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ABSTRACT Extracting buildings automatically from high-resolution aerial images is a significant and
fundamental task for various practical applications, such as land-use statistics and urban planning. Recently,
variousmethods based on deep learning, especially the fully convolution networks, achieve impressive scores
in this challenging semantic segmentation task. However, the lack of global contextual information and the
careless upsampling method limit the further improvement of the performance for building extraction task.
To simultaneously address these problems, we propose a novel network named Efficient Non-local Residual
U-shape Network(ENRU-Net), which is composed of a well designed U-shape encoder-decoder structure
and an improved non-local block named asymmetric pyramid non-local block (APNB). The encoder-decoder
structure is adopted to extract and restore the feature maps carefully, and APNB could capture global
contextual information by utilizing self-attention mechanism. We evaluate the proposed ENRU-Net and
compare it with other state-of-the-art models on two widely-used public aerial building imagery datasets:
the Massachusetts Buildings Dataset and the WHU Aerial Imagery Dataset. The experiments show that
the accuracy of ENRU-Net on these datasets has remarkable improvement against previous state-of-the-art
semantic segmentation models, including FCN-8s, U-Net, SegNet and Deeplab v3. The subsequent analysis
also indicates that our ENRU-Net has advantages in efficiency for building extraction from high-resolution
aerial images.

INDEX TERMS Deep learning, semantic segmentation, fully convolution network, building extraction, non-
local method.

I. INTRODUCTION
Automatic building extraction from high-resolution aerial
imagery is a fundamental task for various applications,
such as urban planning, economic statistics, disaster mon-
itoring, etc. The target of this task is to distinguish the
buildings from background in an aerial image in pixel-
wise, as shown in Figure 1. So, it is usually defined
as a semantic segmentation task, which is a long-standing
topic in computer vision. Extracting buildings accurately
from high-resolution aerial imagery is a tough task with
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FIGURE 1. Illustration of extracting buildings from aerial images. The
white and black pixels in prediction result denote buildings and
background respectively.

several challenges. First, the aerial imagery contains redun-
dant object details, e.g. the building shadow and the trees,
especially the high-resolution aerial imagery, which increases
the difficulty of building extraction. Another challenge is
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that many objects in high-resolution aerial imagery have
low inter-class distance [1]. For instance, the roofs look very
similar to the roads in the appearance. Besides, the diverse
characteristics of buildings, e.g. size, shape, and color, further
increases the hardness of this semantic segmentation task.
Consequently, how to extract building accurately from high-
resolution aerial images is a challenging task that urgently
needs to be solved.

In recent years, owing to the development of the com-
puter hardware and the available large-scale aerial imagery
dataset with high quality labels, the data-driven methods
based on deep learning have been applied to building extrac-
tion. A typical model of deep learning is convolution neural
network (CNN), CNN has been successfully applied to image
classification [2]–[4], object detection [5], image semantic
segmentation [6] and other tasks. The great success of CNNs
is mainly due to they can automatically extract hierarchical
features by utilizing several successive convolution layers
with learnable parameters. Since Long et al. [7] transformed
the CNN to fully convolution network (FCN) by discarding
the fully connected layers and using bilinear interpolation as
the upsampling method to conduct a pixel-wise prediction,
FCN has been extensively applied to semantic segmentation
and outperforms the traditional methods based on the hand-
engineered features. Li et al. [8] compared some conventional
methods to FCN on building extraction and proved that FCN
has incomparable advantages over traditional methods in
this task.

Although recent FCNs [9]–[15] improve the segmentation
accuracy remarkably on various aerial imagery datasets, two
challenges of building extraction still exist. First, the employ-
ment of pooling layers cause the loss of detailed information,
and coarse upsampling layers without the detailed informa-
tion, e.g. 8× bilinear interpolation directly after the feature
extractor, would reduce the recognition accuracy of small
buildings, especially the contours. Second, despite the adop-
tion of successive pooling and convolution layers expand the
field of view, the FCNs still could not obtain abundant global
contextual information due to their local valid receptive
field [16], which produces misclassification when dealing the
inner pixels in large buildings. As a consequence, the coarse
upsampling layers, and the conventional structures of FCNs,
provoke numerous misclassification when extracting build-
ings from aerial images. To address such problems, many
novel structures have been proposed, among these structures,
the encoder-decoder structure [17], [18] and the non-local
block [19] which are carefully designed have been proven to
perform well in the previous works.

The encoder-decoder networks adopt several cascaded
upsampling layers after the feature extractor to expand the
feature maps carefully. And they also deliver the shallow
feature maps that contain detailed information to the deep
layers by skip-connections, which increases the ability to rec-
ognize small buildings from high-resolution aerial imagery.
Nevertheless, limited by their simple structures, the ordinary
encoder-decoder networks have a feeble ability to capture

FIGURE 2. Illustration of the spatial similarity relations in aerial imagery.
The conventional CNNs could capture the short-range relations
(blue-green and yellow-red), but have weak ability to model the
long-range relations (blue-red and blue-yellow) directly.

global contextual information and produce numerous mis-
classification when classifying the inner pixels of large scale
buildings from high-resolution aerial imagery.

The non-local block [19] is designed to capture global
contextual information by utilizing self-attentionmechanism.
The self-attention mechanism computes the spatial relations
between each pair pixels, and the spatial relations can be
deemed as semantic similarity among pixels in an image as
shown in Figure 2, additionally, the relations introduce global
contextual information to neural networks directly [20]. And
many improvements of non-local block have been proposed
to decrease the computation costs, meanwhile increasing the
performance [21]–[23]. However, all of the abovementioned
models utilize a coarse 8× upsampling layer to produce the
final predictions, which generates numerous misclassifica-
tion pixels on the boundaries of small buildings as a result
of the lack of detail information.

Therefore, it is necessary to build a network that can inte-
grate the abovementioned networks’ advantages meanwhile
avoid their disadvantages to extract buildings accurately from
various high-resolution aerial imagery.

Based on the above analysis, we propose a novel model
named ENRU-Net to improve the classification precision of
building extraction both on small and large buildings. Specif-
ically, the ENRU-Net contains an U-shape encoder-decoder
network as the backbone and an asymmetric pyramid non-
local block (APNB) [22] is embedded between the backbone
and final classifier. The backbone adopts ResNet-50 [3] as the
downsampling path to improve the ability of feature extrac-
tion, and employs a simple yet effective upsampling path
to expand the feature maps. And the APNB is an improved
non-local block in which could capture global contextual
information efficiently from high-resolution aerial images.
This network restores the feature maps carefully by reusing
the detail information from shallow layers, and utilizes the
APNB to learn global contextual information as well.

The main highlights of our work can be summed up as
follows:
• We propose a novel network, composed of an encoder-
decoder structure and the asymmetric pyramid non-local
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block, for accurate building extraction from high-
resolution aerial imagery. The proposed ENRU-Net
could efficiently capture global contextual information
and at same time sufficiently utilize the detailed infor-
mation of buildings at various scales.

• We evaluate our ENRU-Net on two public aerial
imagery building datasets: the Massachusetts Buildings
Dataset [24] and the WHU Aerial Imagery dataset [9],
and some state-of-the-art models are also evaluated as
comparisons. The experiments demonstrate that the pro-
posed ENRU-Net could achieve higher accuracies on
both the two datasets at a relative higher efficiency
compared with the established models.

II. RELATED WORK
A. SEMANTIC SEGMENTATION
Semantic segmentation is a long-standing foundation chal-
lenging task in computer vision, aiming to accurately predict
a semantic label for each pixel in an image. With the develop-
ment of deep learning in computer vision, CNN has been suc-
cessfully applied tomany computer vision tasks, one of which
is semantic segmentation. Long et al. [7] first proposed the
fully convolution network (FCN) that discards the fully con-
nected layers in the last of VGG [25] and used the upsampling
operation to restore the feature maps to the same size as the
input images, FCN achieves the best result on the PASCAL
VOC competition in 2015; In order to fuse features more
comprehensively and reduce the loss of detail information
that introduced by pooling layers, Ronneberger et al. [17]
designed a simple yet effective encoder-decoder architecture
network named U-Net, which not only obtains the same size
output as input, but also concatenate the shallow and the
corresponding deep feature maps as feature fusion to harvest
more precise segmentation results; Meanwhile, SegNet [18]
proposes a novel pooling method that the indices of posi-
tions in max pooling layer are saved and passed to decoder,
the decoder expands feature maps by using the already saved
pooled indices to boost the precise of upsampling operation.
Another method to abate the effect of pooling layers is using
dilated convolution layers to replace the pooling layers [26].
In addition, some works aggregate contextual information in
multi-scales to enhance the ability to recognize multi-scale
objects, PSPNet [27] utilizes pyramid pooling module to
capture and fusemulti-scale features to increase segmentation
accuracy; Deeplab v3 [28] employ the atrous convolution
spatial pyramid pooling (ASPP) to aggregate multi-scale con-
textual information with a larger field of view than [26];
DenseASPP [29] uses densely connected ASPP to obtain
multi-scale features that cover scale range densely with cover
a larger scale range;

Recently, a self-attention mechanism named non-local
block has shown great ability to capture the long-range rela-
tions, which increases the performance of various task. The
non-local block is proposed by [19], and there are numer-
ous works indicate that the non-local block is also effec-
tive in image semantic segmentation. OCNet [30] establishes

a multi-scale non-local block to obtain the object contex-
tual information, which finally exhibits robust segmentation
performance; DANet [31] proposes two types of non-local
blocks that model the semantic interdependencies on spatial
and channel dimensions respectively to increase the precision
of predictions; Meanwhile, CCNet [21] improves the compu-
tation method of self-attention module to obtain appropriate
contextual information through a more effective and efficient
way; Zhu et al. [22] utilizes pooling layers to cut down
the costs when compute the relations matrix; A2-Net [32]
optimizes the computing process in the mathematical form
to decrease the amount of computation; GCNet [23] analyzes
the form of non-local method and combines it with squeeze
excitation block [33].

B. BUILDING EXTRACTION
In the past few decades, many approaches have been pro-
posed for building extraction that were based on extracting
features through the carefully manual designed descriptors
and conventional machine learning classifiers, e.g. support
vector machine (SVM). Tuermer et al. [34] exploited the
histogram of oriented gradients (HOG) feature descriptor
for detection vehicles; Yuan and Newsam [35] adopted the
scale-invariant feature transform (SIFT) to recognize objects
in remote sensing images; Inglada [36] employed SVM to
classify man-made objects in high-resolution remote sensing
images. Although above methods achieve remarkable scores,
these methods extremely rely on the manual designed fea-
tures, which are always changed with datasets and labor-
intensive. In conclusion, these methods are lack of robustness
and could not handle various high-resolution aerial imagery
effectively.

In the last few years, deep learning has shown incompa-
rable advantages than classic machine learning in various
fields, especially in computer vision. For building extrac-
tion, there are two prevalent methods for pixel-level classi-
fication on remote sensing images by using CNNs. One is
training a CNN to classify each pixel a semantic category
by inputting a small patch around this pixel which called
patch-based method [24], [37], [38]. However, the patch-
based method needs overlapping patches to predict each
pixel, which causing redundant computations. Another is
the pixel to pixel method that training a FCN classify each
pixel directly, it has shown more effective and efficient than
the patch-based methods without redundant computations.
Li et al. [10] designed an encoder-decoder network by using
dense block in [4] to reuse features excellently while reducing
the number of parameters; Xu et al. [11] utilizes ResNet [3]
with a guided filter to extract buildings from remote sensing
images, the guided filter is adopted to refine the prediction
map by CNN; Wang et al. [12] analyzes feature vector of
each position by the entropy maps on a high-level feature
maps to control the fusion of shallow and deep feature
maps, which ensured the low-level detail information would
be delivered to deep layers while producing few noises to
the last segmentation results. Zhang et al. [13] designed a

VOLUME 8, 2020 7315



S. Wang et al.: Automatic Building Extraction From High-Resolution Aerial Imagery via Fully Convolutional Encoder-Decoder Network

FIGURE 3. Overview of the proposed ENRU-Net. The downsampling path is ResNet-50, and the decoder in the upsampling path is composed of
an upsampling layer and two successive 3× 3 convolution layers. After the backbone, APNB is inserted before the final 1× 1 convolution layer
to capture global contextual information.

nested network architecture with dense hierarchical connec-
tion aimed to fuse different level feature maps to recover the
structural information properly; Lu et al. [14] exploited a dual
resolution network to improve the segmentation result of edge
areas and large buildings by inputting a large view image and
a corresponding small view image at the same time; Liu et al.
[15] inserted PSPModule [27] into U-Net [17] to aggregate
multi-scale contextual information; Mou et al. [20] utilized
the self-attention mechanism to address the long-dependency
issue in building extraction task from aerial imagery.

III. METHODOLOGY
In this section, we explicate the architecture of ENRU-Net,
which is illustrated in Figure 3. The ENRU-Net combines
an U-shape encoder-decoder network as backbone and a
global contextual information computation module APNB.
The backbone of ENRU-Net is a typical and widely-used
network with some modifications for accurate and efficient
building extraction from high-resolution imagery. In addi-
tion, the APNB is extracted from [22] to introduce global
contextual information to improve the recognition of inner
pixels in large buildings. The APNB is embedded between
the backbone and the final 1× 1 convolution layer.

A. BACKBONE OF ENRU-Net
The backbone of our ENRU-Net is a widely-used encoder-
decoder structure in previous works for semantic segmenta-
tion [10], [12], [15], [17], [18]. The structure could be divided
into two parts: the downsampling path and the upsampling
path. For the downsampling phase, the ResNet-50 is adopted
as the backbone. The downsampling path contains several
encoders to extract hierarchical features, and the upsampling
path consists of cascaded decoders to stepwise reconstruct the
feature maps as the same size as the input image. To care-
fully utilize the adequate detailed information in the output

feature maps of each encoder in the downsampling path when
reconstructing the featuremaps, we adopt skip-connections to
deliver the shallow feature maps to corresponding decoders
in the upsampling path. This symmetrical designed structure
significantly improves the ability to recognize the bound-
aries of small buildings when extracting buildings from high-
resolution aerial images.

1) DOWNSAMPLING PATH
The downsampling path is beneficial to enlarge the field
view so that the deep feature maps could contain rich con-
text information, and it also reduces the computation and
memory costs. Through the downsampling path, we can
obtain hierarchical feature maps from different encoders,
including the low-level feature maps from shallow encoders
with detailed information, as well as high-level feature maps
from deep encoders with semantic information. To extract
features efficiently and effectively, we choose ResNet [3] as
the downsampling path in ENRU-Net, which is a widely-
used feature extractor amongmany previous works [12], [19],
[27]. According to the sizes of the feature map, ResNet could
be divided into five encoders, as shown in Figure 3. Each
decoder first halves the size of the input feature map and
outputs a new featuremap through several convolution layers.
Besides, the output of each encoder would be delivered to
the corresponding decoder via skip-connections as the black
dotted line in Figure 3. As a trade-off between the compu-
tation costs and the accuracy, we adopt ResNet-50 as the
downsampling path in our implementation.

2) UPSAMPLING PATH
Since the building extraction could be considered as a seman-
tic segmentation task, the upsampling path is employed to
restore the output of the downsampling path to the same
size as the original input progressively. The upsampling path
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FIGURE 4. Illustration of the original non-local block (a) and asymmetric pyramid non-local block (b), where
⊗

,
⊙

and
⊕

denote matrix
multiplication, concatenation, pixel-wise sum respectively, X, Q, K, V, Kc , Vc , Y are feature maps, A is the similarity relation matrix, and
N = 12 + 32 + 62 + 82 = 110 in (b).

contains four decoders, and each decoder is a simple light
yet capable module like the decoder in U-Net [17]. The blue
dashed frame in Figure 3 reveals the structure of encoder,
including an upsampling layer and two successive 3× 3 con-
volution layers. To be specific, each decoder receives a couple
of input features, one of them is a large feature map from a
shallow layer with abundant detailed information, the other is
a small feature map from the corresponding deep layer with
sufficient semantic information. When receiving those two
feature maps, the decoder first expands the deep feature map
as the same size as the large feature by an upsampling layer.
Next, the shallow feature and the expanded deep feature are
concatenated on channel dimension as feature fusion. After
that, two successive convolution layers is adopted to enhance
the nonlinearity of our network. Since the ResNet-50 first
uses 2× downsampling, we employ an upsampling layer
again at the end of the upsampling path to obtain the same
size feature map as the original input.

B. ASYMMETRIC PYRAMID NON-LOCAL BLOCK
The non-local block (NB) [19] could capture global contex-
tual information effectively by computing the relations, i.e.
the similarity relations between each pair pixels. However,
the complexity of time and space of NB are both O((H ×
W ) × (H × W )), where H and W are height and width of a
given feature map, see Wang et al. [19] for details. To model
the relations efficiently, Zhu et al. [22] proposed APNB to
decrease the computation costs and resource requirements.
The structures of NB and APNB are shown in Figure 4.
It could be observed from Figure 4 that both NB and APNB
adopt matrix multiplication to model the spatial relations.
The difference between them is that NB models the relations
directly on pixel-level, while APNB first adopts four adaptive
pooling layers with different scales to reduce the amount
of the pixels in which participate the relation computation.
Through these pooling layers, both time and space complex-
ity of APNB are reduced to O((H ×W )×N ), where N is far
less thanH×W . And the comparison experiment in [22] also

demonstrates that APNB outperforms NB both on precision
and efficiency.

Specifically, for a given feature map X, APNB first feeds
it into three convolution layers to reduce the number of
channels and then generates three new feature maps named
Q, K and V. Next Q is flattened. Meanwhile, K is fed into
the parallel adaptive pooling layers to generate four multi-
scale features, and the multi-scale features are also flattened
and concatenated to synthesize a new feature Kc. The same
operations as K are conducted on V and produce Vc. After
that, APNB performs matrix multiplication between the flat-
tened Q and Kc and a softmax layer is applied after the
matrix multiplication, the result of the softmax layer is a huge
matrix A, which contains the spatial relations, i.e. semantic
similarity, between each pixel in Q and Vc. Then matrix
multiplication is performed again between A and Vc and the
result is reshaped to reconstruct each pixel as a weighted
sum of all pixels in the Vc, and the spatial relations are
weights. In the last, a convolution layer is employed to restore
the amount of channels, and pixel-wise sum is conducted
between the restored feature map and X.

Sufficient global contextual information is obtained via
the spatial relations introduced by APNB, it could further
improve the ability of our ENRU-Net to accurately classify
the inner pixels in large buildings from high-resolution aerial
imagery. The subsequent experiments confirm the impressive
impact of global contextual information on fully convolution
networks for building extraction.

IV. EXPERIMENT
In order to measure the effectiveness of ENRU-Net for build-
ing extraction from high-resolution aerial imagery, we con-
duct numerous experiments on two public datasets: the
Massachusetts Buildings Dataset [24] and the WHU Aerial
Imagery dataset [9]. And the performance of ENRU-Net is
also compared with some state-of-the-art models in semantic
segmentation, including FCN-8s [7], U-Net [17], SegNet [18]
and Deeplab v3 [28]. All of the models are trained from
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scratch by using the same datasets and training strategy. And
the models are evaluated based on three widely-used metrics:
Overall Accuracy(OA), Intersection over Union(IoU) and
F1-score(F1).

A. DATASET
1) MASSACHUSETTS BUILDINGS DATASET
Massachusetts Buildings Dataset is proposed by [24], includ-
ing 155 aerial images of Boston, and the spatial resolution of
the images is 1m. The size of each image is 1500× 1500 and
each image covers 2.25km2 surface. The whole dataset was
randomly divided into training set, validation set and testing
set. An example image in testing set and the corresponding
label are shown in Figure 7(a) and (b). Due to the limitation
of GPU memory, we split the large original aerial imagery
into small patches. Each image in the training set is randomly
cropped into 80 small patches, and the size of each patch is
256 × 256, the same size patches are cropped in the form
of sliding window on the original testing set. The number
of images in the final cropped training set and testing set
images are 10960 and 360 respectively. Figure 5(a) shows
some images and corresponding ground truth in the cropped
testing set.

2) WHU AERIAL IMAGERY DATASET
WHU Aerial Imagery Dataset is proposed by [9]. This
dataset covers a surface of about 450 km2 and more than
187,000 buildings with different sizes and appearances in
Christchurch of New Zealand from the New Zealand Land
Information Services website, the spatial resolution of the
images is 0.3m, both the aerial image and the corresponding
ground truth are provided. The dataset, containing 8189 RGB
images of 512 × 512 pixels, is divided into training set,
validation set and testing set, the number of the three sub-
datasets are 4736, 1036 and 2416 respectively. Figure 5(b)
shows some images and corresponding ground truth in the
testing set.

B. IMPLEMENTATION DETAILS
The implementations of our ENRU-Net and other models are
based on the deep learning framework PyTorch. We train
all models for 100 epochs with a mini-batch size of 8 on
2× NVIDIA RTX 2080 Ti. We choose Adam [39] as the
optimizer for converging quickly and the learning rate is ini-
tialized to 0.001. The learning rate schedule is poly strategy,
it could be formulated as:

lr = 0.001× (1−
iter

max iter
)0.9

The loss function of our experiments is binary cross
entropy loss function. Moreover, some images would be
flipped left to right or up to bottom randomly as data
augmentation.

C. METRICS
For better measure the performance of our model, we adopt
the Overall Accuracy (OA), Intersection over Union (IoU)

FIGURE 5. (a) Samples in the cropped testing set of Massachusetts
Buildings Dataset. (b) Samples in the testing set of WHU Aerial Imagery
Dataset.

and F1-score (F1) as the criteria, all of the metrics are widely-
used in semantic segmentation and building extraction, which
could be defined as follows:

OA =
TP+ TN

TP+ TN + FP+ FN

IoU =
TP

TP+ FP+ FN

precise =
TP

TP+ FP

recall =
TP

TP+ FN

F1 =
2× precise× recall
precise+ recall

where the TP, TN, FP, FN denote the true positive, true
negative, false positive and false negative respectively.

D. EXPERIMENT RESULT
In this section, we have re-implemented some state-of-the-
art semantic segmentation models as comparisons, includ-
ing FCN-8s [7], U-Net [17], SegNet [18] and Deeplab v3
[28]. We also drop the APNB from ENRU-Net to evaluate
the effect of APNB on ENRU-Net. The results are listed
in Table 1 and Table 2.

1) COMPARISON EXPERIMENTS ON THE MASSACHUSETTS
BUILDINGS DATASET
As summarized in Table1, the quantitative comparison
demonstrates that our proposed ENRU-Net is more excellent
than these established state-of-the-art semantic segmentation
models on all the performancemetrics. In the testing set of the
Massachusetts dataset, ENRU-Net achieves 94.18%, 73.02%,
84.41% on OA, IoU and F1, which outstrips FCN-8s 0.81%,
3.55%, 2.43% respectively. As for the compared models,
FCN-8s reaches 93.37%, 69.47%, 81.98% on OA, IoU and
F1 respectively. In addition, the encoder-decoder models

7318 VOLUME 8, 2020



S. Wang et al.: Automatic Building Extraction From High-Resolution Aerial Imagery via Fully Convolutional Encoder-Decoder Network

FIGURE 6. Some samples of predictions by ENRU-Net and other models from cropped testing set in Massachusetts Building Dataset.
(a)Original Aerial Image. (b)Ground truth. (c)FCN-8s. (d)U-Net. (e)SegNet. (f)Deeplab v3. (g)ENRU-Net without APNB. (h)ENRU-Net.

TABLE 1. Comparison with state-of-the-art models on massachusetts
buildings dataset.

SegNet and U-Net accomplish more precise predictions,
which over FCN-8s 1.8 % and 0.16% respectively on F1.
Moreover, the SegNet obtains better performance than U-Net
since SegNet saves the pooling indices. We also test our
ENRU-Net without APNB. As a consequence of the excellent
feature extractor and the appropriate feature fusion, the per-
formance of the incomplete ENRU-Net also outstrips all of
the established models but is lower than the complete one.
However, due to the lack of detailed information that deliv-
ered by skip-connections, Deeplab v3 has a lower score than
the others, which indicates that the detailed information is
more crucial when extracting buildings from high-resolution
aerial imagery than the semantic segmentation from natural
imagery.

Figure 6 shows some randomly chosen samples from test-
ing dataset and the corresponding prediction maps of these
models. We can observe that due to the lack of detailed
information and the coarse upsampling layer, FCN-8s and
Deeplab v3 generate more misclassification on the bound-
aries of buildings, particularly on the small buildings. Com-
pared with the two models, SegNet and U-Net have a better
ability to extract the precise contours of small buildings as

TABLE 2. Comparison with state-of-the-art models on WHU aerial
imagery dataset.

a consequence of their gradual upsampling, but the inner
pixels in large buildings could not be adequately classified
since they could not obtain sufficient global contextual infor-
mation. While ENRU-Net has a more remarkable ability
to extract buildings accurately both on small buildings and
large buildings. As a consequence of the combination of the
encoder-decoder network and the improved non-local block,
the outlines of small buildings that predicted by ENRU-Net
are sharper and more precise, and the pixels located in large
buildings are also classified well. Figure 7 shows a whole
predictionmap inMassachusetts Buildings Dataset by assem-
bling the cropped images.

2) COMPARISON EXPERIMENTS ON THE WHU AERIAL
IMAGERY DATASET
The outcomes on the WHU Aerial Imagery Dataset are listed
in Table 2. It can be observed that all models achieve higher
scores on all of the metrics, even the simple FCN-8s could
reach 98.3%, 85.86%, 92.39% on OA, IoU and F1 respec-
tively, which profits by the lower image complexity, higher
labeling precision and spatial resolution.

Due to the larger spatial resolution, Deeplab v3 could
maintain sufficient detailed information even without
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FIGURE 7. (a) An image in original testing set of Massachusetts Buildings Dataset. (b) The corresponding ground truth. (c) The binary
predictions by ENRU-Net.

FIGURE 8. Some samples of predictions by ENRU-Net and other models from testing set in WHU Aerial Imagery Dataset. (a)Original Aerial
Image. (b)Ground truth. (c)FCN-8s. (d)U-Net. (e)SegNet. (f)Deeplab v3. (g)ENRU-Net without APNB. (h)ENRU-Net.

skip-connections. Thus Deeplab v3 defeats all other estab-
lished models benefits from the excellent feature extractor
ResNet-101 [3], which is contrary to the Massachusetts
Dataset. Deeplab v3 gains 1.28% higher scores than FCN-8s
on F1. SegNet and U-Net also work well and respective
achieve improvement of 0.84% and 0.47% on F1 against
FCN-8s. Additionally, the ENRU-Net without APNB also
performs well, which obtains further improvement when
compared with the next best model Deeplab v3 on OA, IoU
and F1. When compared with the aforementioned models,
the proposed ENRU-Net shows the best ability for building
extraction, where the OA, IoU and F1 is 98.92%, 90.77%
and 95.16% respectively. The scores of ENRU-Net is 0.32%,
2.67% and 1.49% higher than the Deeplab v3, despite the
deeper feature extractor ResNet-101 and the more compli-
cated structure of Deeplab v3, e.g. the ASPP and dilated

convolution layers. The results of Deeplab v3 and ENRU-Net
also illustrate that the detailed information and global contex-
tual information play a significant role in building extraction.

Figure 8 lists some randomly chosen prediction results in
the testing set of WHU Dataset. It could be observed that
all of the models could predict more accurate results than
the Massachusetts Dataset. The edges of buildings predicted
by FCN-8s are sharper than the Massachusetts Dataset, but
the corners are still smooth. Besides, the encoder-decoder
models, i.e. U-Net and SegNet, address this problem to a
certain degree by using skip-connections and the upsampling
path. Nevertheless, the lack of global information makes
these models have poor ability to classify the inner pixels in
large buildings accurately. Since Deeplab v3 adopts dilated
convolution layers to expand the field of view, the ability to
classify inner pixels in large scale buildings achieves a little
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TABLE 3. Comparison of FLOPs and parameters between ENRU-Net and
other state-of-the-art models.

improvement. Additionally, owing to the excellent backbone
and the employment of APNB, ENRU-Net outperforms all
of the abovementioned models. It is obviously from Figure 8
that ENRU-Net predicts more precise and sharper contours,
and the pixels that inside buildings, especially large scale
buildings, are also recognized with higher accuracy.

E. MODEL EFFICIENCY
The complexity of a model also influences the practical appli-
cations. In deep learning, the complexity of networks could
be measured by the computation overhead and parameter
amount. In this section, we summarize these two indicators of
our ENRU-Net and other state-of-the-art semantic segmenta-
tion models, the amount of computation consumption of all
models are calculated on a 256×256 aerial image. The statis-
tics results are listed in Table 3. It could be seen that U-Net
has the smallest amount of floating point operations (FLOPs)
and parameters because of its simple structure. FCN-8s and
SegNet in which employ VGG [25] as backbone have similar
computation costs. As a result of adopting ResNet-50 as fea-
ture extractor, ENRU-Net has less than half FLOPs compared
with Deeplab v3. However, due to the extra parameters in
the upsampling path, ENRU-Net has more parameters than
Deeplab v3 but still fewer than FCN-8s.

The results in Tabel 3 indicate that ENRU-Net could
extract buildings from high-resolution aerial imagery at a rel-
ative lower complexity when compared with the established
models.

V. CONCLUSION
In this paper, we propose an efficient and effective
model called ENRU-Net for extracting building from high-
resolution aerial imagery. ENRU-Net adopts an U-shape
encoder-decoder structure as the backbone to adequately
utilize the detailed information to improve the recognition
of small buildings. Meanwhile, to further decrease the mis-
classification of the inner pixels in large scale buildings,
an improved non-local block named APNB is applied in
ENRU-Net between the backbone and the final classifier.
APNB could capture sufficient global contextual information
via computing the spatial relations among each pair pixels.
The significant contributions of this work are that it first ana-
lyzes the existing two key challenges in building extraction
and then combines two outstanding structures to address these
challenges.

To validate the effectiveness of the proposed ENRU-Net,
we conduct several experiments on two public high-resolution

aerial building imagery datasets: theMassachusetts Buildings
Dataset and the WHU Aerial Imagery Dataset. Both on the
two datasets, the proposed ENRU-Net achieves impressive
scores, which proves ENRU-Net is robust for aerial imagery.
Moreover, the quantitative comparison with other state-of-
the-art models demonstrates that ENRU-Net outstrips the
established segmentation models for building extraction task.
In addition, the qualitative comparison also indicates that
ENRU-Net has more accurate and sharper boundaries of
small buildings, and the inner pixels in large buildings are
classified more precisely.

Nevertheless, building extraction based on RGB aerial
imagery do not make use of other type information, such
as the digital surface model and multi-spectral information.
How to utilize these extra information efficiently and effec-
tively in deep learning models for building extraction needs
to be further investigated in our future works.
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