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ABSTRACT Fingerprint image enhancement is a key aspect of an automated fingerprint identification
system. This paper describes an effective algorithm based on a novel lighting compensation scheme. The
scheme involves the use of adaptive higher-order singular value decomposition on a tensor of wavelet
subbands of a fingerprint (AHTWF) image to enhance the quality of the image. The algorithm consists
of three stages. The first stage is the decomposition of an input fingerprint image of size 2M × 2N into
four subbands at the first level by applying a two-dimensional discrete wavelet transform. In the second
stage, we construct a tensor in RM×N×4 space. The tensor contains four wavelet subbands that serve as four
frontal planes. Furthermore, the tensor is decomposed through higher-order singular value decomposition
to separate the fingerprint’s wavelet subbands into detailed individual components. In the third stage,
a compensated image is produced by adaptively obtaining the compensation coefficient for each frontal
plane of the tensor-based on the reference Gaussian template. The experimental results indicated that the
quality of the AHTWF image was higher than that of the original image. The proposed algorithm not only
improves the clarity and continuity of ridge structures but also removes the background and blurred regions
of a fingerprint image. Therefore, this algorithm can achieve higher fingerprint classification accuracy than
related methods can.

INDEX TERMS Tensor, discrete wavelet transform, fingerprint classification, fingerprint enhancement,
singular value decomposition.

I. INTRODUCTION
Fingerprint classification is a required preliminary step in
automated fingerprint identification systems (AFIS), which
are increasingly used in law enforcement agencies to identify
criminals as well as in commercial, civilian, philological, and
financial domains. Fingerprint classification considerably
reduces the identification time of an AFIS, for which accu-
racy and speed are critical. Most fingerprint classification
algorithms are used to classify fingerprints into four or five
classes, as described by Henry [1]. In [2], fingerprints were
classified into seven classes according to hierarchical singular
point detection and traced orientation flow. In this method,
fingerprints were divided into seven classes by separating
Whorls into three types: Eddy (E), S-type (S), and Whorl.
Most fingerprint classification methods are based on one or
more of the following features: image orientation, ridgeline
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flow, singular points, and Gabor filter responses [2]–[7]. The
performance of each method depends considerably on the
quality of the fingerprint image. A low-quality fingerprint
image leads to adequate or false feature extraction (in terms
of aspects such as minutiae and singular points). Therefore,
fingerprint image enhancement is a key step in an AFIS.
Before being input into an AFIS, a fingerprint image must
undergo an enhancement stage that removes overlapping pat-
terns, connects broken ridges, and separates joined ridges.
Fingerprint image enhancement has been investigated in
multiple ongoing and completed studies. Researchers have
attempted to reduce noise and improve the contrast between
ridges and valleys in fingerprint images. Generally, methods
of enhancement can be broadly divided into three categories:
filtering methods, model-based methods, and multiresolution
methods.

Filtering methods are those that use filters to enhance a
fingerprint image. Wang and Wang [8] initially detected a
singular point area and then enhanced this area by applying
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a bandpass filter in the Fourier domain. However, detecting
a singular point region is very difficult when the quality
of the fingerprint image is extremely poor. The Log-Gabor
filter, which was introduced by Wang et al. [9], is used for
fingerprint enhancement; however, the logarithm function is
nonlinear, which leads to a loss of dominant information in
fingerprint images. Gottschlich [10] introduced curved Gabor
filters (cGFs) to enhance curved structures in noisy finger-
print images. This cGFs are defined on the basis of curved
regions and then applied to previously estimated orientations
and ridge frequencies for the enhancement of low-quality
fingerprint images.

Model-based methods are those that attempt to extract fea-
tures from fingerprint images and then use them for modeling
or learning before reconstruction to obtain enhanced images.
Jirachaweng et al. [12] used multiple Legendre polynomials
to determine the global orientation pattern of a fingerprint
image and reconstruct the orientation field according to the
structure of the fingerprint. They then enhanced the image by
using gradient estimation. Yun and Cho [13] analyzed finger-
print images, divided them into three types—oily, neutral, and
dry—according to their properties, and then applied a specific
enhancement strategy for each type. Cao and Jain [14] applied
prior knowledge of fingerprint ridge structures to encode
orientation patch and continuous phase patch dictionaries and
to facilitate fingerprint reconstruction. The orientation patch
dictionary was used to reconstruct an orientation field from
minutiae, whereas the continuous phase patch dictionary was
used to reconstruct the ridge pattern.

Multiresolution methods attempt to decompose a finger-
print image into multiple frequency subbands and allow
compensation for noise components on various scales.
To enhance a fingerprint image, Fronthaler et al. [15] used
a Laplacian-like image pyramid to decompose an origi-
nal image into subbands corresponding to multiple spa-
tial scales. They then performed contextual smoothing on
these pyramidal scales, where the corresponding filtering
directions were determined by a frequency-adapted struc-
ture tensor. Lei et al. [16] initially decomposed a fingerprint
image by using non-separable filter banks to obtain wavelet
coefficients. They subsequently modified these coefficients
through an adaptive approach to reduce noise and increase
the contrast between ridges and valleys according to the
geometric features of the image. Hsieh et al. [17] decomposed
a normalized fingerprint image by using wavelet transform
and then applied global texture filtering to remove spectral
and textural noise. Subsequently, local directional compen-
sation based on a set of 16 predefined directional masks
was applied to wavelet coefficients. Notably, the selection
of predefined mean and variance values used to normalize
a fingerprint image is heuristic. Bennet and Perumal [18]
enhanced a fingerprint image by multiplying the singular
value matrix of a low subband by the ratio of the largest
singular value of a generated normalized matrix with a mean
of 0 and variance of 1 to the largest singular value of the low
subband. Parts of the resultant images were uneven because

singular value decomposition (SVD) was applied in only the
LL subband and a generated normalized matrix was used.
To overcome this problem, Wang et al. [19] introduced a
novel lighting compensation scheme involving the use of
adaptive SVD on wavelet coefficients. First, an input fin-
gerprint image was decomposed into four subbands through
a two-dimensional discrete wavelet transform (2D-DWT).
Subsequently, the image was compensated for by adaptively
obtaining the compensation coefficients for each subband
based on a reference Gaussian template. However, in this
method, SVD was applied in each wavelet subband individu-
ally. Thus, the method was unable to identify relationships
among subbands. Consequently, some results were not as
expected.

Over the past two decades, the use of tensors and their
decomposition has become increasingly popular. In multi-
linear algebra, higher-order SVD (HOSVD) of a tensor is
a specific orthogonal Tucker decomposition [20]–[22]. The
power of a tensor framework can be presented in a visually
and mathematically compelling manner by decomposing and
representing an image in terms of its causal factors with
respect to data formation. HOSVD has been successfully
applied to signal processing as well as big data [23]–[25],
computer vision [26], and facial recognition [27]–[31].

This paper introduces a novel algorithm for fingerprint
image enhancement. The introduced algorithm is based on
a novel lighting compensation scheme that involves the use
of adaptive HOSVD on a tensor of wavelet subbands. The
algorithm has three stages. The first stage involves the decom-
position of an input fingerprint image sized 2M×2N into
four subbands at the first level through the application of
2D-DWT. In the second stage, a tensor is constructed in
R
M×N×4 space. This tensor contains four wavelet subbands

that serve as four frontal planes. The tensor is then decom-
posed through HOSVD to separate the fingerprint’s wavelet
subbands into detailed individual components. In the third
stage, a compensated image is produced by adaptively obtain-
ing the compensation coefficient for each frontal plane of
the tensor and fixing its inverse factor U3 according to the
reference Gaussian template. The experimental results indi-
cated that the quality of the compensated image was higher
than that of the original image. Thus, the proposed algorithm
can not only improve the clarity and continuity of ridge
structures but can also remove the background of a fingerprint
image. Therefore, the proposed algorithm can attain higher
fingerprint classification rates than related methods can. The
experimental results for the National Institute of Standards
and Technology (NIST)-4 [32] and Fingerprint Verification
Competition (FVC) 2002 [33] databases indicate that the
proposed method can substantially improve the clarity and
continuity of ridge structures. In addition, this method can
effectively remove the background of a fingerprint image
and minimize the blurred regions in it. This study achieved
a relatively high singular point detection rate. Thus, a higher
fingerprint classification rate was achieved with the proposed
method than with related methods.
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The remainder of the paper is organized as follows.
Section II introduces 2D-DWT applied to the fingerprint
image. Section III introduces the HOSVD of a tensor.
Section IV describes the proposed algorithm. The experimen-
tal results are reported in Section V, and the conclusion is
presented in Section VI.

II. WAVELET TRANSFORM OF A FINGERPRINT IMAGE
2D-DWT is used extensively in digital image processing [19],
[34], [35]. In the present study, DWT involved transformation
from the spatial domain into the wavelet domain. DWT based
on the octave-band tree structure can be viewed as the mul-
tiresolution decomposition of a signal. In two-band wavelet
transform, the signal f (x) can be expressed by wavelet and
scaling basis functions on different scales in a hierarchical
manner:

f (x) =
∑
k

cj0(k)ϕj0,k (x)+
∞∑
j=0

∑
k

dj (k) ψj,k (x) , (1)

where j0 is an arbitrary initial scale; ϕj0,k and ψj,k are the
scaling function and wavelet function at scale j, respectively;
cj0(k) is an approximation of the scaling coefficient; and dj (k)
is the detailed wavelet coefficient. 2D-DWT is represented in
terms of translations and dilations of the scaling and wavelet
functions, which can be computed using a 2D filter bank
consisting of low- and high-pass filters.

Consider the following scaled and translated basis
functions:

ϕj,m,n (x, y) = 2j/2ϕ
(
2jx − m, 2jy− n

)
, (2)

ψ i
j,m,n (x, y) = 2j/2ψ

(
2jx − m, 2jy− n

)
, (3)

where the index i = {H ,V ,D} denotes the horizontal, verti-
cal, and diagonal directional wavelets, respectively. 2D-DWT
of image f (x, y) of sizeM × N is expressed as follows:

Wϕ (j0,m, n) =
1
√
MN

M−1∑
x=0

N−1∑
y=0

f (x, y) ϕj0,m,n (x, y) , (4)

W i
ψ (j,m, n) =

1
√
MN

M−1∑
x=0

N−1∑
y=0

f (x, y) ψ i
j,m,n (x, y) , (5)

where i = {H ,V ,D}, and the Wϕ (j0,m, n) coefficients
define an approximation of f (x, y) at scale j0. TheW i

ψ (j,m, n)
coefficients add horizontal, vertical, and diagonal details for
the scale j ≥ j0. After 2D-DWT decomposition, the given
image is decomposed into several multiresolution frequency
components, as displayed in Fig. 1. The subbands HHj, HLj,
LHj, j = 1, . . . , J , are referred to details, with J being the
largest scale in the decomposition. A subband at scale j has
the sizeM/2j×N/2j. The subband LLJ is the low-resolution
residual, and J is typically sufficiently large so thatM/2J �
M ,N/2J � N and min

(
M/2J ,N/2J

)
> 1.

FIGURE 1. 2D-DWT of a fingerprint image. (a) Fingerprint image in the
NIST-4 database. (b) Four subbands after the use of 2D-DWT at the first
level. (c) Image reconstructed using only the LL subband coefficients (the
remaining coefficients were set to 0). (d) Image reconstructed using only
the LH subband coefficients (the remaining coefficients were set to 0).
(e) Image reconstructed using only the LH subband coefficients (the
remaining coefficients were set to 0). (f) Image reconstructed using only
the HH subband coefficients (the remaining coefficients were set to 0).

In accordance withWϕ andW i
ψ in Eqs. (4) and (5), f (x, y)

is obtained through inverse 2D-DWT (2D-iDWT) as follows:

f (x, y)

=
1
√
MN

∑
m

∑
n

Wϕ (j0,m, n) (x, y) ϕj0,m,n (x, y)

+
1
√
MN

∑
i={H ,V ,D}

∞∑
j=j0

∑
m

∑
n

W i
ψ (j,m, n) ψ

i
j,m,n (x, y) .

(6)

Wavelet transform is a multiresolution image decomposi-
tion tool that can represent image features through various
frequency subbands on multiple scales. Therefore, this tool
has the well-known advantage of multiscale analysis. More-
over, the wavelet transform has the compaction property of
only a small number of large coefficients due to key signal
features. The small coefficients are primarily the result of
noise. Moreover, noise is averaged to almost zero in the
low-frequency wavelet coefficients, all of which are sensitive
to illumination. Thus, only the wavelet coefficients in the
mid- and high-frequency subbands are thresholded to remove
noise. Fig. 1 depicts 2D-DWT with Daubechies mother
wavelet function of a fingerprint image at the first level and
images reconstructed using only the coefficients of one of
the four subbands; the remaining coefficients were set to 0.
As displayed in Fig. 1(c), most of the dominant information
in the fingerprint images were obtained in the low-frequency
subband. Information on ridge structures was obtained in the
mid-frequency subbands [Fig. 1(d) and (e)], and the noise
distribution was obtained from the high-frequency subband
[Fig. 1(f)]. We analyze the relevance of the aforementioned
wavelet subbands and then apply adaptively linear changes to

6604 VOLUME 8, 2020



N. T. Le et al.: Fingerprint Enhancement Based on Tensor of Wavelet Subbands for Classification

them before using 2D-iDWT to obtain enhanced fingerprint
images.

III. WAVELET SUBBANDS OF A FINGERPRINT IMAGE AS
A TENSOR AND ITS HOSVD
A. TENSOR FUNDAMENTALS
This subsection provides an overview of fundamental tensor
concepts and methods of extracting key information from
tensors by using HOSVD. For uniformity among symbols,
the matrix is denoted by an italic capital letter (e.g., ‘‘A’’)
and the tensor is denoted by a boldface Euler script letter
(e.g., ‘‘A’’). The formal definitions are given as follows [36].
Definition 1: A tensor is a multidimensional array. In for-

mal terms, an N -way or N th-order tensor is an element of the
tensor product of N vector spaces, each of which has its own
coordinate system.
Definition 2: The order of a tensor is the number of dimen-

sions, which are also known as ways or modes.
Definition 3: The fibers are the higher-order analogue of

matrix rows and columns. A fiber is defined by fixing every
index but one. A matrix column is a mode-1 fiber, and a
matrix row is a mode-2 fiber. Third-order tensors have col-
umn, row, and tube fibers, which are denoted by a:jk, ai:k,
and aij:, respectively. When extracted from a tensor, fibers are
always assumed to be oriented as column vectors.
Definition 4: Slices are 2D sections of a tensor defined by

fixing all but two indices. A third-order tensorA ∈ RI1×I2×I3

includes horizontal, lateral, and frontal slices denoted by Ai::,
A:j:, and A::k, respectively. Alternatively, the k th frontal slice
of a third-order tensor, A::k, is denoted concisely as Ak, k = 1,
2,. . . , I3.
Definition 5: The mode-k unfolding of a tensor A ∈

R
I1×I2×···×IN is denoted by A(k), which arranges the mode-k

fibers as columns of the resultant matrix.
Unfolding, which is also known as matricization or flat-

tening, is the process of reordering the elements of an N-way
array into a matrix. Although the process is conceptually
simple, its formal notation is clunky. The tensor element
(I1 × I2 × · · · × IN ) maps to the matrix element (i, j), where

j = 1+
∑N

k=1
k 6=n

(ik − 1) Jkwith Jk =
∏k−1

m=1
m6=n

Im. (7)

Definition 6: Themode-k (matrix) product of a tensorA ∈
R
I1×I2×···×IN with a matrix U ∈ RJ×IN is denoted byA×kU

and is of size I1 × · · · × I k−1 × J × Ik × · · · × IN . In terms
of elements, we obtain the following expression:

(A×k U)i1···ik−1jik ···iN =
IK∑
ik=1

ai1i2···iN ujik . (8)

Each mode-k fiber is multiplied by the matrix U . This idea
can be expressed in terms of unfolded tensors as follows:

A = X×k U ⇔ A(k) = UX(k). (9)

Definition 7: The HOSVD of a tensorA ∈ RI1×I2×···×IN is
expressed as follows:

A (i1, i2, . . . , iN )

=

I1∑
j1=1

. . .

IN∑
jN=1

S (j1, j2, . . . , jN ) .U1 (i1, j1) . . .UN (iN , jN ),

(10)

or

A = S×1 U1 ×2 U2. . .×NUN , (11)

where tensor S ∈ RI1×I2×···×IN is the core tensor and matrices
U1 ∈ R

I1×I1 ,U2 ∈ R
I2×I2 , . . . ,UN ∈ R

IN×IN are inverse
factors. When the order of a tensor is 3, Eq.(11) is an ‘‘illu-
mination’’ Tucker product representation ofA.

Considering that A(k) denotes the mode-k unfolding of the
tensorA, S(k) denotes themode-k unfolding of the core tensor
S. The SVD of A(k) is expressed as follows:

A(k) = Uk6kV T
k , (12)

Subsequently, S(k) is calculated as follows:

S(k) = 6kVk (UN ⊗ · · · ⊗ Uk+1 ⊗ Uk−1 ⊗ · · · ⊗ U1), (13)

or

S = A×1 UT
1 ×2 UT

2 . . .×NU
T
N , (14)

and tensor A is represented in the form of unfolding as
follows:

A(k) = UkS(k)(UN⊗· · ·⊗Uk+1⊗Uk−1⊗· · ·⊗U1)T , (15)

where ⊗ denotes the Kronecker product of the matrices.

B. TENSOR OF THE WAVELET SUBBANDS OF A
FINGERPRINT IMAGE
To effectively exploit the relationship between the wavelet
subbands of the fingerprint image, we construct a tensor
with four frontal slices denoting four wavelet subbands. The
wavelet subbands of the fingerprint image are represented by
a third-order tensor defined by two indices for spatial vari-
ables and one index for the wavelet subband mode. Mode-1
of the tensor is the height of a wavelet subband, mode-2
is the width of a wavelet subband, and mode-3 represents
the wavelet subbands of the fingerprint image. For example,
a fingerprint image of size 2M × 2N is transformed through
2D-DWT at scale level 1. Thus, the tensor of the wavelet
subbands of the fingerprint image is expressed as a third-
order tensor A ∈ RM×N×4 space, as displayed in Fig. 2(a),
where M and N correspond to the v-resolution (vertical)
and h-resolution (horizontal), respectively, and the number of
wavelet subbands is 4.

Without loss of generality, the four frontal slices of A are
denoted by Ai, i = 1, 2, 3, 4 and the three mode-k unfolding
matrices, k = 1, 2, 3, are denoted by A(k). According to Defi-
nition 7, the ‘‘illumination’’ Tucker product representation of
A can be expressed as follows:

A = S×1 U1 ×2 U2 ×3 U3, (16)
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FIGURE 2. (a) Four wavelet subbands ordered in the third-order tensor
A ∈ RM×N×4 space. The tensor has four frontal slices, where the first
frontal slice is LL subband, the second frontal slice is LH subband,
the third frontal slice is LL subband, and the fourth frontal slice is HH
subband. (b) The core tensor of (a) after applying HOSVD.

where Ui, i = 1, 2, 3 are the inverse factors of A and
S is the core of tensor A. Thereafter, we denote the four
frontal slices of S by Si, i = 1, 2, 3, 4 and the three
mode-k unfolding matrices of S by S(k), k = 1, 2, 3. In this
study, the frontal slices Ai and Si are matrices of size M×N,
the mode-1 unfolding matrices A(1) and S(1) are matrices of
size M×(4N ), the mode-2 unfolding matrices A(2) and S(2)
are matrices of size N×(4M ), the mode-3 unfolding matrices
A(3) and S(3) are matrices of size 3×(MN), and the inverse
factors Ui, i = 1, 2, 3 are square matrices of size ri× ri, with
ri = rank(Ui). The core tensor S and its frontal slices are
depicted in Fig. 2(b). In contrast to SVD, the core coefficients
are not only located on the main diagonal of the frontal slices
but are also evenly distributed across the slices. However,
large values are also distributed around the main diagonal
lines.

To analyze whether each component of HOSVD [right side
of Eq. (16)] carries specific information of the fingerprint
image, we alternately replace the core S with the identity
tensor and replace the inverse factors Ui, i = 1, 2, 3 with the
respective identity matrices. The identity tensor is a tensor in
which all frontal slices serve as the identity matrices. The new
wavelet subbands received from the reconstructed tensor are
used to rebuild the fingerprint image through 2D-iDWT.

Fig. 3(a) displays two fingerprint images with different
sizes and different backgrounds from the FVC 2002 database.
The first row displays an image in the DB1-A database with
a white background measuring 388×374 pixels. The second
row displays an image in the DB3-A database with a gray
background measuring 300×300 pixels. Fig. 3(b) illustrates
the resultant fingerprint image after the core S is replaced
with the identity tensor. Fig. 3(c) depicts the resultant fin-
gerprint image after the inverse factor U1 is replaced with
the identity matrix. Fig. 3(d) shows the resultant fingerprint

image after the inverse factor U2 is replaced with the identity
matrix. Fig. 3(e) illustrates the resultant fingerprint image
after the inverse factorU3 is replaced with the identity matrix.
As displayed in Fig. 3(b), without the effect of the core
tensor, the structure of the fingerprint is destroyed. Therefore,
the core tensor contains the most foreground ridges of the
given fingerprint image’s spatial structure (edge). The results
in Fig. 3(c) and (d) reveal that inverse factors U1 and U2
contained information on illumination in the vertical and
horizontal directions, respectively. As displayed in Fig. 3(e),
the foreground ridges of the fingerprint image’s spatial struc-
ture are not affected by inverse factorU3, which indicates that
U3 contains the illumination of the fingerprint image. Further,
there are experiments by swapping the U3 matrices between
two fingerprint images and then reconstructing the images.
As shown in Fig. 3(f), even when the fingerprint images are
presented in different sizes, their U3 matrices are of the same
size (4× 4 pixels in this case). Moreover, when we swap the
U3 matrices of the two fingerprint images, their backgrounds
change but their fingerprint structures remain the same. Thus,
HOSVD of the wavelet subband tensor and inverse factor
U3 of a fingerprint image can be employed to enhance the
ridge structure and remove noise from the background of the
image. In addition, the problem of a low-contrast fingerprint
image can be corrected by replacing the core of the wavelet
subband tensor with the core of the wavelet subband tensor
obtained from a normalized image. The mean and variance
of the normalized image are calculated using the available
dataset. The normalized image is called a Gaussian template.

IV. FINGERPRINT IMAGE ENHANCEMENT
According to the 2D DWT and HOSVD observations for the
wavelet subband tensor on the fingerprint image, an effec-
tive algorithm is proposed to improve the fingerprint image
quality. Assuming that f is a fingerprint image and Ga is
a Gaussian template of size 2M × 2N , we apply 2D-DWT
with the Daubechies mother wavelet function to decompose
f and Ga into four subbands at level 1. The 2D matrices with
subband wavelet coefficients are denoted by LL, HL,LH, and
HH.

Ai =
[
aim,n

]
, (17)

Gi =
[
gim,n

]
, (18)

where Ai andGi, i ∈ {LL,HL,LH ,HH } are subband names;
aim,n and gim,n, i ∈ {ll, hl, lh, hh } are subband wavelet
coefficients of fingerprint image f and the Gaussian tem-
plate, respectively; and m = 0, 1, . . . ,M − 1 and n =
0, 1, . . . ,N − 1 are coefficient indices. We construct the
tensor A ∈ RM×N×4 space with four frontal slices are four
wavelet subbands Ai, i ∈ {LL,HL,LH ,HH } . The tensor
G ∈ RM×N×4 space also has four frontal slices are four
wavelet subbands Gi, i ∈ LL,HL,LH ,HH .

In the proposed method, the pre-compensation maximum
of the coefficients for each frontal slice of A and G is cal-
culated first. By using the maximum value as the reference
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FIGURE 3. Reconstructed fingerprint images after alternate replacement of the core S by the identity tensor and the inverse factors Ui , i = 1, 2, 3 by the
identity matrices. (a) Two fingerprint images in the FVC 2002 database. The first row shows the image in DB1-A with a white background, and the second
row shows the image in DB3-A with a gray background. (b) Replacement of the core S with the identity tensor. (c) Replacement of U1 with the identity
matrix. (d) Replacement of U2 with the identity matrix. (e) Replacement of U3 with the identity matrix. (f) Images reconstructed by swapping the U3
matrices of the two fingerprint images.

value, individual compensation weighting coefficients for
each frontal slice are adaptively derived according to the ratio
between the maxima of the frontal slices of A and G. The
maxima of all coefficients for all frontal slices of A and G

can be calculated as follows:

maxAi = max
(
aim,n

)
, (19)

maxGi = max
(
gim,n

)
. (20)

Next, the mode-k unfolding of tensors A and G is cal-
culated [A(k) and G(k), respectively, where k = 1, 2, 3].
Subsequently, the SVD of A(k) and G(k) are expressed as
follows:

A(k) = UAk6AkV
T
Ak , (21)

G(k) = UGk6GkV
T
Gk , (22)

where UA,k ,UG,k ,VA,k , andVG,k are orthogonal matrices
with singular vectors and 6A,k and 6G,k contain the singular
values of A(k) and G(k), respectively. UA,k and UG,k are the
inverse factors ofA and G, respectively.

The core S ofA and core C of G are calculated by mode-k
unfolding S(k) and C(k), respectively, as follows:

S(1) = 6A1VA1
(
UA3 ⊗ UA2

)
,C(1) = 6G1VG1

(
UG3⊗UG2

)
,

(23)

S(2) = 6A2VA2
(
UA3 ⊗ UA1

)
,C(2) = 6G2VG2

(
UG3⊗UG1

)
,

(24)

S(3) = 6A3VA3
(
UA2 ⊗ UA1

)
,C(3) = 6G3VG3

(
UG2⊗UG1

)
.

(25)

Subsequently, the frontal slices Si = (sim,n) andCi = (cim,n)
of S and C are computed through separation from S(k)
and C(k), respectively, where m = 0, 1, . . . ,M − 1 and

n = 0, 1, 2, . . . ,N − 1. The HOSVD processes of tensors
A and G are expressed as follows:

A = S×1 UA1 ×2 UA2 ×3 UA3 , (26)

G = C×1 UG1 ×2 UG2 ×3 UG3 , (27)

where S and C are the cores of tensorsA and G, respectively.
The four frontal slices of S and C are denoted by Si and Ci,
respectively, where i = 1, 2, 3, and 4. The three mode-k
unfolding matrices of S and C are denoted by S(k) and C(k),
respectively, where k = 1, 2, 3.
To enhance a fingerprint image, the core tensor and inverse

factor U3 are examined. Each subband of the DWT contains
distinct information related to the fingerprint image. The low-
frequency subband contains most of the dominant informa-
tion, the mid-frequency subbands contain most of the ridge
information, and the high-frequency subband may contain
noise. Moreover, we order the wavelet subbands into a tensor
and then conduct HOSVD to determine the relationships
among the subbands. The core of the wavelet subband tensor
and its inverse factor U3 can be used to enhance the ridge
structure and remove noise from the background of a finger-
print image. We calculate the maximum of the coefficients
for each frontal slice of core S and core C as follows:

maxSi = max
(
sim,n

)
, (28)

maxCi = max
(
cim,n

)
. (29)

Specific equations are employed to calculate the compen-
sation coefficients of each frontal slice, which can then be
used to effectively compress the dynamic range through the
root function property. The compensation weight coefficients
of each frontal slice are calculated as follows:

ξ1 =
maxG1

maxA1
∗
maxS1
maxC1

, (30)
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FIGURE 4. Results obtained using the proposed method. The first row shows the original fingerprint image and its histogram, and the second row shows
the result of our method and its histogram. (a) FVC 2002 DB1-A, (b) FVC 2002 DB2-A, (c) FVC 2002 DB3-A, and (d) NIST-4.

ξ2 =

√
maxG2

maxA2
∗
maxS2
maxC2

, (31)

ξ3 =

√
maxG3

maxA3
∗
maxS3
maxC3

, (32)

ξ4 =
maxG4

maxA4
∗
maxS4
maxC4

. (33)

where ξ i is the compensation coefficient corresponding
frontal slice i, i = 1, 2, 3, 4. The fingerprint contrast is
adaptively adjusted by multiplying the frontal slices of core S
by the corresponding compensation coefficients as follows:

SCi = ξiSi. (34)

where SCi are compensation frontal slices.
Subsequently, SCi , i = 1, 2, 3, 4 is used to calculate the

mode-k unfolding compensation matrices SC(k) , where k = 1,
2, 3, for determining the compensation tensor. Inverse factor
U3 of the tensor of size 4×4 contains background information
related to the fingerprint image. Therefore, we replace the
inverse factor U3 with inverse factor UG3 of the Gaussian
template. Each compensation tensor had the same inverse
factor (UG3 ). According to SC(k) and UG3 , the compensation
tensor (AC) is calculated with one of the following three
equations:

AC(1) = UA1SC(1)

(
UG3 ⊗ UA2

)T
, (35)

AC(2) = UA2SC(2)

(
UG3 ⊗ UA1

)T
, (36)

AC(3) = UG3SC(3)

(
UA2 ⊗ UA1

)T
. (37)

By separating the frontal slices ACi , i = 1, 2, 3, 4 from
tensor AC, we obtain the following compensation wavelet
subbands:

LLC = AC1 ,HLC = AC2 ,LHC = AC3 ,HHC = AC4. (38)

The image is reconstructed by applying 2D-i DWT to
obtain the compensated image. Fig. 4(a)–(d) illustrate the
results of using the proposed method in the FVC 2002 and
NIST-4 fingerprint databases. As displayed in Fig. 4, this
method can effectively remove the background and blurred
regions to provide an image exhibiting a near-normal distri-
bution. In addition, the proposed method enhances the clarity
and continuity of ridge structures in fingerprint images.

The purpose of this study is to obtain an enhanced fin-
gerprint image that exhibited a normal distribution. The
Daubechies wavelet is employed because of its compactness.
To reduce the complexity and time of computation, the first-
level coarse resolution is adopted in the experiments. If the
image is too dark, the compensation coefficient is increased,
whereas if the image is too light, the compensation coefficient
is decreased. Because the dynamic scope of pixel values
is between 0 and 255, the mean and standard values of
the normal distribution are 128 and the square root of 32,
respectively. An increase in the mean value increases the
singular value of the Gaussian template and the compensation
coefficient. Most of the fingerprint images are low in contrast
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and too dark. Thus, the images have low means and singular
values in all subbands after the application of DWT and
HOSVD. Therefore, we employ a Gaussian template with a
higher mean than usual to increase the compensation coeffi-
cient. If the image is too dark, the compensation coefficient is
higher than 1. If the image is too light, the compensation coef-
ficient is lower than 1. Our observations in both the NIST-4
and FVC 2002 databases showed that the optimal method is
to set the mean value of the Gaussian template to 208 and the
standard deviation to the square root of 32. The framework of
the proposed method, named adaptive higher-order singular
value decomposition on a tensor of wavelet subbands of a
fingerprint (AHTWF), is summarized in Algorithm 1.

Algorithm 1 AHTWF Method
Input: Fingerprint image f of size 2M × 2N
Output: Fingerprint image obtained after using the
AHTWF method
1. Construct a Gaussian template Ga of size 2M × 2N .
2. Apply 2D-DWT at scale level 1 for f andGa to obtain

the frequency subband coefficients.
3. Construct wavelet subband tensor A,G ∈ RM×N×4

space (Fig. 2).
4. Calculate the maxima of all coefficients for each

frontal slice of A and G by using Eqs.(19) and (20),
respectively.

5. Calculate the HOSVDofA andG by using Eqs.(21)–
(27).

6. Calculate the maxima of all coefficients for each
frontal slice of core S ofA and core C of G by using
Eqs.(28) and (29), respectively.

7. Calculate the compensation weight coefficients by
using Eqs. (30)–(33).

8. Update the frontal slices of core S of A by using
Eq.(34).

9. Update the frequency subband coefficients by using
Eqs. (35) - (37) to obtain the compensated frequency
subband coefficients.

10. Reconstruct the compensated subbands to obtain the
AHTWF image by applying 2D-i DWT to the com-
pensated frequency subbands.

V. EXPERIMENTAL RESULTS AND DISCUSSION
The HOSVD decomposes the tensor into four main compo-
nents includes the core tensor and three types of inverse fac-
tors. These components contain specific information on data
within the tensor. Besides, the core tensor contains the frontal
slices where each of the frontal slices also contains more
detail information, as discussed more detail in Section III.B.
The wavelet transform can decompose the fingerprint image
into 4 subbands that contain specific information. However,
the change of these subbands to enhance the fingerprint image
is not enough. Wang et al. [19] proposed the method based
on SVD to find the linear relation between wavelet subbands

and compute the compensation coefficients to enhance the
fingerprint image. This method is limited to finding the rela-
tion among wavelet subbands in only one direction. By con-
structing the tensor of wavelet subbands of the fingerprint
image and using the HOSVD to decompose it into more detail
components, we can find more information and the relation
of wavelet subbands in three directions. Thus, our proposed
method gets better results comparing previous fingerprint
image enhancement methods. Moreover, the compensation
weight coefficients of each frontal slice are calculated based
on the tensor of the fingerprint image wavelet subbands and
the corresponding tensor of the Gaussian template image
wavelet subbands. The order of wavelet subbands in the ten-
sor does not affect the final result. Besides, the compensation
weight coefficients are calculated automatically without a
threshold and the fingerprint contrast is adaptively adjusted
by multiplying the frontal slices of core tensor with the cor-
responding compensation coefficients. Thus, our proposed
method enhances the fingerprint adaptively and gets better
results in comparison with the previous fingerprint image
enhancement methods.

To demonstrate the efficiency of the proposed method,
we compared the results obtained using the proposed method
with those obtained using related methods, including his-
togram equalization (HE) [34], Sharma and Dey [11], and
the method of Wang et al. [19]. Experiments were per-
formed using multiple fingerprint databases, including FVC
2002 and NIST-4. NIST-4 is a key benchmark for finger-
print classification. Most related published results are in
this database. Thus, for comparison with other approaches,
we applied our fingerprint classification algorithm in NIST-
4, which contains 4000 ink-on-paper fingerprint images of
size 512× 512 pixels taken from 2000 fingers with two
instances per finger. The first fingerprint instances are num-
bered f0001 to f2000, and the second instances are numbered
s0001 to s2000. The Arch, Tented Arch, Left Loop, Right
Loop, and Whorl classes are evenly distributed throughout
the database. Each fingerprint in NIST-4 has been assigned
to one or two of the five classes by experts. There exist
approximately 17% ambiguous fingerprints that have two
classes assigned to them. FVC 2002 includes four databases,
namely DB1, DB2, DB3, and DB4, which are compiled using
multiple sensors and technologies that are widely used. Each
database has a width (w) of 110 fingers and depth (d) of eight
impressions per finger (880 fingerprints in total). Fingers
101 to 110 (set B) were made available to the participants
to allow for parameter tuning before the submission of the
algorithms. The benchmark was then set on the basis of fin-
gers 1 to 100 (set A). Volunteers were randomly divided into
three groups (30 volunteers per group), and each group was
assigned to one database and therefore to a different finger-
print scanner. Each volunteer was invited to present himself
or herself at the collection point for three distinct sessions,
with at least 2 weeks between each session. The forefinger
and middle finger of both hands (four fingers in total) of
each volunteer were imaged by interleaving the fingers to
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FIGURE 5. Some samples results of different enhancement approach on FVC2002 DB1-A
fingerprint database. (a) The original images. (b) HE images. (c) Sharma and Dey method.
(d) Wang et al. method. (e) Our proposed method.

maximize the differences in finger placement. No efforts
were made to control the image quality, and the sensor
platens were not systematically cleaned. In each session,
four impressions were acquired from each of the four fin-
gers per volunteer. During the second session, the volunteers
were requested to exaggerate the displacement (impressions 1
and 2) and rotation (impressions 3 and 4) of each finger
without exceeding 35◦. During the third session, the fingers
were alternately dried (impressions 1 and 2) and moistened
(impressions 3 and 4).

Fig. 5 shows some images from FVC 2002 DB1-A and
Fig. 6 displays some images from FVC 2002 DB2-A.
Fig. 7 illustrates some images from NIST-4 and enhancement
images obtained after using HE [34], Sharma and Dey [11],
Wang et al. [19], and the proposed method. The results
show that the enhanced fingerprint images by the

proposed algorithm have better quality in comparison with
the other method. Not only the enhanced fingerprint image
can improve the clarity and continuity of ridge struc-
tures, but can also remove the background of a fingerprint
image.

To demonstrate the usefulness of the proposed algorithm,
we evaluated its fingerprint classification performance by
applying the classification flowchart in [2] to the compen-
sated fingerprint images. The compensation results of the
proposed method were then compared with those of the
original images. Wang [2] first calculated the singular point
of a fingerprint image by applying the adaptive Poincare
index method and then used the number of singular points
and the traced orientation field flow to classify finger-
prints into seven classes. Arch (A), Tented Arch (T), Left
loop (L), Right loop (R), and Whorl (W) are well-known
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FIGURE 6. Some samples results of different enhancement approach on
FVC2002 DB2-A fingerprint database. (a) The original images. (b) HE
images. (c) Sharma and Dey method. (d) Wang et al. method. (e) Our
proposed method.

fingerprint types defined in the Henry system. The other
two types, namely Eddy (E) and S-type (S), were classified
under Whorl. Fig. 8 displays an accurate example of the

seven fingerprint classes when the traced orientation field
flow is obtained using the proposed method. Notably, the
classification method based on the number of singular points
and the traced orientation field flow is highly sensitive to the
fingerprint quality. Therefore, if the quality of a fingerprint
image is high, the classification rate is also high.

We compare the compensated image with the original
image. In the experiments, 2000 fingerprint images numbered
s0001 to s2000 from NIST-4 and all fingerprint images from
FVC 2002 DB1-A and DB2-A were selected. Because theW,
E, and S fingerprint classes overlap considerably, separating
these three classes is extremely difficult. This difficulty also
arises when the fingerprint classes A and T are considered.
Therefore, to obtain six classes, the S and E classes were
merged to create class E. To compare the classification results
of the five classes, three classes—W, E, and S—were merged
into one class, namely class W. In addition, the results of
the four-class classification problem were obtained. Classes
A and T were merged into one class, namely class A. The
confusion matrices for the seven-class problem in NIST-4,
FVC 2002 DB1-A, and FVC 2002 DB2-A are presented
in Tables 1, 2, and 3, respectively.

TABLE 1. Confusion matrix for 7-classes of NIST-4 database.

TABLE 2. Confusion matrix for 7-classes oF FVC2002 DB1-A database.

TABLE 3. Confusion matrix for 7-classes of FVC2002 DB-A database.
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FIGURE 7. Sample results of enhancement approaches in the NIST-4 fingerprint database. (a) Original images and images obtained when using (b) HE,
(c) the method of Wang et al., and (d) the proposed method.

FIGURE 8. 7-class fingerprint examplesof NIST-4 obtained with the proposed method and [2].

The performance of a fingerprint classification algorithm
is measured according to the degree of accuracy throughout
the testing set, which is defined as the percentage of accu-
rate classification. We compared our method with several
modern techniques introduced in [3]–[5], [7], [11] and [19].
In addition to the classification results for the seven classes
in our system, those for the sets of our and five classes are
reported in Table 4. As presented in this table, Cao et al. [3]
proposed a regularized orientation diffusion model for fin-
gerprint orientation extraction and a hierarchical classifier
for fingerprint classification. They obtained classification

accuracies of 95.90% and 97.20%. Liu [4] used the Adaboost
learning method to model multiple singularity features and
obtained accuracies of 94.10% and 95.70%. Li et al. [5] used
coefficients of an orientation model for fingerprint classi-
fication and obtained accuracy rates of 93.50% and 95%.
Using the classification method [2] for the enhanced finger-
print images by Sharma and Dey method [11] on FVC02
DB1-A, we achieved classification accuracies of 94.5%,
95.12%, 95.25%, and 95.30% for the seven-, six-, five- and
four-class problems. Jain et al. [7] proposed the Gabor filter
and two-stage classifier for fingerprint classification. In their

6612 VOLUME 8, 2020



N. T. Le et al.: Fingerprint Enhancement Based on Tensor of Wavelet Subbands for Classification

FIGURE 9. An example of misclassified on the original image and truly classified on the compensated image. From left to right on each row: The
fingerprint image, the orientation field and result on singular point detection image (core point in blue mark and the delta point in green mark),
the classification results and fingerprint image histogram. (a) Original image classified as E type. (b) HE image classified as E type. (c) Wang’s
image classified as E type. (d) Our method image with true classification.

method, the first stage uses a K-nearest neighbor classifier to
find the two most probable classes and the second stage uses
a neural network for the final decision. Classification rates
of 90.00% and 95.80% were obtained for problems with four
and five classes, respectively. Wang et al. [19] first used a
novel lighting compensation scheme involving adaptive SVD
on wavelet coefficients to enhance fingerprint images and
then classified the fingerprint according to the number of
singular points and the traced orientation field flow. NIST-4
accuracy rates of 94.75%, 95.45%, 96.55%, and 97.35%
were obtained for problems with seven-, six-, five-, and four-
classes, respectively. They achieved five-classes accuracy
rates with 95.25% for FVC 2002DB1-A and 95.12% for FVC
2002 DB2-A. Furthermore, they achieved 95.12%, 95.25%,

and 95.36% accuracy and 95%, 95%, and 95.75% accu-
racy for the seven-, six- and four-classes problems in FVC
2002 DB1-A, and FVC 2002 DB2-A, respectively. The pro-
posed method achieved classification accuracies of 96.90%,
97.35%, 97.65%, and 98.05% for the seven-,six-, five- and
four-class problems in the NIST-4 database. In addition,
the method obtained 95.38%, 95.50%, 95.63%, and 95.75%
accuracy and 95.88%, 95.88%, 96.25%, and 96.63% accu-
racy for the seven-, six-, five-, and four-class problems in
FVC 2002DB1-A and FVC 2002DB2-A, respectively. These
results revealed that our system can achieve high accuracy in
sets of not only four and five classes but also six and seven
classes. Thus, the proposed method is a pioneering system for
classifying Whorl, S-type, and Eddy fingerprints.
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TABLE 4. Accuracy of various fingerprint classification approaches on
NIST-4 and FVC-2002 databases.

VI. CONCLUSION
The performance of a fingerprint classification system relies
considerably on the fingerprint image quality. However,
satisfactory image quality is difficult to obtain in reality.
To overcome this problem, a novel fingerprint enhance-
ment algorithm that can considerably enhance the clarity
and continuity of ridge structures is proposed in this paper.
This algorithm effectively removes the backgrounds and
blurred regions of fingerprint images. In addition, the pro-
posed method effectively improves the quality of fingerprint
images and therefore increases the accuracy of fingerprint
classification.
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