
AπωL (s, a)

]
= E(aS,aL)∼

(
πωS ,πωL

) [AπωL (s, aS)− AπωL (s, aL)]
= P (aS 6= aL)E(aS,aL)∼

(
πωS ,πωL

)
×

[
AπωL (s, aS)− AπωL (s, aL)

]
(31)

Then, we obtain

|A (s)| ≤ 2εmax
∣∣∣AπωL (s, a)∣∣∣ (32)

So,∣∣∣κ (πωS

)
− κ ′πωL

(
πωS

)∣∣∣
≤

4ε2γ

(1− γ )2
max
s

∣∣∣AπωL (s, a)∣∣∣ (33)

κ
(
πωS

)
≥ κ ′πωL

(
πωS

)
−

4ε2γ

(1− γ )2
max
s

∣∣∣AπωL (s, a)∣∣∣ (34)

According to Section 4.2 in [52], ifµ is the distribution of x
and ν is distribution of y, then P {x 6= y} = ‖µ− ν‖TV, where
‖.‖TV is the total variation distance.Writingmax

s

∣∣∣AπωL (s, a)∣∣∣
as δ and ‖.‖TV as DTV (.), we have

κ
(
πωS

)
≥ κ ′πωL

(
πωS

)
−

4γ

(1− γ )2
δDTV

(
πωL , πωS

)2 (35)
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In addition, Pinsker’s inequality [53] (Lemma 2.5) states
that

sup
{
‖µ− ν‖TV

}
≤

√
1
2
DKL (µ, ν) (36)

where DKL (µ, ν) is the Kullback-Leibler divergence or rel-
ative entropy [33] (Section 2.6). Thus, we can obtain the
following theorem.
Theorem 4: Under the learning principle in Section 4,

the κ
(
πωS

)
have the following lower bound:

κ
(
πωS

)
≥ κ ′πωL

(
πωS

)
−

2γ

(1− γ )2
δDKL

(
πωL , πωS

)
(37)

From the definitions of κ
(
πωS

)
and κ ′πωL

(
πωS

)
, we obtain

κ
(
πωL

)
= κ ′πωL

(
πωL

)
(38)

Combining (38) with Theorem 3, we obtain

κ
(
πωS

)
− κ

(
πωL

)
≥ κ ′πωL

(
πωS

)
− κ ′πωL

(
πωL

)
−

2γ

(1− γ )2
δDKL

(
πωL , πωS

)
(39)

Thus, we can conclude that, by maximizing κ ′πωL
(
πωS

)
−

2γ δ
/
(1− γ )2DKL

(
πωL , πωS

)
at each CLC, the true learn-

ing objective κ
(
πωS

)
is guaranteed non-decreasing. That is,

the length of the CLC nclc is not definite but a variable
constrained by 2γ δ

/
(1− γ )2DKL

(
πωL , πωS

)
, and the learn-

ing of the procedural knowledge in a single CLC can be
considered as an optimization problem:

max
ωS

[
κ ′πωL

(
πωS

)
− 2γ δ

/
(1− γ )2DKL

(
πωL , πωS

)]
(40)

In practice, δ is not definite, and 2γ δ
/
(1− γ )2 is a rel-

atively large value, so using Equation (40) above directly
makes the learning step size very small. Therefore, we use
a heuristic method instead; using a constant λ as the penalty
coefficient, as shown in Equation (41), we found that the
algorithm was not very sensitive to λ (See Section IV-B-2).

max
ωS

[
κ ′πωL

(
πωS

)
− λDKL

(
πωL , πωS

)]
(41)

That is, to guarantee the growth of the learning effect,
we need to impose a restriction on the error signal for pro-
cedural knowledge on the basis of Equation (13), as follows:

δ̂P=Es∼PπL ,a∼πωL ∇ωs

[
πωS

πωL

γ t Ât−λDKL
(
πωL , πωS

)]
(42)

E. NEURAL NETWORKS IN DECLARATIVE KNOWLEDGE
AND PROCEDURAL KNOWLEDGE
In this study, we use neural networks as approximators. There
are two kinds of structures, because the networks of long- and
short-term memory are the same.

1) NEURAL NETWORKS IN PROCEDURAL KNOWLEDGE
The inputs of procedural knowledge are situation vectors,
such as st in Equation (44). The outputs of procedural
knowledge are the action policies, corresponding to at =[
nx nz φ

]
t ; the concrete form of the outputs are three pairs

of mean and variance, which are µnx and σ 2
nx , µnz and σ

2
nz ,

and µφ and σ 2
φ . We use multi-layer non-convolutional deep

belief nets (DBN) [54] to express procedural knowledge,
as demonstrated in Figure 4. The activation functions of the
hidden layers are selected as a rectified linear unit (ReLU)
[55]. In the output layer, the activation functions of the mean
units are selected as tanh, and softplus functions [56] are
selected as the activation functions of the variance units.
We use an empirical and heuristic method to determine the
net nodes. Ultimately, the structure of the neural networks
in procedural knowledge is confirmed as 16-500-500-300-6;
that is, there are 16 input nodes, 3 hidden layers with 500,
500, and 300 nodes, and 6 output nodes.

FIGURE 4. Structure of the neural networks in procedural knowledge.

2) NEURAL NETWORKS IN DECLARATIVE KNOWLEDGE
The inputs of declarative knowledge are same as those of
procedural knowledge. The output of declarative knowledge
is the situation-value Vπ (st). We use another multi-layer
DBN to express declarative knowledge, as demonstrated
in Figure 5. The activation functions of the hidden layers
are selected as ReLUs, and a linear function was selected as
the activation function of the output layer. The structure of
the nets in declarative knowledge are ultimately selected as
16-300-300-300-1.

F. DETAILED LEARNING PROCESS OF THE SYSTEM
First, we use the Xavier method [57] to initialize the param-
eters of the four neural networks. Then, the action policy
πωL consisting of µnx , σ

2
nx , µnz , σ

2
nz , µφ and σ 2

φ produced
by long-term procedural knowledge is used to simple the
action and act on the parallel training environment. The
working memory collects the interactive data until its storage
limit is reached. Next, according to Equations (9) and (42),
the error signal for the short-term declarative and procedural
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FIGURE 5. Structure of the neural networks in declarative knowledge.

knowledge, respectively, are produced. Next, a stochastic
gradient ascent method called Adam [58] is used to update
the parameters ωs and ξS of networks in short-term memory.
Finally, the short-term knowledge is consolidated into the
long-term one, and the parameter of the short-term knowl-
edge is cloned to long-term knowledge. Then, the learning
process starts the next cycle until the reward obtained in each
round is stable. After training, mature procedural knowledge
is used to guide the confrontation process.

The training algorithm can be expressed as:

Algorithm 1 Training Algorithm of the Learning System
While (not stop) do
For i = 1, . . . , n do

Run policy πωL for k timesteps in each parallel
universe
Store

[
s(i)t a(i)t r (i)t

]
in the working memory

End for
Estimate the action-value:
Ât (st , at) = −ṼξL (st)+ rt + γ ṼξL (st+1)
Use a stochastic gradient ascent method to update the
short-term procedural knowledge ωS and to maximize
πωS
πωL

γ t Ât − λDKL
(
πωL , πωS

)
Use a stochastic gradient descend method to update
the short-term declarative knowledge ξS to minimize
1
n

n∑
i=1

[
r (i)t +γ r

(i)
t+1+...+γ

kr (i)t+k+γ
k+1Ṽ

(
s(i)t+k+1

)
−Ṽ

(
s(i)t
)]

Consolidate the short-term knowledge into long-term
knowledge: ξL = ξS,ωL = ωS

IV. EXPERIMENT
A. DESIGN OF THE TRAINING ENVIRONMENT
AND REWARD
The training environment plays the role of calculating the
position and attitude of the two planes to provide the reward
data for the training. It can also test the training results as
a simulator. Assuming the aircraft is a rigid body, angles of
attack and sideslip are usually ignored, and the kinematic

model of the aircraft can be expressed as [9], [59]–[61]:

ẋ = v cos θ cosψ

ẏ = v cos θ sinψ

ż = v sin θ

v̇ = g (nx − sin θ)

θ̇ =
g
v
(nz cosφ − cos θ)

ψ̇ =
gnz sinφ
v cos θ

(43)

where θ is the climbing flight path angle, ψ is the heading
angle measured from north, φ is the roll angle, v is the ground
reference speed, x, y, z are the position of the aircraft in north-
east-height (NEH) coordinates, and nx and nz are the coeffi-
cients of forward and normal overload. The movement of the
aircraft is controlled by

[
nx nz φ

]
, and the manoeuvrability

of an aircraft is determined by the ranges of nx , nz and v. The
output action of the learning system is at =

[
nx nz φ

]
t .

We abandoned the index functions summarized by the
existing research [9], [19], [62], [63], in which the reward
is encouraged or punished determined only by the suc-
cess or failure of the mission. The purpose is to exclude
subjective human factors, to learn more objectives A (s, a)
and policies πω (a|s) using the reward data generated by
simulated combat, and to verify whether the method can
achieve autonomous learning in the absence of human prior
knowledge.

The goal of air combat is to attain and maintain a position
of advantage in the rear of the enemy. That is, the learning
system needs to guide the blue aircraft in Figure 6 to keep the
angles η and τ as small as possible, while the goal of the red
aircraft is the opposite. Therefore, we set a score principle
for the reward feedback. Once η ≤ 20◦, τ ≤ 30◦ and the
distance from the enemy is between 100 and 500 metres,
we call the situation Almost lock and return a reward r = 1
at this situation. If the Almost lock situation is maintained for
more than 5 seconds, then the situation becomes Lock; in this
case, a reward r = 10 is returned. Otherwise, if the enemy
occupies the advantaged position, the situations are called
Almost be locked and Be locked and the reward is r = −1
and r = −10, respectively. Moreover, if the altitude is lower
than 10 m or the distance from the enemy aircraft is less than
10 m, the situation is judged to be Crashed, and a reward
r = −10 is returned. In situations other than the above,
r = −0.1 is returned each time. The learning system sends
the guidance command and asks for the situation states and
reward every 0.5 seconds. The vector shown in Equation (44)
is the situation states returned by the training environment.

st = [x1 x2 y1 y2 z1 z2 v1 v2 φ1 φ2 ψ1 ψ2 θ1 θ2 η τ ]t (44)

B. EXPERIMENTAL RESULTS
We evaluated our approach on four common aerial encounter
scenarios. The opposing aircraft have the same manoeuvra-
bility as ours, so that the experimental data can better reflect
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FIGURE 6. Diagram of η and τ .

the performance of the method. From the initial states until
the situation is judged as Lock,Be locked orCrashed, or could
not achieve any one above after 10,000 steps, we recorded one
process like this as one confrontation round. The two aircraft
are reset to the initial states to prepare for another round of
training when the previous confrontation round ends. The
discount factor is set as γ = 0.999 and the working memory
storage length as k = 50. The experiments described in
the rest of this section are performed on a computer with
Intel i7-8700k CPU, NVIDIA GTX1070 GPU, 32 GB RAM
and the Ubuntu 16.04 operating system.

In the first scenario, the initial speed of both sides was
the same and the opposing aircraft marked as red appeared
ahead of the blue one’s nose; however, the blue aircraft was
not located in the rear attack zone but instead on the side of
the red one. The red aircraft was escaping with max roll angle
to leave the area in front of the blue and to expand the angles
η and τ . The initial states of both sides are shown in Table 1.

In the second scenario, the blue and red aircraft engaged
nose-to-nose. The red one turned left, across the tail of the
blue, trying to approach in a nose-to-tail fashion. The initial
states are shown in Table 2.

TABLE 1. Initial states of both sides in the lateral encounter scenario.

TABLE 2. Initial states of both sides in the head-on encounter scenario.

TABLE 3. Initial states of both sides in the lag-pursuit roll scenario.

TABLE 4. Initial states of both sides in the rolling scissors scenario.

In the third scenario, the blue aircraft is located behind
its opponent, its velocity is too great, and its initial pitch
angle is too large. The red one tries to detour behind the
blue through a horizontal turn. If the blue aircraft tries to
directly lock the red one in the current state, it may over-
shoot because of the high speed and go from a position of
advantage to one of disadvantage. The initial states are shown
in Table 3.

In the fourth scenario, the headings of the two aircraft
are perpendicular, and the blue side is faster and its pitch
angle is smaller. Whether the situation is an advantage or
disadvantage to each side is unclear. The red side is looking
for breakthrough opportunities through a continuous rolling
scissors manoeuvre. See Table 4 for the initial states of both
sides.

1) COMPARISON OF THE NUMBER OF PARALLEL
UNIVERSES
First, we illustrate the effect of the parallel spaces through
comparative experiments. We evaluated the algorithm with
a number of parallel universes n = 8, 16, 24, 32, 40 and
with KL penalty coefficient λ = 10 on the four encounter
scenarios. We executed the learning algorithm for 10000 sec-
onds under each parameter setting. Figure 7 shows the reward
obtained by the system during the learning; the curve is the
mean value of the 20 experiments, and the shadow represents
the boundary of the experimental data. It can be seen that
the number of parallel spaces has a significant effect on the
learning speed and the reward distribution. As the number
of parallel spaces increases, the amount of data that needs
to be processed also increases, it takes up more CPU and
memory resources, and the speed-up dividends do not always
increase.

8138 VOLUME 8, 2020



K. Zhou et al.: Learning System for Air Combat Decision Inspired by Cognitive Mechanisms of the Brain

FIGURE 7. Reward obtained during the parallel universe comparison
experiment.

2) COMPARISON OF THE PENALTY COEFFICIENTS
Next, we give the experimental results under different KL
penalty coefficients λ. We use the same hyperparameters as
in the previous experiment and set the number of parallel
universes PL=40, taking λ = 0.5, 1, 2, 5, 10 heuristically.
As in the previous section, we tested 20 times with each
parameter on the two scenarios and executed the learning
algorithm for 10000 seconds under each parameter setting;
the score during the learning is shown in Figure 8. As we
can see, the learning is not very sensitive to the KL penalty
coefficient λ in the range of [0.5, 10]; a smaller λ leads to
relatively faster learning but also a greater variance, and a
greater λ makes the learning relatively slower but performs
better on stability.

In our opinion, this phenomenon is caused bymany factors.
On the one hand, we adopt a smaller learning rate in updating
the parameters of the neural network, so we can use a smaller
penalty coefficient; on the other hand, 2γ

/
(1− γ )2δ in The-

orem 3 is a relatively large value, especially in the later stages
of learning, so larger values can also be effective.

3) DIRECT EXHIBITION OF LEARNING ACHIEVEMENTS
After the training, we connected the trained long-termmodule
directly to the training environment to verify the learning
effect, and the role of the training environment was converted
to a simulator.We obtained confrontation trajectories for each
encounter scenario as shown in Figure 9.

As can be seen, without any flight rules summarized by
humans, the system can learn from the confrontation data
by itself. We only set a score principle to help the computer
distinguish success from failure. The confrontation trajectory
shows that the system can produce different manoeuvres to
deal with different situations. It has mastered the conversion
between speed and height so that it can reverse nose quickly
with less energy loss. Manoeuvres obtained from learning
are similar to the classical fight tactic high yo-yo and the
barrel-roll attack [64].

4) COMPARISON TO OTHER ALGORITHMS
In the engagement scenarios of the previous experiments,
the opponent aircraft only performed some simple manoeu-
vres to escape. However, real air combat is consumed with
fierce attack and defence, so we created an antagonistic
opponent for the system. The red aircraft had the ability to
evaluate the situation, to predict the opponent’s intentions
and to decide on manoeuvres; it was commanded by the
Bayesian inference and moving horizon optimization method
(BI&MHO) [9]. We set up a fair arena, as shown in Table 3,
and the two aircraft engaged nose-to-nose; their manoeuvra-
bility, initial speed, height, roll angle and pitch angle were the
same.

Figure 10 (a) shows the reward obtained by the system.
We executed the learning algorithm 20 times; the curve is
the mean value of the reward in the 20 experiments, and
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FIGURE 8. Reward obtained during the penalty coefficient comparison
experiment.

FIGURE 9. The confrontation trajectories of both sides.
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TABLE 5. Initial state of both sides in the dogfight scenario.

TABLE 6. Comparison of the two methods.

the shadow represents the boundary of the reward data. The
data fluctuates greatly in the early period, and the blue side
might even be defeated by its opponent. As the learning
went on, the system understood its enemy more comprehen-
sively. Then, the fluctuation of the data reduced gradually
and the mean of the reward came to rise continuously. In the
later stage, the reward tended to be stable, and the blue
side found the action policy to lock the red within a short
time. Consider a case in which a blue aircraft driven by a
trained procedural network confronts a red aircraft driven
by the BI&MHO method in a training environment. Two
different trajectories in the dogfight experiment are shown
in Figure 10 (b), (c) and (d). The trajectories of the two con-
frontations are not the same. This is because the action policy
is a Gaussian distribution, so actions sampled according to the
policy do not have a definite value. When the opponent is an
aggressive aircraft, different action choices may cause great
changes in the development of confrontation trajectories. This
also explains the reward data fluctuation in the later stage of
learning.

In contrast to the BI&MHOmethod, our approach is a new
way to learn how to make decisions without existing rules.
First, the confrontation situations are divided into the four cat-
egories Advantage, Disadvantage,Mutual Safety andMutual
Disadvantage in the BI&MHOmethod. Then, linear addition
of the fuzzy angle, height, distance and speed membership
functions is used as the optimization objective of manoeuvre
decisions. The linear addition weights for the four kinds of
situations are set as constant, and thus, the manoeuvring
strategy may have a regular pattern that can be grasped
through learning. By contrast, our method assesses situations

FIGURE 10. Results of the dog-fight experiment.

as continuous values, and action strategies guided by this type
of assessment will be more diversified. Second, BI&MHO
uses a linear combination of five basic manoeuvres to predict
the position of the opponent. However, the blue aircraft is
directed by continuous guidance commands

[
nx nz φ

]
that
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are sampled according the Gaussian distribution policy π in
ourmethod. Themanoeuvres of the blue aircraft are equivocal
and are more complex than the ones the BI&MHO method
could predict. As the forecast period of the moving hori-
zon optimization method increases, the prediction error will
increase sharply. In our method, the situation-value considers
not only the current states but also the trend of the situation in
the future. The action choices of both sides will be reflected
in the situation-value. We do not predict the opponent’s
specific actions but establish knowledge about the situation
development tendency through statistical learning. These rea-
sons lead the learning system to a final victory. In addition,
the BI&MHO method makes decisions by solving optimal
values online. Once this method is designed, it is work-
able, because the designer puts his prior knowledge about
situation assessment, position prediction and decision basis
into the algorithm. In contrast, the method proposed in this
paper is unusable before learning. Because the algorithm is
a learning framework, the knowledge for decision-making is
obtained through interactions with the training environment.
The BI&MHO method has the ability to deploy quickly, but
no ability to learn. Our method can only be used after training
but can keep learning through interactive data.

V. CONCLUSION AND FUTURE WORK
In this paper, the learning model of the human brain was
analysed and a novel brain-like air combat learning system
was designed. The main conclusions are: By applying the
cognitive mechanism of the brain to autonomous decision
of air combat manoeuvres, the learning system designed in
this paper is an effective self-learning structure. The parallel
universe, parallel simulation and the data acquisition method
proposed can significantly improve learning efficiencywithin
a certain range. An appropriate length of the consolida-
tion learning cycle (CLC) can ensure learning performance
growth. Transforming the CLC length adjustment problem
into an optimization problem can make the algorithm easier
to execute. Good results have been achieved in digital exper-
iments.

To make the method proposed in this paper more practical,
several issues need further research: How to add humans’
prior knowledge about aircraft kinematic models, situation
assessment, intention prediction and decision-making into the
learning system so that the system will have certain availabil-
ity without training. Ideally, prior knowledge will not only
have no conflict with learning but will also be able to improve
learning speed. In this paper, we design and validate the
learning system in a 1-vs-1 scenario. To extend the method to
a multiplayer confrontation, cooperative learning framework,
reasonable reward and knowledge sharingmechanism need to
be explored. To fully apply the method in a real UAV, many
problems must be solved, including computing power, plat-
form load, power supply, sensor accuracy, communication
timeliness, safety and so on.
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