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ABSTRACT With the development of RGBD sensors, the high-quality color point cloud can be obtained
expediently. In this paper, we propose a novel registration method for 3D color point clouds from different
views, which is a critical issue in many applications. Different from traditional feature-based methods,
we design a hybrid feature representation with color moments of the point, which could be applied
naturally for any color point cloud. And these features are extracted from point clouds based on the
supervoxel segmentation. By jointly conducting these features for similarity measure, a weight parameter
is dynamically adapted between the color and the spatial information. The registration algorithm is under
a classic iterative framework for building the correspondence and estimating transformation parameters.
In addition, we provide a mutual correspondence matching condition with hybrid features to build some
more robust relationships for estimating transformation parameters. Experimental results demonstrate that
our method can effectively reduce the number of point data for registration and achieve goodmatching results
even in a poor initial condition.

INDEX TERMS Color point cloud registration, hybrid feature, mutual correspondence matching.

I. INTRODUCTION
Point cloud registration is a classical problem in the fields
of computer vision, computer graphics, and robotics. It has a
wide application in scene reconstruction [1], 3D printing [2],
medical image analysis [3], 3D object recognition [4],
and so on. The goal of point cloud registration is to
find an optimal spatial transformation to align two given
3D point clouds. For solving this problem, the classic algo-
rithm is the Iterative Closest Point (ICP) algorithm [5].
It iteratively establishes the correspondence by distance sim-
ilarity between points, and estimates the spatial transfor-
mation parameters according to the corresponding points.
In reality, point clouds are captured in non-ideal conditions.
Some researchers [6], [7] improved the ICP algorithm to
convert the registration problem into a geometric alignment
issue for the point clouds with noise or partial overlapping
data.
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With the development of RGBD sensors, high-quality
color point cloud can be obtained expediently. Color informa-
tion provides a great help for registration especially when the
geometry alignment process is confused by some symmetry
structures. One direct way to use the color feature is to add the
color vector to its coordinate vector for each point. Then the
correspondence is built by combining the similarity measure
of color feature. However, this easy way ignores the context
information. The correspondence is interfered by noise. More
robust way is to extract some local appearance features,
such as Scale Invariant Feature Transform (SIFT) feature
[8], inspired by the feature extraction method used in image
processing. These features are useful for the point cloud with
obvious local invariant features, whose registration results are
depending on a few of robust feature points.

In this paper, we aim at aligning two color point clouds
from different views, which is useful especially for the hand-
held devices. Since the initial geometric aligning is bad,
we prefer to add the help of color information. In feature
level, we design a hybrid feature representation with color
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moments. The color moments express the color distribution
of a local region in high-level. By jointly conducting the
features for similarity measure, we dynamically adjust the
weight between color and spatial information. Accordingly,
the alignment metric is built by measuring these hybrid fea-
tures. Then, the registration method is under the classic ICP
framework. In addition, we propose a mutual correspondence
matching condition based on the hybrid features. By filtering
out the ambiguous feature relationships, the transformation
estimation could be more accurate for robust registration.
This paper is an extension version of [9]. Comparing with
the previous work, more improvements are provided in the
pre-processing for the large-scale data to improve the effi-
ciency. We firstly conduct a supervoxel segmentation for
point clouds. Then the down-sampling is used to remain
the center point in each supervoxel and calculate the color
moments in the supervoxel region. In this way, the point
clouds become very sparse, but the local color and spatial
features are still retained.

To sum up, the following contributions are presented in this
paper.

1. To reduce the amount of the large-scale data, the point
clouds are down-sampled by the supervoxel segmentation.
The hybrid feature is designed by combining the spatial
vector with color moments in each supervoxel.

2. A new registration objective function is proposed for the
color point clouds by the hybrid similarity measure.

3. A mutual correspondence matching based on the hybrid
features is suggested to select the accurate correspondences
between features.

II. RELATED WORK
According to the features utilized in registration, we roughly
separate the methods into two classes: the method based
on the geometric alignment, and the method combined with
color information.

A. REGISTRATION BY GEOMETRIC ALIGNMENT
Some researchers improved the ICP algorithm for the spe-
cific geometry structures. Chen and Medioni [10] and
Rusinkiewicz and Levoy [11] proposed the point-to-plane
ICP methods by minimizing the distance from each point to
the nearest plane. Similar method using the plane-to-plane
strategy was presented in [12]. By introducing a planar struc-
ture of point clouds, these algorithms have high accuracy for
indoor scenes. To align two point clouds with low overlap-
ping parts, Chetverikov et al. [6] proposed the trimmed ICP
(TrICP) algorithm, which introduced an overlapping ratio
into the objective function to trim outliers. It had great robust-
ness and high precision for point clouds with only partly
overlapping shapes. Then, Philllips et al. [7] proposed the
fractional ICP algorithm (FICP) to improve the speed of
TrICP algorithm. To deal with outliers, a robust ICP method
was improved by adding a constraint of the overlapping
ratio [13]. Bariya et al. [14] used a set of scale-invariant
local shape descriptors according to object structures, and

applied them into an automatic registration for multiple
objects. Ahmed et al. [15] extracted some implicit quadric
surfaces from the point cloud, and defined a group of virtual
interesting points to establish correspondences. Rusu et al.
proposed Point Feature Histograms (PFH) [16], [17] as a
multi-dimensional feature, which described the local geome-
try around a single point in point cloud. Then, they improved
the speed of the PFH and used it for the point cloud regis-
tration [18]. However, the traditional ICP method and these
geometric-based approaches established the correspondence
fully depending on the shape of point cloud. So that the
geometric matching ability affects the registration result.

Recently, some learning based point cloud registration
methods have been proposed. Xie et al. [19] learned a binary
spectral shape descriptor with the deep neural network for 3D
shape correspondence. Deng et al. [20] proposed the PPFNet
with global context aware local featurts for point matching.
Then they also presented a rotation invariant local descriptors
by unsupervised learning [21].Wang and Solomon [22] intro-
duced a point cloud embedding network with an attention-
based module. However, these methods are focus on the pure
geometric features. They ignore the important color features.

B. REGISTRATION WITH COLOR INFORMATION
In recent years, color-based methods have received
widespread attentions. By introducing the color information,
feature matching has improved the accuracy of building the
correspondence, especially when the geometric information
is not sufficient. In [23], Johnson et al. introduced a dis-
tance function that combines the color information to search
the nearest neighbor point. Furthermore, Men et al. [24]
and Korn et al. [25] constructed the joint point-color space
using Hue value from Hue-Saturation-Lightness (HSL) color
space and L, a, b from CIELab color space, respectively.
They presented the metric to find the correspondence accord-
ing to their respective spaces. Godin et al. [26] used the
color attribution as a constraint to judge the similarity.
Danelljan et al. [27] used a Gaussian mixture model to rep-
resent color features. Park et al. [28] established correspon-
dences in the physical three-dimensional space, and defined
a joint optimization objective that integrated both geometric
and photometric terms. Besides, some studies extracted more
advanced color features to assist registration. For example,
Joung et al. [29] used SIFT to estimate the initial alignment.
Chu and Nie [30] and Zheng et al. [31] used SIFT fea-
tures to establish the correspondence between point clouds.
Ji et al. [32] proposed a probabilistic ICP registration algo-
rithm using Oriented FAST and Rotated BRIEF (ORB) color
features.

Our method also belongs to the second class by combining
the spatial geometric features with color information. How-
ever, our work is different from the above methods. On the
one hand, considering the large-scale registration problem,
we use a sparse geometric representation for point cloud by
sampling the center points of its supervoxels. As the super-
voxel is a local clustering result by neighbors, it can represent

VOLUME 8, 2020 7363



Y. Yang et al.: Color Point Cloud Registration Based on Supervoxel Correspondence

FIGURE 1. System overview. (a) Original point clouds. (b) Model point cloud and data point cloud. (c) Supervoxel segmentation results. Different colors
represent different supervoxels. (d) Three orders color moment features. (e) The correspondence features. (f) The spatial position solved by the
correspondence. (g) The final registration result.

the spatial distribution of the original point cloud. On the
other hand, the color feature is extracted in a more general
way as color moments in each supervoxel with context infor-
mation. And the weight parameter is dynamically adapted
between the color and the spatial information. To achieve
accurate results, the corresponding feature pairs are built
based on the bidirectional measures. Only when the mutual
correspondences are satisfied, they can be used for the regis-
tration task. Other points will be neglected. So ourmethod has
the applicability for partial overlapping data. In conclusion,
the color and point information we used are both common
features of the color point cloud. There is no requirement
about the point cloud structure or other local shape features.
So our method can be used universally. The experimental
results will demonstrate that our method has robustness for
different initial positions.

III. COLOR POINT CLOUD REGISTRATION
The system overview is shown in Figure 1. Since a large
amount of data in the point cloud brings a lot of computational
burden for the following registration work. Downsampling
is helpful to accelerate the registration process. But how to
choose the sampling point will impact our registration result.
We hope the sampling point could stand a local area. And
it is known in a supervoxel that the location and color for all
points are close. So to sample the center point of a supervoxel

is the best way. The proposed method is firstly to segment
the point clouds into several supervoxels. Then some sparse
point clouds are sampled and their features are extracted
by combining with color moments. The main registration
algorithm is an iterative process as the ICP. Especially, a set
of correspondence is built up by the mutual correspondence
matching. And the transformation parameters are estimated
accordingly.

A. SUPERVOXEL SEGMENTATION
We segment the point cloud into several local supervoxels for
processing. The clustering method [32] is applied for gen-
erating supervoxels that takes into account of the color and
geometric features of the point cloud. Segmentation results
are consistent with the human’s visual perception. We briefly
introduce the segmentationmethod as following.More details
can be found in [32].

Each 3D voxel is clustered according to a 39 dimensional
vectors, given as:

F = [x, y, z,L, a, b,FPFH1,...,33], (1)

where x, y, z are spatial coordinates, L, a, b are color values in
CIELab space, and FPFH1,...,33 are the 33 elements of local
geometrical feature proposed in [16] extracted by Fast Point
Feature Histograms.
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The distance measure D for clustering is:

D =

√
λD2

c

m2 +
µD2

s

3R2seed
+ εD2

Hik , (2)

where Ds is the spatial distance, Dc is the color distance
calculated in the CIELab space, normalized by a constant m.
DHik is the FPFH space distance calculated using the His-
togram Intersection Kernel [30]. Rseed is the resolution of the
seed voxel in space, which determines the number of initial
supervoxel. λ,µ and ε are weight parameters of each distance
measurement.

Themain steps for segmenting a point cloud are as follows:
Step 1. The 3D space is divided into several regular spa-

tial voxels according to the predefined resolution.
A number of seed voxels is selected for initializing
the centers of supervoxels. A small radius is used to
filter out the noisy seed whose area does not contains
sufficient voxels.

Step 2. The clustering is performed by a local K-Means
clustering method. More specifically, the distance
from the seed center to each candidate voxel is
measured. The nearest seed is the supervoxel which
voxel belongs. Then, these supervoxel centers are
updated by their belonging voxels. Finally, this step
is repeated until the cluster centers are stable.

B. HYBRID FEATURE REPRESENTATION WITH COLOR
MOMENTS
After segmenting the point cloud into supervoxels, we present
the spatial information of point cloud by a set of central points
of each supervoxel. The color information is extracted to
further enrich the feature presentation for these central points.
Especially, three-order color moments are utilized, which can
independently represent the color distribution characteristics
of each supervoxel.

For all points contained in one supervoxel, we calculate
their first three-order center moments on RGB color channels
of these points. We define the color value of i-th points of u-th
supervoxels at the k-th (k = 3) color channel as ciuk . And the
number of points in the u-th supervoxel is defined as Nu. The
formulas for calculating the color moments are as follows:

Ek =
1
Nu

Nu∑
i=1

ciuk , (3)

σk = (
1
Nu

Nu∑
i=1

(ciuk − Ek )2)
1
2 , (4)

sk = (
1
Nu

Nu∑
i=1

(ciuk − Ek )3)
1
3 , (5)

where Ek is the color mean of the supervoxel. σk is the
standard deviation which represents the differences between
the color distribution and mean value. sk is the skewness
which denotes the degree of asymmetry which is related to
the mean value.

According to Eqs. (3)-(5), we can acquire a nine-
dimensional color moment eigenvector as follows:

EMpu = (Er , σr , sr ,Eg, σg, sg,Eb, σb, sb),

which represents the statistical distribution of the color in a
single supervoxel region.

In that case, for a color point cloud, both the spatial feature
and local color distribution features are obtained by combin-
ing the color moment vector and the spatial coordinates of
center points.We define a hybrid feature point cloud extracted
from the original point cloud P as PSV . For each point pu
in PSV , combining its spatial coordinate Elpu = (x, y, z) and
its color moment eigenvector EMpu , we give the hybrid feature
vector Epu as:

Epu = (x, y, z,Er , σr , sr ,Eg, σg, sg,Eb, σb, sb).

Compared to the original data, the number of the above
hybrid features is much smaller. However, it still remains the
main geometric features and color feature of the point cloud.
In addition, comparedwith the original point clouds, since the
spatial position of the feature point cloud does not change, our
registration problem can be solved through two feature point
clouds PSV and QSV . In the following sections, we will see
the advantages of these sparse hybrid features in the point-to-
point registration algorithm.

C. OBJECTIVE FUNCTION
Based on the above point cloud features, the goal for reg-
istration is to find the spatial transformation (R,Et) to align
two sets of feature point clouds PSV and QSV , where R is the
rotation matrix and Et is the translation vector in 3D space.
So we propose a novel objective function as follows:

min
R,Et

Nc(u,v)∑
i=1

‖RElpui +Et −
Elqvi ‖

2
2 + ω‖

EMpui
− EMqvi

‖
2
2,

s.t. RTR = In, det(R) = 1. (6)

where c(u, v) is the corresponding point pair set, pui and qvi
are the corresponding point pairs belong to c(u, v), Nc(u,v) is
the number of c(u, v). Elpui and

Elqvi is the spatial coordinates
of the point pui and qvi , ω is the weight of color feature,
EMpui

and EMqvi
are the color moment feature vectors.

There two sets of unknown parameters in this objective
function: the correspondence and the transformation param-
eter. It can be solved under the ICP framework. In the fol-
lowing, we will present the details about how to build the
correspondence including the similarity measure with color
moments and the parameter estimation method by corre-
sponding features.

D. SIMILARITY MEASURE WITH COLOR MOMENTS
To build the correspondence between two feature sets,
the similarity measure should be defined according to the
hybrid feature. The spatial coordinates represent the geomet-
ric feature of the point cloud, and its color moment vector
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represents the local color distribution characteristics of the
point cloud. Therefore, giving the appropriate weights to
balance them, we will find the corresponding points between
the data point cloud and the model point cloud. The formula
of similarity measure is defined as:

d(pu, qv) =
√
ds(pu, qv)+ ωdc(pu, qv), (7)

where

ds(pu, qv) = (
xp

Prange
−

xq
Qrange

)2 + (
yp

Prange

−
yq

Qrange
)2 + (

zp
Prange

−
zq

Qrange
)2,

dc(pu, qv) = (Epr − Eqr )2 + (σpr − σqr )2 + (spr − sqr )2

+ (Epg − Eqg)2 + (σpg − σqg)2 + (spg − sqg)2

+ (Epb − Eqb)2 + (σpb − σqb)2 + (spb − sqb)2,

where Prange and Qrange are the maximum acquisition ranges
of point clouds P andQ. ω is the weight of color feature same
as in Eq. (6). The value of ω is calculated by the following
dynamic adapting method.

Themain purpose of the dynamic color weightω is tomake
the spatial and color features properly combining and perform
suitable a similarity measurement according to different point
cloud positions. The basic idea is: when the spatial positions
of two point clouds are different greatly, it is more accurate
to use the color feature rather than the spatial feature. And
when the point clouds are roughly aligned, it is more suit to
use spatial features to match the geometric details of the point
clouds.

We define sc(pu,QSV ) = qv as the spatial correspondence,
which means that in the model point cloud QSV , the point qv
is the nearest neighbor of pu by Euclidean distance measure.
We define K (qv) to represent the amount of point pu ∈ PSV
whose spatial correspondence point in model point cloudQSV
is qv:

K (qv) = |{pu ∈ PSV : sc(pu,QSV ) = qv, u = 1, . . . ,NPSV }|.

(8)

Then the weight ω is calculated as follows:

ω =
1

NPSV

mNQSV∑
i=1

sort
v∈1,...,NQSV

(Ki(qv)), (9)

where the sort(�) is a descending sorting function, m is a
constant term whose value is set to 0.01, which means that
only the top one percent points K value in the point cloud
QSV is calculated.

Figure 2 presents an example to explain the weight setting
in Eq. (9). There are two point clouds of the ‘Globe’ object
from different views. pu are red points on the data point cloud,
and qv are yellow points on the model point cloud. The black
line in Figure 2 (a) connects two sets of points with the short-
est Euclidean distance. We can see that K (q1) = 2,K (q2) =
2,K (q3) = 3 and the remaining points K (qothers) = 0. In this
case, the spatial corresponding points are concentrated in a

FIGURE 2. Schematic diagram for calculating color weights. (a) Spatial
correspondence established by Euclidean distance between data point
cloud (left) and model point cloud (right). (b) The correspondence
established by hybrid feature between data point cloud (left) and model
point cloud (right).

small part q1, q2, q3, and their K values are much larger than
the rest of them. So ω has a larger value according to Eq. (9).
So the color feature has a higher weight in the similarity
measure. Figure 2 (b) shows the correspondences established
by hybrid features. If two point clouds have been roughly
aligned, the spatial correspondence of their points is closer
to one-to-one relationship. So the ω is relatively small. The
distance mainly depends on the geometric features to find the
appropriate correspondence.

E. BUILDING MUTUAL CORRESPONDENCE
Usually, the correspondence is built on the nearest neighbor
searching from one point to another point set. However,
as shown in Figure 2(a), when two point clouds are not
roughly aligned, the unidirectional search may cause many
points concentrate on a small part of points. But only a small
number of feature pairs are correct in such correspondence.
To filter out these interference features, we provide the bidi-
rectional mutual correspondence based on the hybrid feature.
It means only when two points are mutual nearest neighbors
in each set, their correspondence will be believed to remain.

The bidirectional mutual similarity measure is to establish
the correspondence. We use c(u, v) to represent the bidirec-
tional correspondence between data point cloud and model
point cloud. cDM (u) represents the corresponding point of
data point pu in the model point cloud QSV . cMD(v) is the
opposite. cDM (u) and cMD(v) can be defined as:

cDM (u) = argmin
v

d(pu, qv), v = 1, . . . ,NQSV , (10)

cMD(v) = argmin
u

d(qv, pu), u = 1, . . . ,NPSV , (11)
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where d(pu, qv) and d(qv, pu) are the measures of hybrid
feature distance defined in Eq. (7).

So the condition for point pairs pu and qv belonging to the
bidirectional mutual correspondence is c(u, v) = cDM (u) ∧
cMD(v), which means they are corresponding to each other in
cDM (u) and cMD(v), respectively.

F. REGISTRATION PARAMETER ESTIMATION
After the mutual correspondence c(u, v) has been established,
the object of solving the registration problem is simplified
to optimize the spatial transformation between corresponding
feature pairs. For the corresponding feature pairs pui and qvi
in c(u, v), Elpui = (x, y, z) and Elqvi = (x, y, z) are their spatial
coordinates. Supposed that there is a spatial transformation
as:

Elpui = RElqvi +Et. (12)

The optimal rotation and translation transformation
between point clouds are:

(R,Et)= argmin
RTR=In,det(R)=1

Nc(u,v)∑
i=1

‖RElpui +Et −
Elqvi ‖

2
2. (13)

To estimate the transformation, we firstly calculate the cen-
troids of the corresponding point sets PSV and QSV in
Eq. (14). Then, we align two centroids by Eq. (15).

lp =
1

Nc(u,v)

Nc(u,v)∑
i=1

Elpui , lq =
1

Nc(u,v)

Nc(u,v)∑
i=1

Elqvi , (14)

El ′pui =
Elqvi − lp,

El ′qvi =
Elqvi − lq. (15)

where Nc(u,v) are the numbers of point pairs in the bidirec-
tional correspondence c(u, v). After the coordinate transfor-
mation, an orthonormal transformation matrix of associated
points can be constructed by Eq. (16).

H=


∑Nc(u,v)

i=1
xpxq,

∑Nc(u,v)

i=1
xpyq,

∑Nc(u,v)

i=1
xpzq∑Nc(u,v)

i=1
ypxq,

∑Nc(u,v)

i=1
ypyq,

∑Nc(u,v)

i=1
ypzq∑Nc(u,v)

i=1
zpxq,

∑Nc(u,v)

i=1
zpyq,

∑Nc(u,v)

i=1
zpzq.

 (16)

Singular value decomposition is performed for the H matrix
to determine the rotation matrix R, as:

H = U3VT , (17)

R = VUT . (18)

Then the translation vector Et is calculated as:

Et = lq
T
− Rlp

T
. (19)

To sum up, the whole registration processes for color point
clouds are as follows:
Step 1. Segment the point clouds P and Q to get the super-

voxel sets of point clouds.
Step 2. Calculate the center point coordinate and local color

moment feature of each supervoxel to obtain sparse
feature point clouds PSV and QSV .

TABLE 1. Description of TUM data used in the experiment.

Step 3. Calculate the correspondence between PSV and QSV
with the (k − 1)th rigid transformation (Rk−1,Etk−1)
to find out the bidirectional reliable correspondence
ck (u, v) by Eqs. (10) and (11).

Step 4. Solve the new rigid transformation (Rk ,Etk ) according
to the current correspondence ck (u, v) by Eqs. (18)
and (19).

Repeat steps 3-4 until the registration error is small
enough or reaches the maximum number of iterations.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the algorithm in dealing with
color point cloud registration with partial overlapping and
poor initial positions. Two different indoor datasets are used
for testing. One is the TUM dataset [35]. The other is the
Indoor Lidar-RGBD Scan Dataset [28]. Both datasets are
captured in indoors by RGBD acquisition devices, with some
continuous synchronized RGB image sequences and depth
image sequences. Then, the testing data is generated by
mapping the depth image to the corresponding RGB image
based on the known camera parameters. In the TUM dataset,
four sequences are selected from different indoor scenes.
We use continuous data for a period of time in each scene,
and uniformly select 24 sets of point clouds as experimental
data in each sequence. Since the movement rates of devices
are different, these point clouds are sampled by different time
lengths to ensure enough identical contents are contained.
And the source and statistics data of the TUM experiment
data are shown in Table 1. In the Indoor Lidar-RGBD Scan
Dataset, we randomly select adjacent point clouds from dif-
ferent scenarios. Some original point cloud data used in the
experiment is shown in Figure 4(a).

The algorithms for comparing include the traditional ICP
algorithm [26], the ICP-4D method [24] which uses the Hue
value in HSL color space to assist registration, the improved
trimmed ICP algorithm (ITrICP) [13], our previous method
ICP-CM in the conference version [9], which used color
moment features based on ITrICP, and the state-of-the-art
CPCRR color registration algorithm [28]. Same as the pro-
posed method, these methods are all based on the point
feature. The ICP and ITrICP use the spatial feature. And other
methods are based on the spatial and color features. In our
experiments, we set 0.1 meter as the scale of supervoxel for
indoor scences empirically.

The testing hardware environment is: Intel Core i5-6400
2.7GHz CPU and 8GB RAM. The running software for the
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FIGURE 3. Average transformation error of experiment on TUM dataset. The title of each figure is the data name used in this group of experiments.
And each group of experiments used 24 consecutive point cloud frames and performed 23 times registration experiments on all adjacent frames.

ICP, ICP-4D, ITrICP, and ICP-CM is Matlab2017A, and the
environment of CPCRR is Python3.5. The running environ-
ment of our algorithm for point cloud segmentation is C++,
and the registration process uses Matlab2017A.

A. ALGORITHM ROBUSTNESS AND EFFECTIVENESS
TESTING
In order to evaluate the effectiveness of the algorithm, we set
different initial transformation angles to simulate the situation
when handheld device moves. Some specific rotation matrix
in 3D space are conducted on one of two point clouds. And
the above registration algorithms are performed to align them
from these relative initial positions.

In the first dataset, we perform the registration experiment
on all adjacent point clouds in each group. The effective-
ness is evaluated by comparing with the ground truth, which
is provided by the TUM dataset. And the registed error is
defined as:

εR = ‖R− RG‖
2, (20)

where R is the rotation angle of the registration result. And
RG is the ground truth.
These registration results are shown in Figure 3. Here,

seven sets of experiments are tested with different initial
rotation angles from 0 to 90 degrees. Original point clouds
can be roughly registered when the angle is zero. When
the initial transformation angle increases, two point clouds
become more difficult to regist. In Figure 3, we can see that
as the initial angle increases, the registration errors for most
algorithms increases significantly. But our method presents
more accurate transformation results than other compared
algorithms. The reason for the big errors in ICP and ITrICP
algorithms is that: they both use the unidirectional Euclidean
distance to find the corresponding points. When the initial
positions between two point clouds are far, the Euclidean
distance can only find the point pairs with closest positions
between two point clouds. These correspondences are not
correct and lead to misaligning of the final result. In the
ICP-4D algorithm, the spatial coordinates and the Hue color
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TABLE 2. Performance comparison of our algorithm with different strategies.

TABLE 3. Algorithm average running time on the TUM dataset.

values of points are combined to find the corresponding point
pairs. But the identification of the point information is still
insufficient to find the accurate correspondence when the
initial position is poor. The CPCRR algorithm defines the
continuous color function and depth function for point clouds
as the objective. But its optimization result is easily trapped
into a local minimum. Therefore, the registration result of the
CPCRR method is greatly disturbed by the initial position
of the point clouds. We can see that the results by ICP-CM
are close to the algorithm proposed in this paper. In fact,
the ICP-CM can be seen as a special case of the proposed
method with the smallest data cell in segmentation. But we
will compare the improved efficiency by our algorithm in the
next section. For color point cloud data, two kinds of features
for these methods are based on color and geometric informa-
tion. In that case, when the color is relatively homogenize,
these performances become similar as other geometric based
method. If the geometric structure of the data is homogenize
too. All methods will have big errors, such as the ‘‘freiburg1-
desk’’ shown in Figure 3.

In the second dataset, we set different initial transforma-
tion angles in the same way as before. Figure 4 (a) shows
the relative position of two point clouds before registra-
tion. In this experiment, we mainly compare the registra-
tion results with the classic registration method ICP and the
state-of-the-art color registration method CPCRR. As we can

see from the Figure 4, our registration results are superior
to other methods. This is mainly due to the color moments
features can build accurate corresponding point pairs when
the initial position is not good. Thus it leads the algorithm to
reach to the optimal result. Since the capture device is moved,
two point clouds for registration are partial overlapping. But
our method can register them correctly. This experiment also
verify that our algorithm can be applied in various indoor
scenes.

Furthermore, in order to verify the effectiveness of our
proposed hybrid features and bidirectional measurement,
we also compared our algorithms under different strate-
gies. Four different combinations of strategies are com-
pared in the experiments, including unidirectional and bidi-
rectional correspondences with and without color features.
As shown in Table 2, we test different strategies on the
TUM dataset with different initial transformation angles.
By comparing the rotation and translation errors, we can
conclude that the hybrid features with color information
have better distinctiveness for corresponding points. And
the measurement of bidirectional mutual correspondence can
obtain more precise correspondence between point clouds.
But comparing with the unidirectional search, the pro-
cessing will cost more time. So we apple the downsam-
pling based on supervoxel segmentation to improve the
efficiency.
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FIGURE 4. Comparison of registration results using Indoor Lidar-RGBD Scan Dataset. (a) Original point cloud data. (b) Registration result of ICP
algorithm. (c) Registration result of CPCRR algorithm. (d) Registration result of our algorithm.

7370 VOLUME 8, 2020



Y. Yang et al.: Color Point Cloud Registration Based on Supervoxel Correspondence

B. ALGORITHM EFFICIENCY TESTING
The ICP-based algorithm has the common drawback in
the computational speed: the computational time-consuming
increases as the amount of data increases. The main reason
is that the ICP algorithm needs to recalculate the correspon-
dence in each iteration. When the number of points is tremen-
dous, it is very time consuming to find the correspondence of
each point. Our previously ICP-CM algorithm improves the
accuracy of the registration result by color moment features,
but it is still need to calculate the correspondence of all points
in each iteration.

The statistical time about the algorithm efficiency analysis
is shown in Table 3. We can see the efficiency of the proposed
method. In order to solve the efficiency problem, our core
solution is to reduce the amount of data to be processed
during the iteration. We divide the proposed algorithm into
two stages: the first stage is the supervoxel segmentation of
point cloud, and the second stage is the feature extraction
and registration process by sparse point features. Since the
extraction of sparse point cloud is completed in the first stage,
the proposed algorithm reduces the amount of data to be
processed in the registration process. The other advantage is
that supervoxel segmentation can be used as part of offline
data processing because it does not rely on any registration
algorithm. In that case, the point cloud segmentation and
feature extraction do not need repeated computation in the
algorithm, which reduces the computational cost in the itera-
tive process.

V. CONCLUSION
This paper presents a novel registration method for color
point clouds which extracts sparse feature points by super-
voxel segmentation to reduce the burden of large scale reg-
istration task. A similarity measure is proposed for feature
matching by dynamically combining spatial information and
color information. Furthermore, we construct the objective
function with hybrid features under a mutual bidirectional
correspondence strategy. Experiments demonstrate that our
method has better performance in dealing with the problem
of partical overlapping data and poor initial position in real-
world scenes.
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