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ABSTRACT Smart sensing devices are furnished with an array of sensors, including locomotion sensors,
which enable continuous and passive monitoring of human activities for the ambient assisted living. As a
result, sensor-based human activity recognition has earned significant popularity in the past few years. A lot
of successful research studies have been conducted in this regard. However, the accurate recognition of
in-the-wild human activities in real-time is still a fundamental challenge to be addressed as human physical
activity patterns are adversely affected by their behavioral contexts. Moreover, it is essential to infer a
user’s behavioral context along with the physical activity to enable context-aware and knowledge-driven
applications in real-time. Therefore, this research work presents ‘‘C2FHAR’’, a novel approach for coarse-
to-fine human activity recognition in-the-wild, which explicitly models the user’s behavioral contexts with
activities of daily living to learn and recognize the fine-grained human activities. For addressing real-
time activity recognition challenges, the proposed scheme utilizes a multi-label classification model for
identifying in-the-wild human activities at two different levels, i.e., coarse or fine-grained, depending upon
the real-time use-cases. The proposed scheme is validated with extensive experiments using heterogeneous
sensors, which demonstrate its efficacy.

INDEX TERMS Activity recognition, behavioral context, context-aware, machine learning, smart sensing.

I. INTRODUCTION
The progression of the Internet of Things (IoT) and smart
sensing technologies has made ubiquitous computing an
indispensable platform for assisting people in their routine
life. IoT offers a much-needed paradigm to ubiquitously con-
nect different sensingmodalities for enabling diverse applica-
tions relating to human activity monitoring and tracking [1].
The rapid development in smart sensing systems and tech-
nologies has encouraged the researchers to make use of these
technologies for passive monitoring of people’s activities.
In recent years, Human Activity Recognition (HAR) has
gained significant popularity and become a major research
pocket in the areas of pervasive and ubiquitous computing.
The goal of HAR is to provide accurate and opportune
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information as regards to the people’s activities by processing
data streams originating from different sensing modalities
(such as video cameras, wearable/on-body inertial sensors,
mobile sensors, and/or ambient sensors) [2]. In recent years,
sensor-based HAR has become increasingly significant in
wide-ranging disciplines, including human-computer inter-
face (HCI), ambient assistive living in smart homes [3], [4],
driving behavior analysis [5], [6], robotics [7], [8], and tele-
care for personal health monitoring [9]. Passive and continu-
ous monitoring of human activities is necessary for human
behavior cognition and understanding. Furthermore, it can
provide assistance to the people in their living and working
environments. Therefore, HAR is pertinent to all disciplines
of life, including patient activity monitoring for health-care,
children’s activity tracking for their safety, and monitoring of
the instructor’s and students’ activities in a lecture hall for
improved learning.
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Although sensor-based HAR provides accurate and reli-
able information about people’s activities, however, identify-
ing natural human activities in-the-wild is quite challenging.
Complex and chaotic correlations between human beings and
their behavioral contexts make it hard to recognize natural
user behavior. Existing HAR systems mostly focus on recog-
nizing the activities of daily living (ADLs) under controlled
settings, where the participants are instructed to perform a
series of activities in a defined pattern to train the HAR
model [10]–[13]. However, natural human activities have
significant variability due to rich and intricate behavioral
contexts that adversely affect human activity patterns. For
instance, when a person is in a meeting or in a car, the sit-
ting posture is usually different. Similarly, when a person
walks alone or walks with a group of people, the walking
pattern of the person may vary. Unfortunately, the present
methodologies for sensor-based HAR are not capable of
fairly distinguishing in-the-wild human activities with vital
inconsistencies in the behavioral contexts. The HAR models
trained under controlled settings cannot adapt well to the
changes in human activity patterns and the associated behav-
ioral contexts. It ultimately leads to a poor understanding
of human activities in-the-wild. Therefore, incorporating the
user’s context information in the HAR model is necessary
to learn and recognize how people perform their ADLs in
different settings. In [14], the authors presented an in-the-
wild context recognition model that utilizes heterogeneous
sensors from smartphones and smartwatches to recognize a
number of human behavioral contexts. They used logistic
regression (LR) classifier to infer context information based
on a single model-per-label approach that only recognizes the
single-label context information at one time. However, this
information is not adequate to accurately model multi-label
context-aware human activities in-the-wild. Furthermore,
the explicit relationship between human activities and the
associated behavioral contexts is not possible in this case,
which is the core of human behavior analysis and essential for
many context-aware applications and recommender systems.

In view of the existing challenges associated with HAR
and its real-time applications, this research work proposes
an innovative approach for coarse-to-fine human activity
recognition (C2FHAR) in-the-wild using heterogeneous sen-
sors. The novelty of the proposed scheme lies in the notion
of modeling and recognizing the secondary information
concerning human behavioral contexts in combination with
the primary ADLs. In this aspect, the proposed method
utilizes a multi-label classification model that assigns two
types of activity labels to each data instance and enables
simultaneous recognition of human activities at two different
levels. The first level of classification only identifies six
(06) single-label primary ADLs (e.g., lying, sitting, standing,
walking, bicycling, and running) in-the-wild, thus provid-
ing a coarse representation of human activities. In contrast,
the second level explicitly models human behavioral contexts
with the ADLs to learn and recognize a fine-grained repre-
sentation of human activities in-the-wild. For this purpose,

fourteen (14) context labels are associated with six pri-
mary ADLs in different combinations to produce a set of
twenty-nine (29) fine-grained human activities. These con-
texts signify information relating to the user’s social context
(indoor/outdoor/in a car/in a meeting), secondary activity
(sleeping/watching TV/talking/shopping/surfing the internet
/exercise), and phone position (in hand/in pocket/in bag/on
table) in-the-wild. In this way, fine-grained HAR aims to
provide the coinciding recognition of the ADLs and the asso-
ciated behavioral contexts. Thus, a more precise and compre-
hensive illustration of in-the-wild human activities is obtained
at the second level, which is crucial for effective decision
making in real-time intelligent systems. The primary objec-
tive of employing the multi-label classification model for the
proposed scheme is to enable real-time recognition of both
coarse and fine-grained activities. For a given data instance
to recognize in real-time, the classification is performed inde-
pendently at two different levels, and the individual classifica-
tion scores of both outputs are compared. Finally, the output
with a higher confidence score or probability is chosen as the
final system output. In this way, the proposed scheme offers
either coarse or fine-grained activity representation in-the-
wild based on real-time scenarios and use-cases. A public
domain dataset, i.e., ExtraSensory [15], is employed for test-
ing and validating the proposed scheme using three machine
learning classifiers, including Decision Tree, Random Forest,
and Neural Networks, where the best one provides efficient
recognition performance. The proposed scheme can serve as a
building block for wide-ranging applications and recommen-
dation systems that utilize knowledge about human activities
and their social or/and behavioral contexts to form improved
decisions. Also, it can be utilized for human behavior model-
ing and analysis, which in turn can be used for predicting and
preventing health-related risks for personal autonomy. This
research work entails the following key contributions:
• A novel multi-label classification scheme is proposed
for enabling real-time C2FHAR in-the-wild. In this
aspect, diverse behavioral contexts are modeled with
the ADLs to learn and recognize better the real-world
use-cases.

• A systematic and reproducible approach is presented for
fine-grained activity selection and annotation using the
publicly available ExtraSensory dataset. This approach
is generalizable to any dataset that entails multiple labels
related to a single instance.

• The effect of behavioral context modeling on HAR per-
formance is investigated and discussed in detail based
on context-independent and context-dependent HAR
experiments.

• A detailed experimental analysis is conducted to inves-
tigate the performance of heterogeneous sensors for the
proposed C2FHAR scheme using three machine learn-
ing classifiers, i.e., Decision Tree, Random Forest, and
Neural Networks.

The remaining portion of the paper is organized as fol-
lows. Section II discusses the related works for the proposed
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scheme. Section III explains the proposed methodology of
research in detail. Section IV provides detailed experimental
results and analyzes the performance of different sensors
and machine learning algorithms for the proposed scheme.
Finally, Section V concludes the finding of this research work
and provides suggestions for future works.

II. RELATED WORK
Sensor-based HAR has undergone extensive research work in
the past few years as it provides the notion of passive sensing
for human-centric computing with privacy well intact [16].
The detailed surveys about sensor-based HAR approaches
are presented in [11]–[13], [17], where the researchers have
utilized different types of sensors for HAR, including cam-
eras, wearable inertial sensors, smartphone sensors, and their
combination. Wearable sensors are particularly advantageous
because of their aptitude to be worn or placed at multiple
body positions for efficient HAR. Hence, a lot of research
studies focused on manipulating body motion sensors for
HAR [18]–[22] and detection of abrupt activities like fall
[23], [24]. Jalloul [25] discussed the applications of the wear-
able sensor in clinical practice and reviewed the wearable
sensing systems used for monitoring movement disorders.
Huang et al. [26] proposed a probabilistic model for risk
stratification from the clinical perspectives. Liu et al. [27]
presented an interval-based probabilistic generative model
for recognizing complex hand activities (with inherited struc-
tural diversities), which is based on Bayesian network struc-
tures. The authors demonstrated the validity of their proposed
scheme on the benchmark datasets as well as the self-
constructed dataset. The experimental results indicated
the competitiveness of their proposed method. In [28],
the authors proposed a data-driven probabilistic model for
recognizing low and medium level human activities. They
evaluated their proposed model on the Opportunity dataset
and obtained state-of-the-art results. Liu et al. [29] uti-
lized wearable sensors for recognizing housekeeping tasks
as complex activities of daily living, which achieved suc-
cessful results. Noor et al. [30] proposed an ontology-
based approach that utilizes ambient sensors in combination
with the wearable sensors to recognize daily living activ-
ities in a smart home. Villalonga et al. [31] proposed
‘‘MIMU-Wear’’, an ontology-based sensor selection and
reconfiguration scheme for wearable activity recognition.
Yurtman and Barshan [32] proposed an orientation-invariant
scheme for HAR using wearable sensors, which applies dif-
ferent transformations on the raw data as preprocessing to
minimize the influence of sensor orientation activity recogni-
tion. Their proposed techniques can be applied to the existing
wearable systems by simply transforming the time-domain
sensor data at the pre-processing stage. The research work
done by Sztyler et al. [33] proposed a position-aware system
for HAR using wearable sensors, which recognizes the sen-
sor placement based on physical activity patterns. Recently,
the authors in [34] proposed HuMAn, a wearable-sensor
based approach for the classification of 21 complex at-home

activities. All these wearable sensor-based approaches tend to
achieve efficient recognition performance. However, the use
of on-body sensors for activity monitoring often creates
inconvenience for the users as most people generally hesitate
in wearing on-body sensors, which ultimately leads a person
to act or behave irrationally. Thus, the aim of recognizing the
user’s natural behavior is not accomplished.

In recent years, the evolution of smartphones with growing
sensing capabilities has attracted a lot of researchers to utilize
smartphone inertial sensors for HAR [35]–[37]. The orien-
tation and position sensitivity of smartphone inertial sensors
is challenging to tackle, which poorly affects the recognition
performance. Most of the existing smartphone-based HAR
methods are position-dependent, i.e., these methods require a
smartphone to be placed at some fixed position on the user’s
body. However, in the natural living environment, people
do not usually keep a smartphone at a fixed place all the
time. The smartphone position keeps on changing depending
upon the user’s own convenience. In this case, smartphone-
based position-dependent HAR schemes fail to recognize
human activities with higher accuracy. A few researchers
have also attempted to develop smartphone-based position-
independent HAR schemes, where the HAR model is trained
corresponding to the motion data of the same activity for
different smartphone positions [38]–[40]. Smartphone-based
position-aware HAR systems have also been developed,
which recognize the phone position and human activity at
two different levels usiing two or more classifiers [41]–[43].
The inadequacy of these methods is their higher computa-
tional cost owing to the use of multiple classifiers for HAR.
A few research studies utilized smartphones for user context
recognition as well [44]–[46]. However, smartphone-based
HAR systems are not capable of recognizing hand-based
movements or activities, such as eating, drinking, and
brushing. As a result, some research studies also focused
on the utilization of heterogeneous sensing for recognizing
complex human activities [47]–[49], which have appeared
to improve the recognition results in most of the cases.
Shoaib et al. [50], [51] utilized themixture of smartphone and
smartwatch sensors for recognizing complex human activities
and achieved effective recognition performance.

Recently, with the continuous evolution in deep learn-
ing algorithms, some research studies have also utilized
deep learning schemes [52]–[55] for sensor-based HAR.
In [56], [57], the authors presented the detailed surveys
on recent advancements in sensor-based HAR using deep
learning models and discussed their limitations and future
implications. Deep learning-based schemes are computation-
ally costly and thus cannot be implemented effectively for
real-time operations on battery-constrained devices, such as
smartphones and smartwatches.

III. METHODOLOGY OF RESEARCH
The proposed HAR scheme entails a supervised machine
learning approach, which consists of four key steps. These
steps include: 1) data acquisition, 2) data preprocessing,
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FIGURE 1. Proposed methodology for C2FHAR based on multi-label classification model. Here, c(1) and c(2) represent the predicted class
labels for coarse-level and fine-level HAR, respectively, whereas p(1) and p(2) represent the predicted probabilities of c(1) and c(2)

respectively.

3) feature extraction, and 4) activity recognition. Fig. 1 shows
the block diagram of the proposed methodology of
research. The detailed explanation relating to each step is
provided in the following sections.

A. DATA ACQUISITION
For validating our proposed scheme, we opted to use the pub-
licly available ExtraSensory [15] dataset that conforms to the
pipeline of C2FHAR model. This specific dataset is selected
on account of three key reasons: 1) the dataset is collected
in-the-wild from 60 users, including 26males and 34 females,
without imposing any restriction on the users regarding
the ADLs execution, 2) the dataset contains a large num-
ber of context labels associated with the selected ADLs,
which provide supplementary information about a user’s
context in-the-wild, and 3) the dataset consists of hetero-
geneous data from both smartphone inertial sensors (i.e.,
accelerometer and gyroscope) and the watch accelerometer.
These sensors are utilized individually as well as in different
combinations to assess their performance for the proposed
scheme.

1) FINE-GRAINED ACTIVITY ANNOTATION
The ExtraSensory dataset contains six primary ADLs (same
as selected in our scheme) per user. Besides, it provides a
large number of secondary context labels (in binary form)
corresponding to each instance of these ADLs. These context
labels provide auxiliary information about human behavioral
contexts when executing a particular primary activity in-
the-wild. Owing to an in-the-wild collection of the dataset,
the contexts labels relating to each primary activity are
not consistent for all the users. Consequently, the selection
and annotation of fine-grained activities, i.e., primary ADLs
incorporated with behavioral context information, is not a
straightforward task. To model context information with the
ADLs, relabeling of these activities is required with the joint
information of the user’s social or behavioral context in-
the-wild. In this aspect, we performed a systematic analysis
of the ExtraSensory dataset to realize the co-occurrences of

the selected ADLs with different behavioral contexts (such
as user’s secondary activity/ location/body state) and phone
positions. Following this, for each user’s data, we calcu-
lated the frequencies of different behavioral contexts and
phone positions that occur in pairs with each primary activity.
Finally, we chose twenty-nine (29) most frequently occurring
triplets of primary activity, user’s behavioral context, and
phone position as fine-grained activities, which have a suf-
ficient number of total instances. In this way, a methodical
approach is employed for data relabeling and annotation,
which is reproducible.

Table 1 shows the list of 29 fine-grained activities (FGAs)
obtained as a result of data relabeling. As the ExtraSen-
sory dataset is collected in-the-wild, hence, based on this
analysis, it can be said that these 29 combinations of the
ADLs, behavioral contexts, and phone locations are the most
common in daily life. This systematic analysis can be helpful
for other researchers doing the same kind of work. Overall,
fourteen (14) different context labels (including four (04)
phone positions) are incorporated with the selected primary
ADLs in different combinations, as shown in Fig. 2. These
behavioral contexts are mutually exclusive, having no over-
lapping instances. The activities of lying, sitting, standing,
and walking are modeled with three (03), ten (10), six (06),
and eight (08) multi-label contexts (including phone posi-
tion), respectively, as shown in Table 1. It can be observed that
bicycling and running activities are only used in the context
of exercise with phone in pocket as there was no other addi-
tional information regarding their behavioral contexts in the
selected dataset. Likewise, there are a few activity instances
among different users, where the data corresponding to the
selected behavioral contexts is missing. These data samples
are simply ignored for further processing.

B. DATA PREPROCESSING
The raw data acquired from the smartphone or smartwatch
sensor may contain different types of high-frequency noise,
such as including instrumentation noise or noise generated
by the insentient movement of the participants. In this study,
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TABLE 1. Set of 29 fine-grained activities for the proposed C2FHAR scheme.

FIGURE 2. Six (06) primary activities of daily living (ADLs) and their association with overall fourteen (14) in-the-wild behavioral contexts
(including the users’ locations/secondary activities and phone positions) to produce fine-grained activities. All ADLs are associated with
one or more secondary activities/user locations, which in turn are linked with one or more phone positions. Each primary activity and the
associated contexts are represented with the arrow lines, starting from the top till bottom. A few examples of the fine-grained activities
obtained in this study include lying when sleeping with phone on table, sitting in a meeting with phone on table, sitting in a meeting with
phone in pocket, and walking indoor with phone in pocket, etc.

we used a computationally efficient time-domain smoothing
filter (of order 3) for removing unwanted noise from the
signal.

The window size is a crucial element in the data segmen-
tation process, which depends on the sampling rate of the
acquisition device as well as the type of activities that have
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to be recognized. Generally, for simple and cyclic ADLs in
some controlled environments, the time duration of 2s-5s
has proved to be sufficient for HAR [17], [50]. In contrast,
complex and non-repetitive activities require a more signif-
icant amount of time (i.e., 15s to 30s) to produce adequate
results [50]. In addition to the simple ADLs, the proposed
method also targets to recognize multi-label FGAs in-the-
wild, which entails intricate and chaotic patterns. Hence,
we opted to use a window size of 20-seconds in time for seg-
menting the raw data samples (obtained from the smartphone
and smartwatch sensors at a sampling rate of 40Hz and 25Hz,
respectively. The ExtraSensory dataset also contains the pre-
segmented data chunks of 20-seconds in time. Accordingly,
we also used the same window size for feature extraction.

C. FEATURE EXTRACTION
Feature extraction generally computes important signal
attributes from the preprocessed data, which are helpful
for resolving the classification problem in hand. However,
the selection and choice of features to be extracted is cru-
cial as it directly influences the classification results. As the
proposed HAR model is designed to adequately distinguish
between the varying patterns of the ADLs in different con-
texts, hence a set of robust features is required. For this pur-
pose, we conducted an empirical analysis of different sets of
hand-crafted features used in the existing HAR studies [34],
[40], [58]–[60] using a supervised correlation-based feature
subset selection (CfsSubetSel) approach [61]. We initially
extracted a set of twenty-five (25) time-domain features from
the raw sensor data. These features include maximum and
minimum amplitudes, mean, variance, standard deviation,
kurtosis, skewness, 3rdand 4thmoments, peak-to-peak ampli-
tude and time, peak-to-peak slope, minimum and maximum
latencies, latency-amplitude ratio, signal percentiles (i.e.,
25th, 50th, and 75th), energy and normalized energy, mean
and normalized mean of first and second difference of the sig-
nal, and signal entropy. This set of features is then subjected
to the CfsSubetSel method for feature reduction. Finally,
a subset of overall twelve (12) unique features is obtained
from three individual sensors (smartphone accelerometer,
smartphone gyroscope, and watch accelerometer) and their
combination, which are finally used for classification in the
next stage. The details related to the selected features are pre-
sented below, along with their mathematical representation in
Eq. (1) - (13).

Arithmetic Mean (s̄):

s̄ =
1
N

∑N

m=1
sd (m), (1)

where sd (m) represents a 1D acceleration or rotation signal,
the subscript d represents the direction of the signal (either
along x, y, or z-axes),m symbolizes themth sample of the sig-
nal, and N is the total number of samples in the signal sd (m).
Minimum Signal Amplitude (sdmin):

sdmin = min(sd (m)), (2)

where min(sd (m)) represents the minimum amplitude value
contained in the signal sd (m).

Maximum Signal Amplitude (sdmax):

sdmax = max(sd (m)), (3)

where max(sd (m)) denotes the maximum amplitude value
contained in the signal sd (m).

Maximum Latency (nm): It represents the index of
maximum signal amplitude value.

msdmax = {m | s (m) = sdmax} (4)

Minimum Latency (msdmin ): It represents the index of
minimum signal amplitude value.

msdmin = {m | s (m) = sdmin} (5)

Kurtosis (K): It is computed based on the 4th moment
about the signal mean and represents the tailedness of the
signal probability distribution.

K =
m4

σ 2 =
1
N

N∑
m=1

(sd (m)− s̄)4

σ 4 , (6)

where m4 represent the fourth moment of the signal sd (m),
which is given in Eq. (6).

m4 = E[(sd (m)− s̄)4], (7)

where E denotes the expected value.
First Quartile (Q1): It represents the 25

th percentile of a
signal.

Q1 = sd

(⌊
N + 1

4

⌋)
(8)

Signal Median (M): It represents the 50th percentile
or median of a signal.

M = sd

(⌊
N + 1

2

⌋)
(9)

Third Quartile (Q3): It represents the 75
th percentile of a

signal.

Q3 = sd

(⌊
3(N + 1)

4

⌋)
(10)

Normalized Mean of Signal Gradient (∇̄): It represents
the normalized mean of the first difference of a signal.

∇̄ =
1
N

N∑
m=1

(
|sd (m)− sd (m− 1)|

sdmax

)
(11)

Normalized Mean of Signal Laplacian (1̄): It repre-
sents the normalized mean of the second difference of a
signal.

1̄ =
1
N

N∑
m=1

(
|sd (m+ 1)− 2sd (m)+ sd (m− 1)|

sdmax

)
(12)
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Entropy (H(sd(m))): It measures the rate of change in a
signal.

H (sd (m)) = −
∑N

m=1
pi(sd (m)) log2 pi(sd (m)) ((sd (m)) ,

(13)

where pi ((sd (m)) is the probability of (sd (m)).
These features are extracted using a fixed-length non-

overlapping window of 20-second in time. The size of the
final feature obtained for an activity instance is [1 × (12 ×
3)] = [1 × 36] per sensor. In the case of the sensors fusion,
the final feature vector is of size [1 × ((36× C))], where
C represents the number of sensors involved in the fusion.
The primary reason for using these hand-crafted features is
their successful HAR performance in the existing studies on
account of low computational cost. Moreover, these features
do not require a large training set, and it is easier to analyze
and appreciate the individual contribution of these features
(or set of features) for a specific problem. Unlike high-
level or deep features that are extracted automatically from
the data, hand-crafted features evade any features driven by
noise and artifacts.

D. ACTIVITY RECOGNITION
The final step of the proposed methodology is activity
recognition that entails two types of experiments, i.e.,
context-independent or coarseHARand context-dependent or
fine-grained HAR. A multi-label classification model is pre-
sented for this purpose, which simultaneously classifies the
given chunk of data at two different levels and provides a
notion of C2FHAR. Each activity instance is assigned two
types of labels. The first one represents the primary ADLs
only, which is used for coarse HAR at the first level of the
proposed model. The other signifies the primary ADLs with
the joint behavioral context and phone location information,
which is employed for fine-grained HAR at the second level.
The original activity labels (as in the ExtraSensory dataset)
are used for coarse HAR, whereas, for fine-grained HAR,
the newly assigned labels are used for each instance. The
fundamental purpose of implementing two different types
of HAR experiments is to investigate the effect of human
behavioral context modeling on HAR performance, which is
discussed in the results section.

The first-level classification entails the recognition of six
single-label primary ADLs (e.g., lying, sitting, standing,
walking, bicycling, and running) independent of any context
information, thus providing a coarse representation of human
activities. The second-level classifier identifies 29 context-
aware activities (as listed in Table 1) and provides a fine-
grained activity representation. Decision Tree, Random
Forest, and Neural Networks are used to evaluate the perfor-
mance of the proposed scheme. These classifiers are trained
independently at two different levels of the proposed HAR
model to identify the relevant primary ADLs or FGAs. In the
end, the outputs from both stages are combined based on their
classification scores to generate the final output. During the

testing stage, each data chunk is passed through the first and
second-level classifiers individually, and the corresponding
class labels are inferred along with their posterior probabil-
ities. The output activity identified with a higher posterior
probability from both levels (i.e., coarse HAR and fine-
grained HAR) is selected as the final output of the system.
In this way, the proposed HAR model enables C2FHAR
for real-time applications as well. Algorithm 1 provides
the pseudocode of C2FHAR using the proposed multi-label
classification model.

Algorithm 1 Steps for C2FHAR Using the Proposed Multi-
Label Classification Model
Input(s): Training data: ∅ = {Xi,Li}Ni=1
Test data: xj (for inference stage only)
N : Total number of samples in the training set X
Li ∈

{
G(1),G(2)} : Multiple activity labels for a training
instance i

G(1)
: Set of six primary (context-independent) activity
labels

G(2)
: Set twenty-nine fine-grained (context-dependent)
activity labels

Output: Activity Label Alabel(Primary or Fine-grained
Activity)

Procedure:
% Training Stage
1: M (1)

= trainClassifier
(
∅ |Li ∈ G(1)

)
% Classifier training for recognizing coarse-level
activities

2: M (2)
= trainClassifier

(
∅ |Li ∈ G(2)

)
% Classifier training for recognizing fine-grained
activities

% Testing Stage
3:
[
c(1), p(1)

]
= classify

(
xj,M (1)

)
% Inferring coarse-

level activity label c(1) and the resultant maximum
posterior probability p(1)

4:
[
c(2), p(2)

]
= classify

(
xj,M (2)

)
% Inferring fine-

grained activity label c(2) and the resultant maximum
posterior probability p(2)

5: if p(1) > p(2) then
Alabel = c(1)% Primary activity label as output

else
Alabel = c(2)% Fine-grained activity as output

end if

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section explains the method of analysis used for the pro-
posed C2FHAR scheme along with the detailed experimental
results and performance analysis. Moreover, it investigates
the effect of behavioral context modeling on HAR in-the-
wild. The details related to each subject are given in the
following sections.
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A. METHOD OF ANALYSIS AND CLASSIFIER TUNING
The proposed C2FHAR scheme is evaluated on the ExtraSen-
sory dataset using Random Forest (RF), Decision Tree (DT),
and Neural Networks (NN) classifiers. These classifiers are
preferred on account of their efficient performance in the
existing sensor-based HAR studies [44], [62]–[65]. Further-
more, in comparison to other prevalent machine learning
classifiers (such as K-Nearest Neighbor (K-NN), Support
Vector Machine (SVM), and Naïve Bayes (NB)), the selected
classifiers are well-suited for the required classification tasks
that entail in-the-wild activity data. K-NN is a lazy-learner
that is incapable of inferring the generalized discriminative
model from the training data. It memorizes the whole training
data to make predictions on the test data. Hence, the use
of a K-NN classifier for real-time HAR applications is not
feasible. SVM performs well in the cases when the margin
between different class boundaries, i.e., hyperplanes, is suf-
ficiently large, which is not possible for the proposed HAR
scheme with small inter-class variations. Moreover, the SVM
classifier does not directly provide the predicted probability
of each class. Instead, it provides a classification score that is
transformed to predicted probability using a computationally
costly cross-validation technique. Likewise, NB works based
on the Bayes theorem that requires the prior and conditional
probabilities of each class to be estimated. Furthermore, NB
strongly assumes that the input data entails a Gaussian distri-
bution and all the input variables (i.e., features) are entirely
independent. This assumption cannot be undertaken for
in-the-wild activity data.
A k-fold cross-validation scheme (with k = 5) is adopted

for evaluating the performance of the selected classifiers. For
this purpose, the activity instances pertaining to each user
data are placed together, and the entire dataset is split into
five equal parts (starting from top to bottom). Four data splits
are used for training the classifiers, whereas the remaining
split is used for testing purposes. This process is repeated five
times until all the activity instances are used for training and
testing in different iterations, which ensures fairness in the
output recognition results. In each round, the classifier testing
entails the whole (or largest) part of the activity instances
from unseen users, which offers a notion of leave-some-
subjects-out validation. The hyperparameters of the selected
classifiers are tuned corresponding to each fold of data to
minimize the training error. Consequently, a random tree
(bagging using a base learner) is chosen for RF classifier with
the no. of iterations set as 100. For DT classifier, a C4.5 [66]
pruned tree, i.e., J48, is employed with the number of folds
equal to 3. In the case of NN classifier, one fully-connected
hidden layer is used with the number of neurons equal to
the mean of input and output layer size. The learning rate is
set equal to 0.03 with the no. of learning iterations as 109.
These hyperparameter configurations provided the least train-
ing error for the proposed scheme using five-fold cross-
validation.

1) PERFORMANCE EVALUATION PARAMETERS
The performance of RF, DT, and NN classifiers is validated
based on commonly used performance metrics, including
accuracy (AC), precision (PR), sensitivity/recall (SE), and
F1-score (F1). However, using these parameters for imbal-
anced class distribution problem often produces biased recog-
nition results. The ExtraSensory dataset used in this study
for experimentation purposes is collected in-the-wild; hence,
the number of instances is not uniform for the selected ADLs
and FGAs. This inconsistency in the number of activity
instances may lead to biased results in terms of AC, PR,
SE, and F1. As a result, similar to our baseline study [14],
the balanced accuracy (BAC) measure is used as the key
performance indicator in this study. BAC represents the area
under the curve (AUC) and is insensitive to the rare-labels
that may cause unfairness in the output recognition results in
the case of an imbalanced class dataset. In addition to BAC,
Mathews Correlation Coefficient (MCC) is used to evaluate
the classifier performance, which is primarily considered as
a balanced measure even if the classes are of different sizes
[67], [68].MCC also signifies howwell a classificationmodel
fits the data by returning a coefficient value in the range
−1 to +1. In the case of perfection and worst prediction,
a value of +1 and −1 is obtained, respectively, whereas,
a value 0 indicates a random prediction. Eq. (14) and Eq. (15)
provides the mathematical description of both these metrics,
i.e., BAC and MCC, respectively. A macro-averaging tech-
nique is used to find out the average recognition results.

BAC =
TP × (TN + FP)+ Tn × (Tp + Fn)

2× (Tp + FN )(Tn + FP)
(14)

MCC =
(TP × TN )− (FP × FN )

√
(TP + FP) (TP + FN ) (TN + FP) (TN + FN )

(15)

TP, TN , FP, and FN denote true positives, true negatives, false
positives, and false negatives, respectively.

B. PERFORMANCE ANALYSES OF C2FHAR
As discussed earlier, the proposed HAR model entails
multi-label classification at two different levels: 1) context-
independent ADLs recognition at the coarse level, and
2) context-dependent FGAs recognition at the fine level. The
detailed experimental results and performance analysis for
both types of HAR experiments are provided in the subse-
quent sections.

1) CLASSIFIER-BASED ANALYSIS OF C2FHAR
In the case of context-independent ADLs recognition,
the selected classifiers are trained to recognize six primary
activities without incorporating any context information.
hence, all data samples related to a single activity are
combined together independent of any behavioral context
and assigned the same primary activity label. However, for
context-dependent fine-grained har experiments, the data
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TABLE 2. Average results obtained for coarse and fine-grained HAR using RF, DT, and NN classifiers.

instances relating to six adls are split into more refined
representations based on behavioral context information. All
activity instances with the same primary activity and behav-
ioral context labels aremerged together and assigned a similar
fine-grained activity label. The missing data samples from
any user or sensor are simply ignored. After that, RF, DT,
ANDNN classifiers are trained individually corresponding to
each fine-grained activity to recognize 29 FGAs. Three iner-
tial sensors, including smartphone accelerometer (S-ACC),
smartphone gyroscope (S-GYRO), and watch accelerometer
(W-ACC), are used for HAR.

Table 2 provides the average results obtained for coarse
and fine-grained HAR using RF, DT, and NN classifiers with
different combinations of sensors. It can be observed from

the table that the S-ACC sensor achieves an average BAC
value of 80.7% for the coarse-level ADLs recognition using
RF classifier, which is 2.8% and 5.7% more than the aver-
age BAC values of 77.9% and 75.0% attained with DT and
NN classifiers, respectively. Likewise, the individual ADLs
recognition performance of the S-GYRO and W-ACC sensor
is also better using the RF classifier. The best performance
(BAC = 83.0% and MCC = 74.3%) for ADLs recognition
is achieved with RF classifier using the fusion of all three
sensors (i.e., S-ACC, S-GYRO, and W-ACC). Generally, for
any other combination of sensors, RF performs better than
DT and NN classifiers in recognizing the selected ADLs. The
worst performance is attained for ADLs recognition based on
NN classifier.

VOLUME 8, 2020 7739



M. Ehatisham-Ul-Haq et al.: C2FHAR: Coarse-to-Fine Human Activity Recognition With Behavioral Context Modeling

In the case of context-dependent FGAs recognition,
the best performance (i.e., BAC= 86.7% andMCC= 76.4%)
is also achieved using RF classifier with the feature-level
fusion of S-ACC, S-GYRO, andW-ACC sensors, as indicated
in Table 2. For the same set of sensors, a BAC rate of 83.7%
and 77.5% is achieved with DT and NN classifier, which
is 1.7% and 7.9% less than the BAC rate of RF classifier,
respectively. In addition, an MCC value of 0.740 and 0.712 is
obtained for DT and NN classifier, respectively, with the
fusion of all sensors. Hence, it can be specified that NN
underperforms as compared to RF and DT classifiers for
fine-grained HAR as well. The individual FGAs recognition
performance of each sensor is better for RF classifier as
compared to both DT and NN classifiers. In the same way,
all other combinations of sensors achieve better recognition
performance for fine-grainedHAR using RF classifier, which
can be observed from Table 2. Therefore, based on these
analyses, it can be said that the performance of RF classi-
fier is robust than DT and NN classifier, which concludes
the efficacy of choosing RF over DT and NN classifiers
for in-the-wild recognition of ADLs and FGAs.
Generally, NN performs well with large datasets, where an

ample amount of data is available for the system training.
In the case of imbalanced datasets (such as ExtraSensory),
where the number of training examples for all the classes is
not equal and enough, the NN classifier provides poor perfor-
mance. As the proposed scheme is based on in-the-wild data
collected from the participants in diverse contexts; hence,
there exist apparent randomness and intra-class variations in
the activity patterns, which badly affect NN training. Besides,
the self-collected and self-labeled data from the participants
may entail labeling noise as well. As a result, the perfor-
mance of NN is degraded for the proposed C2FHAR scheme.
However, the RF classifier is capable of dealing with the ran-
domness in data, thus provides better results for the proposed
scheme. RF builds a collection of random decision trees (with
random data samples and subsets of features), each of which
individually predicts the class label, and the final decision is
made on the basis of majority voting principle. In contrast to
RF, the DT classifier builds a single tree on the entire dataset
using the entire set of features and data samples, which may
lead to overfitting. Hence, RF limits overfitting and error due
to bias by aggregating the result of multiple random trees
(build on different subsets of features) and thus produces
more useful results. Based on these analyses, the RF classifier
is determined as the best choice for in-the-wild HAR.

2) SENSOR-BASED ANALYSIS OF C2FHAR
This section analyzes the individual performance of different
sensors for ADLs and FGAs recognition based on the results
presented in Table 2. It can be investigated from these results
that the S-ACC sensor provides better individual performance
for in-the-wild HAR as compared to S-GYRO or W-ACC
sensor. For RF classifier, the BAC value achieved pertaining
to ADLs recognition using S-ACC is 3.7% and 3.6% better
than that achieved for S-GYRO and W-ACC, respectively.

Similarly, in the case of DT, the S-ACC senor achieves 4.0%
and 2.3% better BAC rate as compared to the BAC values
obtainedwith the S-GYRO andW-ACC sensors, respectively.
Likewise, the average values of MCC are also better for the
S-ACC sensors. When comparing the individual recognition
results of the S-GYRO and W-ACC sensors, it is observed
that the performance of the W-ACC sensor is better than
the S-GYRO sensor. The fusion of both smartphone sensors
(i.e., S-ACC and S-GYRO) achieves a BAC rate of 82.1%
for ADLs recognition using RF classifier. On the other hand,
combining both accelerometers (i.e., S-ACC and W-ACC)
provides an average BAC value of 82.7%. The fusion of all
three sensors attains the best results for ADLs recognition
(using RF classifier) with an average BAC and MCC values
of 0.830 and 0.743, respectively. In the case of fine-grained
HAR, the BAC rate achieved for the S-ACC sensor is 8.3%
and 3.9% more than that achieved with the S-GYRO and
W-ACC sensor, respectively, using RF classifier. Also,
the performance of the W-ACC sensor is 4.4% better than
the S-GYRO performance when classified using RF. The
fusion of both smartphone sensors (i.e., S-ACC and S-ACC)
improves the recognition performance (i.e., BAC rate) of
the system to 84.1%, 82.0%, and 72.3% using RF, DT,
and NN classifiers, respectively. Likewise, combining both
accelerometers (i.e., S-ACC and W-ACC) enhances the
system performance and provides a BAC rate of 85.0%,
83.0%, and 74.9% when classified using RF, DT, and NN,
respectively. The addition of the S-GYRO sensor with both
accelerometers provides the best BAC and MCC values of
0.854 and 0.788, respectively, for fine-grained HAR using
RF classifier.

Although adding the S-GYRO sensor with both accelerom-
eters (i.e., S-ACC and W-ACC) only provides a minor per-
formance improvement for both coarse and fine-grained
HAR experiments, however, it is necessary from the practi-
cal perspective to incorporate this sensor into the proposed
framework. It is owing to the reason that the S-GYRO
sensor is capable of efficiently tracking the 3D rotational
motion or body movements, which is very critical for in-
the-wild HAR, where the activities can be performed in any
random pattern. The accelerometer sensors do not generally
provide good recognition results for rotational motion, which
excites the use of S-GYRO sensor for real-time HAR. Hence,
based on the obtained results and discussion, it is concluded
that the fusion of S-ACC, S-GYRO, and W-ACC sensors is
the best choice for in-the-wild recognition of the selected
ADLs and FGAs.

Fig. 3 provides a comparison of the individual BAC values
obtained for context-independent primary ADLs using the
RF classifier with different sensors. The individual BAC
values achieved for bicycling, running, and walking activities
using the S-ACC sensor are 87.4%, 81.4%, and 77.8%,
respectively. These values are 4.8%, 5.9%, and 4.6% better
than those obtained for the same activities, respectively,
using S-GYRO. The use of W-ACC provides the BAC values
of 79.9%, 74.4%, and 70.6% for bicycling, running, and
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FIGURE 3. Individual recognition accuracies obtained for coarse-level
context-independent ADLs using RF classifier. Here A, G, and W signify
the smartphone accelerometer, smartphone gyroscope, and watch
accelerometer, respectively.

walking activities respectively, which are lower than the
corresponding BAC values obtained with the S-ACC sensor.
For standing, sitting, and lying activities, the best BAC rates
of 87.1%, 76.1%, and 75.8%, respectively, are achieved using
the W-ACC. Hence, it is evident that the individual perfor-
mance of S-ACC is better in recognizing context-independent
dynamic ADLs, whereas the W-ACC sensor performs better
in the case of static ADLs. Furthermore, adding W-ACC
with the S-ACC and S-GYRO sensor improves the individual
recognition accuracies of all primary ADLs.

Fig. 4 compares the individual recognition performance of
the S-ACC, S-GYRO, and W-ACC sensor in recognizing the
selected FGAs using RF classifier. This comparison is made
in order to get an understanding of the role of these individ-
ual sensors in recognizing certain context-dependent FGAs.

It can be observed fromFig. 4 that the S-ACC sensor performs
better than the S-GYRO sensor in recognizing all individual
FGAs. Likewise, the performance of the W-ACC senor is
also better than the S-GYRO sensor in recognizing most of
the individual FGAs. Hence, it is evident that the S-GYRO
sensor does not provide efficient results for fine-grained
HAR. By comparing the performance of both accelerometers
(i.e., S-ACC andW-ACC), it can be observed that the S-ACC
sensor performs better than theW-ACC sensor in recognizing
the FGAs. In particular, for activities a22 to a29(which relate
to walking, bicycling, and running activities with different
behavioral contexts), the S-ACC sensor outperforms the W-
ACC sensor. In contrast, for most of the static activities, the
performance of the W-ACC is better than the S-ACC. In
particular, for activities a1, a3, a5, a13, a17, and a21, where
the phone position is on table, the W-ACC sensor performs
way better than the S-ACC. Also, in the case of a2(lying when
surfing the internet with phone in hand),a8(sitting in a car
with phone in pocket), a12(sitting when watching TV with
phone in pocket), and a19( standing outdoor with phone in
pocket) activities, theW-ACC sensor provides better accuracy
rate than either of the smartphone sensors. It is because when
these activities are performed in the associated contexts, they
do not exhibit such body motion that can be tracked effi-
ciently with the smartphone sensors in the pocket. However,
these activities can be identified easily with the help of a
wrist-watch based upon some definite hand, wrist, or arm
movement/position. For instance, the activity a8(sitting in a
car with phone in pocket) can be efficiently detected based
upon the wrist and arm movements of a user when driving
a car or his/her arm position/movement when sitting in a
car. In the same way, the activity a12(sitting when watching
TV with phone on table) can be easily identified with the
hand/arm movements of a user when using the remote con-
trol or doing something else. Hence, the use of smartwatch in
combination with a smartphone is essential, which increases
the in-the-wild recognition accuracies of FGAs.

FIGURE 4. Comparison of individual sensor performance in recognizing the selected FGAs using Random Forest classifier. Here,
S-ACC, S-GYRO, and W-ACC represent the smartphone accelerometer, smartphone gyroscope, and watch accelerometer,
respectively.
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FIGURE 5. Confusion matrix for the best-case fine-grained HAR results achieved with Random Forest classifier using the combination of
S-ACC, S-GYRO, and W-ACC sensors. The rows represent the ground truths, and the columns show the predicted outputs.

Fig. 5 shows the confusionmatrix for the best-case context-
dependent fine-grainedHAR results obtained with the fusion
of S-ACC, S-GYRO, and W-ACC sensors using RF classi-
fier. It can be observed from the figure that almost half of
the FGAs (including a6 to a19) are recognized with a true
positive rate of more than 90%. These FGAs are related to the
static activities of sitting and standing with the correspond-
ing behavioral contexts. Their effective recognition results
indicate that it is easier to explicitly recognize the sitting
and standing activities in combination with their behavioral
contexts. Generally, the sitting and standing patterns of a
person vary with change in the behavioral context, e.g., sitting
posture is usually different when working on a com-
puter orwatching TV. Similarly, the stance of standing indoor
may quite differ from standing outdoor. Phone position and
other parallel activities being carried out also affect the sitting
and standing patterns. These differences are recorded by the
S-ACC and W-ACC sensors to effectively learn and identify
the FGAs related to sitting and standing(i.e., a4 to a19),
which can be observed from the confusion matrix reported
in Fig. 5. The activities a1 (lying when sleeping with phone on
table) and a2 (lying when surfing the internet with phone on
table) are truly recognized with lower accuracy as compared
to other activities (such as a3 and a4-a19) due to the hostile
phone position, i.e., on table, and the lack of any viable
wrist/arm movement pattern. Hence, the false positives and
false negatives are also higher for a1 and a2, as indicated
in Fig. 5. The activities a4 (sitting when surfing the internet
with phone in hand) and a5 (sitting when surfing the internet

with phone on table) are also misclassified as a1 with a high
proportion of 23.5% and 16.6%, respectively. Nevertheless,
the overall recognition performance obtained for the selected
FGAs is sufficient and practicable.

3) COARSE VS. FINE HAR IN-THE-WILD
Human activity patterns are not always consistent and vary
with the change in behavioral context. For creating a better
model for in-the-wild HAR, it is critical to take into account
the contextual parameters related to human activities. How-
ever, it is apparent that the classification between different
primary ADLs is easier in comparison to the FGAs, as the
inter-class variations are usually significant even in diverse
contexts. On the other hand, distinguishing between the vary-
ing patterns of the same activity in different contexts is dif-
ficult owing to the insignificant intra-class variations, which
makes the recognition of FGAs more laborious and difficult.
Moreover, different people have peculiar ways of conduct-
ing themselves in different contexts, which makes it harder
to model context-dependent FGAs in-the-wild. To analyze
the effect of behavioral context modeling on HAR perfor-
mance, we compare the performance of coarse-level ADLs
recognition with fine-grained HAR. The maximum average
recognition rate (i.e., BAC value) achieved for ADLs and
FGAs recognition is 83.0% and 86.7%, respectively, using
RF classifier. As follows, the proposed scheme identifies
29 FGAs (i.e., six primary ADLs linked with diverse behav-
ioral contexts) on account of a 3.7% increase in the BAC
rate as compared to the coarse-level recognition of six ADLs.
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As discussed earlier, recognizing the FGAs in-the-wild is a
much harder task than identifying the simple ADLs due to the
small inter-class variations. However, fine-grained HAR still
provides a better BAC rate than simple ADLs recognition,
which demonstrates the efficacy of the proposed C2FHAR
approach.

Fig. 6 compares the best-case BAC values obtained cor-
responding to each primary activity at the coarse and fine
classification level. The balanced accuracies achieved for the
individual FGAs related to each primary activity are averaged
to compute the fine-level recognition results for six ADLs.
It can be analyzed from Fig. 6 that the overall recognition
accuracies of the static activities (such as lying, sitting, and
standing) are increased with the explicit modeling of the
behavioral context information, which indicates that it is
easier to recognize these activities in consort with their behav-
ioral contexts. These static activities usually do not reveal
any definite body motion (except upper limb movements)
due to which it becomes challenging to distinguish between
them in-the-wild, without having any prior knowledge of the
user’s context. As an example, the classification between the
sitting and lying activities is difficult if the user’s phone posi-
tion or secondary activity is unknown. However, the explicit
modeling of the behavioral context information (such as
user’s location, secondary activity, and phone position) with
static activities helps in their identification and provides bet-
ter recognition results for these activities, as indicated by the
results reported in Fig. 3-5. The overall recognition accuracy
of the walking activity is decreased as a result of behavioral
context modeling. It is due to the chaotic nature of human
behavior that results in the varying motion patterns even in
the same settings, such as the emotional state (such as sad

FIGURE 6. Comparison of average HAR results obtained for six ADLs
using context-dependent and context-independent recognition method.
The overall performance of fine-grained HAR is better than
context-independent ADLs recognition, which demonstrates the
effectiveness of modeling behavioral context information for HAR
in-the-wild.

or happy) of a person may unconsciously change his/her gait
pattern. As a result, the proficient modeling of walking activ-
ity in diverse behavioral contexts appears impractical, which
reduces its recognition accuracy. The individual recognition
accuracies of bicycling and running activities are nearly the
same for both types of HAR experiments because these
activities are only modeled in a single context. Therefore,
the overall experimental results achieved for the proposed
scheme demonstrate the effectiveness of behavioral context
modeling for in-the-wild HAR, which is critical for human
behavior modeling and understanding as well.

C. COMPARISON WITH STATE-OF-THE-ARTS
This section provides a discussion on comparative analysis of
the proposed C2FHAR schemewith the existing-state-of-the-
arts. In this aspect, Table 3 compares the main characteristics
of a few well-known sensor-based HAR approaches with the
proposed scheme. The comparison is comprehended based
on the type and number of activities recognized, subjects
used for experimentation, sensing modalities, machine learn-
ing classifiers used for empirical analysis, and the achieved
results. It can be observed from Table 3 that the existing stud-
ies mostly target simple/ repetitive or complex/non-repetitive
ADLs for recognition purposes, which are single-labeled and
do not entail any user’s context information. These HAR
schemes are trained under controlled settings, where the
occupancy of data collection experiments is generally a single
location with a static context. As a result, these schemes
cannot adapt to natural user behavior and perform poorly in
real-world scenarios. In addition, most of the existing studies
are dependent on the fusion of multiple sensing modalities
(such as smartphone sensors, wearable sensors, and ambient
sensors) to achieve the successful recognition results, which
make them computationally expensive and infeasible. How-
ever, our proposed scheme is capable of efficiently recogniz-
ing 06 primary ADLs as well as 29 complex and multi-label
FGAs in-the-wild based on the smartphone and smartwatch
accelerometer sensors.

As the proposed C2FHAR scheme is implemented and val-
idated based on different sets of data and annotations, hence
a fair comparison with the existing state-of-the-art is not
possible. However, the efficacy of the proposed scheme can
be demonstrated by comparing the output recognition results
with the existing state-of-the-art. Table 3 shows that the accu-
racy rates achieved for the proposed C2FHAR scheme are
comparable or better than the reported results of the exist-
ing sensor-based HAR studies. Additionally, the proposed
scheme offers apparent advantages for effective decision
making over the existing schemes, which is very crucial for
real-time applications.

D. IMPLICATIONS OF C2FHAR IN REAL-TIME SETUPS
The main goal of the proposed C2FHAR scheme is the
provision of real-time HAR based on the available context
metadata. The accessibility and reliability of human context
information in real-time scenarios cannot be guaranteed. It is
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TABLE 3. Comparison of the proposed C2FHAR scheme with some well-known existing HAR studies.

quite possible that no context information is available to the
system at all, which may lead to the complete failure of
a context-dependent HAR scheme. However, the proposed
scheme addresses this challenge using a multi-label classi-
fication model that offers HAR at two different levels, i.e.,
coarse and fine, depending upon the user’s context infor-
mation. For ideal use-cases in real-time, where the required
context information is available to the system, the proposed
scheme can effectively provide the fine-grained representa-
tion of human activities based on behavioral context mod-
eling. However, in the absence of any context information,
the proposed HAR model can still efficiently recognize the
context-independent primary ADLs at the coarse level. The
final output of the system can be chosen by comparing
the activity classification scores obtained at both levels and
selecting the output activity predicted with a higher prob-
ability. For instance, with the availability of essential con-
text information, the proposed system can provide higher
prediction scores for FGAs as compared to ADLs, which is
indicated by the obtained results. However, in the absence
of any context information, there is a great likelihood that
the proposed system will recognize the context-independent
ADLs with higher confidence. In this way, the proposed
scheme assists real-time HAR and provides either a coarse
or fine-grained representation of in-the-wild human activi-
ties based on the presence/absence of the required context
information.

V. CONCLUSION
In this paper, a novel multi-label classification scheme is
presented for sensor-based human activity recognition, which
models human contexts (such as user’s location, secondary
activity, and phone position) with the daily living activities
to obtain a coarse-to-fine representation of human activi-
ties in-the-wild. For this purpose, a set of 29 fine-grained
human activities is obtained by adding context information
with six primary activities (including lying, sitting, stand-
ing, running, bicycling, and running). Decision Tree (DT),
Random Forest (RF), and Neural Networks (NN) are utilized
to recognize six context-independent activities as well as
29 context-dependent activities based on the inertial sensor
data extracted from smartphone and smartwatch. A public
domain ExtraSensory dataset is used for validating the pro-
posed scheme, which shows that RF performs better than DT
and NN classifiers in recognizing both types of activities.
The performance of context-dependent activity recognition is
better, which state the efficacy of behavioral context mod-
eling with the primary activities of daily living. The best
recognition results are achieved with the fusion of all inertial
sensors.

Although, the proposed solution offers satisfactory perfor-
mance for fine-grained activity recognition using the smart-
phone and smartwatch inertial sensors, however exploring
new substitutes of the proposed method can be advantageous
in improving the accuracy. The proposed idea of multi-label
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classification can be extended to incorporate multi-level hier-
archical activity classification based on the available context
information. In this aspect, a large number of activities and
the behavioral contexts can be modeled at different levels
to enable real-time HAR. More sensors, such as GPS and
microphone, can be added with the inertial sensors for better
recognition of human activities in-the-wild. The effect of
different behavioral contexts on human activity patterns can
be investigated to find out the factor contributing to abnormal
human behavior. The relationship between human physical
and physiological activities can be investigated, which may
lead to efficient human behavior cognition. Furthermore,
monitoring and understanding human activities and their
behavior in different contexts can help in improving the
productivity of a human being.
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