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ABSTRACT Among many evolutionary algorithms, differential evolution (DE) has received much attention
over the last two decades. DE is a simple yet powerful evolutionary algorithm that has been used successfully
to optimize various real-world problems. Since it was introduced, many researchers have developed new
methods for DE, and one of them makes use of a mutation based on the Cauchy distribution to increase the
convergence speed of DE. The method monitors the results of each individual in the selection operator
and performs the Cauchy mutation on consecutively failed individuals, which generates mutant vectors
by perturbing the best individual with the Cauchy distribution. Therefore, the method can locate the
consecutively failed individuals to new positions close to the best individual. Although this approach is
interesting, it fails to take into account establishing a balance between exploration and exploitation. In this
paper, we propose a sigmoid based parameter control that alters the failure threshold for performing the
Cauchy mutation in a time-varying schedule, which can establish a good ratio between exploration and
exploitation. Experiments and comparisons have been done with six conventional and six advanced DE
variants on a set of 30 benchmark problems, which indicate that the DE variants assisted by the proposed
algorithm are highly competitive, especially for multimodal functions.

INDEX TERMS Artificial intelligence, evolutionary algorithm, differential evolution, numerical
optimization.

I. INTRODUCTION
An evolutionary algorithm (EA) is a population-based meta-
heuristic inspired by biological evolution and genetic vari-
ations observed in nature. An EA takes a population of
individuals and searches for a global optimum by artificially
designed evolutionary operators. An EA does not make any
assumption about a given problem, such as continuity and
differentiability. Thus, it can be applied to any problem.

Among many EAs, differential evolution (DE) [1], [2] is
widely considered to be one of the most effective EAs to
optimize multidimensional real-valued functions. DE takes a
population of individuals and iterates the mutation, crossover,
and selection operators to search for a global optimum.
Since it was introduced, DE has received much attention
because it is simple and straightforward to implement.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hisao Ishibuchi .

The effectiveness of DE has been demonstrated successfully
in various real-world problems [3], [4].

To increase the convergence speed of DE, Ali and Pant [5]
proposed a variant of DE called modified DE (MDE), which
makes use of a mutation based on the Cauchy distribution as
an additional operator.MDEmonitors the results of each indi-
vidual in the selection operator. When an individual consec-
utively failed to find a better position than its current position
for a predefined number of generations, MDE performs the
Cauchy mutation on the individual, which generates a mutant
vector by perturbing the best individual with the Cauchy dis-
tribution. Therefore, MDE can locate the consecutively failed
individual to a new position close to the best individual. How-
ever, MDE uses the same failure threshold for performing
the Cauchy mutation throughout the whole search process,
which causes a serious limitation of establishing a balance
between exploration and exploitation. Moreover, MDE uses
the best individual based Cauchymutation, whichmay reduce
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the diversity of individuals drastically. Here, exploration is
the property of searching for entirely new areas of a search
space, while exploitation is the property of searching for the
areas close to previously searched [6], [7].

EAs need to establish a balance between exploration and
exploitation to be successful [6], [7]. In this paper, we propose
a variant of MDE called advanced Cauchy mutation DE
(ACM-DE), which alters the failure threshold for performing
the Cauchy mutation in a time-varying schedule. The earlier
work of ACM-DE can be found in [8]. ACM-DE uses a
sigmoid based parameter control, which assigns a high failure
threshold at the beginning of the search process and gradually
reduces it over generations. Therefore, ACM-DE performs
the Cauchy mutation with a low probability at the early stage
of the search process to preserve the diversity of individuals
and a high probability at the late stage of the search pro-
cess to increase the convergence speed. ACM-DE also uses
the p-best individual [9] based Cauchy mutation to prevent
premature convergence. Therefore, ACM-DE can establish
a good ratio between exploration and exploitation compared
to MDE.

Experiments and comparisons were carried out with six
conventional and six advanced DE variants on the Congress
on Evolutionary Computation (CEC) 2017 benchmark prob-
lems [10], which contains a set of 30 benchmark problems.
The experimental results indicate that theDE variants assisted
by the proposed Cauchy mutation significantly outperform
the DE variants assisted by the previous Cauchy mutation
as well as the original DE variants. As a result, the main
contributions of this paper are as follows.

1) ACM is simple and easy to embed into any DE variant
as an additional operator.

2) ACM can establish a good ratio between exploration
and exploitation.

3) ACM is a clear advance on the previous Cauchy muta-
tion, and the effectiveness of ACM is demonstrated
successfully by experiments and comparisons.

The rest of this paper is organized as follows: we introduce
DE and the Cauchy distribution in Section II. In Section III,
we review six advanced DE variants used for experiments and
comparisons in this paper. Section IV presents the technical
details of the proposed algorithm. Section V presents the
experimental setups. In Sections VI and VII, we discuss
the experimental results of the proposed algorithm. Finally,
we provide the conclusion and the future work of this paper
in Section VIII.

II. BACKGROUND
A. DIFFERENTIAL EVOLUTION
DE is a population-based metaheuristic that takes a pop-
ulation of NP target vectors. Each target vector is a
D-dimensional vector, denoted by Exi,g = (x1i,g, x

2
i,g, · · · , x

D
i,g),

where g = 1, 2, · · · ,Gmax . Here, Gmax denotes the max-
imum number of generations. DE consists of four opera-
tors: initialization, mutation, crossover, and selection. At the

beginning of the search process, the initialization operator
uniformly distributes the population over a search space.
Then, the mutation and crossover operators generate a popu-
lation ofNP trial vectors, and the selection operator makes up
a new population for the next generation by comparing each
target vector with its corresponding trial vector.

1) INITIALIZATION
First, let us define the lower and upper bounds as
follows: Exmin = (x1min, x

2
min, · · · , x

D
min) and Exmax =

(x1max , x
2
max , · · · , x

D
max), where Exmin and Exmax denote the lower

and upper bounds, respectively. Each component (j) of each
target vector (i) is initialized as follows:

x ji,0 = x jmin + rand
j
i · (x

j
max − x

j
min) (1)

where rand ji denotes a uniformly distributed random value in
the interval [0, 1].

2) MUTATION
The role of the mutation operator is to generate a set of NP
mutant vectors. Each mutant vector is denoted by Evi,g. The
following list shows the six most commonly used conven-
tional mutation strategies.

DE/rand/1:

Evi,g = Exr1,g + F · ( Exr2,g − Exr3,g) (2)

DE/best/1:

Evi,g = Exbest,g + F · ( Exr1,g − Exr2,g) (3)

DE/current-to-best/1:

Evi,g = Exi,g + F · ( Exbest,g − Exi,g)+ F · ( Exr1,g − Exr2,g) (4)

DE/current-to-rand/1:

Evi,g = Exi,g + K · ( Exr1,g − Exi,g)+ F · ( Exr2,g − Exr3,g) (5)

DE/rand/2:

Evi,g = Exr1,g + F · ( Exr2,g − Exr3,g)+ F · ( Exr4,g − Exr5,g) (6)

DE/current-to-best/2:

Evi,g = Exi,g + F · ( Exbest,g − Exi,g)+ F · ( Exr1,g − Exr2,g)

+F · ( Exr3,g − Exr4,g) (7)

where Exr1,g, Exr2,g, Exr3,g, Exr4,g, and Exr5,g denote randomly
selected donor vectors, which are mutually different and not
equal to their corresponding target vector Exi,g. Additionally,
Exbest,g denotes the best individual. Finally, F and K denote

the scaling factor and a uniformly distributed random value
in the interval [0, 1], respectively.
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3) CROSSOVER
The role of the crossover operator is to generate a set of NP
trial vectors. Each trial vector is denoted by Eui,g. There are
two classical crossover operators, binomial and exponential.
In the binomial crossover, an integer value jrand is randomly
selected within {1, 2, · · · ,D}. The binomial crossover gener-
ates each component (j) of each trial vector (i) as follows.

uji,g =

{
vji,g if rand ji < CR or j = jrand

x ji,g otherwise
(8)

where CR denotes the crossover rate.
In the exponential crossover, two integer values n and L

are initialized first. The starting component n is randomly
selected within {1, 2, · · · ,D}. The number of components L
is obtained as follows.
L = 0
DO { L = L + 1 }
WHILE ((rand ji < CR) AND (L < D))

With the two integer values, the exponential crossover gener-
ates each component (j) of each trial vector (i) as follows.

uji,g =

{
vji,g if j = 〈n〉D, 〈n+ 1〉D, · · · , 〈n+ L − 1〉D

x ji,g otherwise
(9)

where 〈·〉D denotes the modulo operator with the divisor D.

4) SELECTION
The selection operator compares each target vector with its
corresponding trial vector and picks the better one. In other
words, if the fitness value of a trial vector is better than
or equal to that of its corresponding target vector, the trial
vector is selected as a member of the population for the next
generation. Otherwise, the trial vector is discarded, and the
target vector is selected. The selection operator makes up a
new population for the next generation as follows.

Exi,g+1 =

{
Eui,g if f ( Eui,g) ≤ f ( Exi,g)
Exi,g otherwise.

(10)

where f (Ex) denotes an objective function.
DE iterates themutation, crossover, and selection operators

until one of the termination criteria is satisfied. The most
commonly used termination criterion is to reach the maxi-
mum number of generations Gmax or the maximum number
of function evaluations NFEmax .

B. ANALYSIS OF CAUCHY DISTRIBUTION
The Cauchy distribution is a continuous probability distri-
bution that has two parameters, x0 and γ . x0 is the location
parameter, and γ is the scale parameter that determines the
shape of the Cauchy distribution. For example, if a higher
value is assigned to γ , the height of the peak of the probability
density function (PDF) will be shorter, and its width will be
wider. On the other hand, if a lower value is assigned to γ ,
the height of the peak of the PDF will be taller, and its width

FIGURE 1. Various probability density functions of Cauchy distribution.

will be narrower. The PDF of the Cauchy distribution can be
defined as follows.

f (x; x0, γ ) =
1

πγ [1+ ( x−x0
γ

)2]
=

1
π

[
γ

(x − x0)2 + γ 2

]
(11)

Additionally, the cumulative distribution function of the
Cauchy distribution can be defined as follows.

F(x; x0, γ ) =
1
π
arctan

(
x − x0
γ

)
+
1
2

(12)

Fig. 1 presents the various PDFs of the Cauchy distribution.

III. RELATED WORK
Since it was introduced, many researchers have developed
new methods for DE [9], [11]–[39]. For more detailed infor-
mation, please refer to the following papers [3], [4], [40], [41].
In this section, we review six advanced DE variants used for
experiments and comparisons in this paper.

A. SaDE
Qin et al. proposed a self-adaptive DE variant called
SaDE [11], which automatically adjusts mutation strategies
and control parameters during the search process. SaDE
uses four mutation strategies, ‘‘DE/rand/1’’, ‘‘DE/current-to-
best/1’’, ‘‘DE/rand/2’’, and ‘‘DE/current-to-rand/1.’’ At each
generation, SaDE assigns each individual one of the muta-
tion strategies according to strategy probabilities pk , k =
{1, 2, 3, 4}. The strategy probabilities are initialized to 1

K ,
K = 4 at the beginning of the search process. To update the
strategy probabilities, SaDE monitors the success and failure
results of each individual in the selection operator. At each
generation, after a predefined number of generations LP,
SaDE updates the strategy probabilities as follows.

pk,g =
Sk,g∑K
k=1 Sk,g

(13)

where

Sk,g =

∑g−1
t=g−LP nsk,t∑g−1

t=g−LP nsk,t +
∑g−1

t=g−LP nfk,t
+ ε (14)
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where nsk,g and nfk,g denote the success and failure memories
with the kth mutation strategy, respectively. Additionally, ε =
0.001 is used to avoid division by zero.

At each generation, SaDE assigns each individual a scaling
factor Fi,g with the Gaussian distribution as follows.

Fi,g = rndni(0.5, 0.3) (15)

Similarly, at each generation, SaDE assigns each individual a
crossover rateCRi,g with the Gaussian distribution as follows.

CRi,G = rndni(CRmk , 0.1) (16)

where CRmk is the median of the crossover rates used by suc-
cessfully evolved individuals with the kth mutation strategy.
After that, the crossover rate is truncated to [0, 1].

B. EPSDE
Mallipeddi et al. proposed a self-adaptive DE variant called
EPSDE [12], which uses a pool of mutation strategies and two
pools of control parameters. The pool of mutation strategies
contains ‘‘DE/best/2’’, ‘‘DE/rand/1’’, and ‘‘DE/current-to-
rand/1.’’ Additionally, the pool of scaling factors contains the
values in the range of 0.4−0.9 in steps of 0.1, and the pool of
crossover rates contains the values in the range of 0.1 − 0.9
in the steps of 0.1. At each generation, EPSDE assigns each
individual a combination of mutation strategy and control
parameters taken from the respective pools. If an individual
successfully evolved with the combination, the individual
uses the same combination for the next generation. Other-
wise, EPSDE assigns the individual a new combination or one
of the combinations used by successfully evolved individuals
with equal probability for the next generation.

C. CoDE
Wang et al. proposed an advanced DE variant called
CoDE [13], which generates three candidate trial vectors
for each individual. CoDE uses three mutation strategies,
which are ‘‘DE/rand/1’’, ‘‘DE/rand/2’’, and ‘‘DE/current-
to-rand/1.’’ Additionally, CoDE uses three pairs of control
parameters, which are ‘‘F = 1.0,CR = 0.1’’, ‘‘F =
1.0,CR = 0.9’’, and ‘‘F = 0.8,CR = 0.2.’’ At each genera-
tion, CoDE generates three candidate trial vectors for each
individual by using different mutation strategies and three
randomly selected pairs of control parameters. Therefore,
the three candidate trial vectors have different characteris-
tics. Among the three candidate trial vectors, the best one is
selected for the selection operator.

D. SHADE
Tanabe and Fukunaga proposed an advanced DE variant
called SHADE [18], which is an extension of an advanced DE
variant called JADE [9]. We first introduce JADE and then
SHADE. JADE uses an advanced mutation strategy called
DE/current-to-pbest, which can be defined as follows.

DE/current-to-pbest:

Evi,g = Exi,g + F · ( Expbest,g − Exi,g)+ F · ( Exr1,g − E˜r2,gx) (17)

where Expbest,g and E˜r2,gx denote one of the top 100p% individ-
uals with p ∈ (0, 1] and a randomly selected donor vector
from a population or an archive of recently discarded target
vectors, respectively.

At each generation, JADE assigns each individual a pair of
control parameters as follows.

Fi,g = rndci(µF , 0.1) (18)

CRi,g = rndni(µCR, 0.1) (19)

where rndci and rndni denote the Cauchy distribution and
the Gaussian distribution, respectively. After that, the scaling
factor is regenerated if Fi,g ≤ 0 or truncated to 1 if Fi,g > 1,
and the crossover rate is truncated to [0, 1]. The value of µF
and the value of µCR are updated as follows.

µF = (1− c) · µF + c · meanL(SF ) (20)

µCR = (1− c) · µCR + c · meanA(SCR) (21)

where c is a constant in the interval [0, 1]. Additionally,
meanL andmeanA denote the Lehmermean and the arithmetic
mean, respectively. Finally, SF and SCR denote the scaling
factors and the crossover rates used by successfully evolved
individuals, respectively.

SHADE uses an improved parameter control of JADE,
which contains historical memories withH entries for the val-
ues ofµF and the values ofµCR, denoted byMF,k andMCR,k .
The historical memories are initialized to 0.5 at the beginning
of the search process. At each generation, SHADE assigns
each individual a pair of control parameters as follows.

Fi,g = rndci(MF,ri , 0.1) (22)

CRi,g = rndni(MCR,ri , 0.1) (23)

where ri is randomly selected within {1, 2, · · · ,H}. After the
selection operator, SHADE updates the historical memories
as follows.

MF,〈g〉H =

{
meanwL(SF ) if SF 6= ∅
MF,〈g〉H otherwise.

(24)

MCR,〈g〉H =

{
meanwA(SCR) if SCR 6= ∅
MCR,〈g〉H otherwise.

(25)

where meanwL and meanwA denote the weighted Lehmer
mean and the weighted arithmetic mean, respectively.

E. MPEDE
Wu et al. proposed a multi-population-based DE variant
called MPEDE [20], which uses three mutation strategies,
i.e., ‘‘DE/current-to-pbest/1’’, ‘‘DE/current-to-rand/1’’, and
‘‘DE/rand/1.’’ MPEDE splits a population into four subpopu-
lations, which are three equally sized smaller subpopulations
and one larger reward subpopulation. Each subpopulation
uses a distinct mutation strategy to generate mutant vectors.
After every predefined number of generations LP, the best
mutation strategy is determined by comparing the average
fitness improvement. The reward subpopulation then uses the
best mutation strategy to generate mutant vectors for the next
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LP generations. Additionally, MPEDE uses the parameter
control of JADE [9] to automatically adjust control param-
eters during the search process. As a result, MPEDE can
find the best mutation strategy and assign it to the reward
subpopulation during the search process.

F. EDEV
Wu et al. proposed a multi-population-based DE vari-
ant called EDEV [21], which uses three DE variants,
i.e., JADE [9], CoDE [13], and EPSDE [12]. Similar to
MPEDE, EDEV splits a population into four subpopulations,
which are three equally sized smaller subpopulations and
one larger reward subpopulation. Each subpopulation uses a
distinct DE variant to generate mutant vectors. After every
predefined number of generations LP, the best DE variant is
determined by comparing the average fitness improvement.
The reward subpopulation then uses the best DE variant to
generate mutant vectors for the next LP generations. As a
result, EDEV can find the best DE variant and assign it to
the reward subpopulation during the search process.

IV. PROPOSED ALGORITHM
This section outlines the proposed Cauchy mutation and dis-
cusses the details of each algorithmic component.

A. REVIEW OF MDE
MDE [5] is the basis of the proposed algorithm, which keeps
track of the results of each individual in the selection opera-
tor. When an individual consecutively failed to find a better
position than its current position for a predefined number of
generations, MDE assumes that the individual gets trapped
in a local optimum. To help the individual escape from the
local optimum, MDE performs the Cauchy mutation on the
individual, which generates a mutant vector by perturbing
the best individual with the Cauchy distribution. The Cauchy
mutation of MDE generates a trial vector as follows.

uji,g =

{
rndcji(x

j
best,g, 0.1) if rand ji < 0.5 or j = jrand

x ji,g otherwise

(26)

where rndcji and rand
j
i denote the Cauchy distribution and

a uniformly distributed random value in the interval [0, 1],
respectively. Therefore, MDE can locate the consecutively
failed individual to a new position close to the best individual.

Compared to other DE variants that make use of a mutation
based on the Cauchy distribution, MDE has two main advan-
tages: First, MDE carries out the Cauchy mutation on an
individual basis, while other DE variants [42], [43] do so on
a population basis. In other words, the DE variants [42], [43]
calculate the running metric of convergence [44] in every
predefined number of generations and carry out the Cauchy
mutation if the calculated convergence is lower than a pre-
defined threshold. This approach is effective when all indi-
viduals get stuck in the same local optimum but ineffective
when different individuals get stuck in different local optima.
Secondly, there is no increment in computational cost.

The Cauchy mutation of MDE requires a computational cost
similar to that of the mutation and crossover operators. On the
other hand, the Cauchy mutation of the DE variants [42], [43]
requires a considerable computational cost because they
need to calculate the running metric of convergence and the
diversity of each component in every predefined number of
generations.

B. ADVANCED CAUCHY MUTATION
Although the effectiveness of MDE has been demonstrated
successfully on the classical benchmark problems, MDE is
not well suited to optimize complex problems. One of the
major drawbacks of MDE is that it uses the same failure
threshold for performing the Cauchy mutation throughout
the whole search process, which causes a serious limitation
of establishing a balance between exploration and exploita-
tion. Moreover, MDE uses the best individual based Cauchy
mutation, which may reduce the diversity of individuals
drastically. The aim of this paper is thus to propose an
improved approach, which removes all of the difficulties that
MDE faces.

ACM-DE consists of two algorithmic components: a sig-
moid based parameter control and the p-best individual [9]
based Cauchy mutation. The formal can alters the fail-
ure threshold for performing the Cauchy mutation in a
time-varying schedule. The latter can prevent premature con-
vergence by preventing consecutively failed individuals from
converging into one region. The following sections provide a
detailed description of these algorithmic components.

1) SIGMOID BASED PARAMETER CONTROL
FOR FAILURE THRESHOLD
MDEuses a fixed failure threshold for performing the Cauchy
mutation, which causes one of the following problems.
• Premature convergence: MDE with a low failure thresh-
old may execute the Cauchy mutation too frequently at
the early stage of the search process, which may hinder
from discovering promising regions.

• Ineffectiveness: MDE with a high failure threshold may
execute the Cauchy mutation too rarely at the end of
the search process, which may not take advantage of the
Cauchy mutation to increase the convergence speed.

To address these problems, we propose a sigmoid based
parameter control, which gradually decreases the failure
threshold as a sigmoid function of the number of generations.
First, let us define two failure threshold parameters, one for
the initial failure threshold FTinit and the other for the final
failure threshold FTfin. At each generation, a new failure
threshold FTg is obtained as follows.

FTg = FTinit + S
( g
Gmax

)
· (FTfin − FTinit ) (27)

where

S(x) =
1

1+ e−(lb+x·(ub−lb))
(28)

where lb and ub are two constants, -6 and 6, respectively.
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FIGURE 2. Cauchy Mutation of ACM-DE.

Therefore, ACM-DE assigns a high failure threshold at
the beginning of the search process and gradually reduces it
over generations. In doing so, ACM-DE performs the Cauchy
mutation on consecutively failed individuals with a low prob-
ability at the early stage of the search process to preserve the
diversity of individuals and a high probability at the late stage
of the search process to increase the convergence speed.

2) P-BEST INDIVIDUAL BASED CAUCHY MUTATION
MDE uses the components of the best individual in the phase
of the Cauchy mutation. Although consecutively failed indi-
viduals can quickly move toward the region in which the best
individual is located, the population diversity of MDE may
be reduced drastically. If the population diversity of MDE
becomes too low, premature convergence may occur.

To address this problem, we replaced the best individual
with the p-best individual [9], which uses the components
of any of the top p% individuals in the phase of the Cauchy
mutation. The Cauchy mutation of ACM-DE generates a trial
vector as follows.

uji,g =

{
rndcji(x

j
pbest,g, 0.1) if rand ji < CRci,g or j = jrand

x ji,g otherwise

(29)

where CRci,g denotes the crossover rate for the Cauchy muta-
tion, which is either 0.1 or 0.9 with equal probability.

Therefore, the Cauchymutation of ACM-DE uses the com-
ponents of any of the top p% individuals to move consecu-
tively failed individuals to the regions in which the top p%
individuals are located. In doing so, the Cauchy mutation
of ACM-DE can prevent the consecutively failed individuals
from converging into one region, which can prevent prema-
ture convergence.

C. COMBINATION
ACM-DE is the combination of DEwith the proposedCauchy
mutation. During the iteration phase, the standard mutation or
the proposed Cauchy mutation is used to search for a global
optimum. The switch between the two mutations occurs
according to the failure counter of each individual FCi. If the

FIGURE 3. Sigmoid Based Parameter Control of ACM-DE.

failure counter of an individual is equal to the failure thresh-
old FTg, ACM-DE performs the proposed Cauchy mutation
on the individual. Otherwise, ACM-DE performs the stan-
dard mutation on the individual. The offspring generated
by either the standard mutation or the proposed Cauchy
mutation inherits the information from its corresponding tar-
get vector through the binomial crossover. The pseudo-code
of ACM-DE is presented in Algorithm 1. Additionally,
Figs. 2 and 3 show an illustration of the Cauchy mutation
of ACM-DE compared to that of MDE and an illustration of
the failure threshold decrease and increase with the sigmoid
based parameter control, respectively.

V. EXPERIMENTAL SETUP
A. TEST FUNCTIONS
To evaluate the performance of test algorithms, we employed
30 test functions from CEC 2017 benchmark problems [10].
The CEC 2017 benchmark problems consist of three uni-
modal functions (F1-F3), seven simple multimodal func-
tions (F4-F10), ten expandedmultimodal functions (F11-F20),
and ten hybrid composition functions (F21-F30). For more
detailed information, please refer to the following paper [10].

All experimental settings such as the number of function
evaluations, the lower and upper bounds, and the termination
criteria for the test functions are initialized as same as in [10].
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Algorithm 1 ACM-DE (DE/rand/1/bin)
Input : Objective function f (Ex), lower bound Exmin,

upper bound Exmax , maximum number of
generations Gmax , initial failure threshold
FTinit , final failure threshold FTfin, scale factor
F , crossover rate CR, and population size NP

Output: Final best objective value f ( Exbest,Gmax )
/* Initialization phase */

1 for i = 0; i < NP; i = i+ 1 do
2 for j = 0; j < D; j = j+ 1 do
3 x ji,0 = x jmin + rand

j
i · (x

j
max − x

j
min);

4 end
5 FCi = 0;
6 end
7 g = 1;
/* Iteration phase */

8 while None of termination criteria is satisfied do
/* Recombination operator */

9 FTg = FTinit + S
(

g
Gmax

)
· (FTfin − FTinit );

10 for i = 0; i < NP; i = i+ 1 do
11 if FCi < FTg or FCi mod FTg 6= 0 then

/* DE/rand/1/bin phase */
12 Carry out Algorithm 2;
13 else

/* ACM/bin phase */
14 Carry out Algorithm 3;
15 end
16 end

/* Selection operator */
17 for i = 0; i < NP; i = i+ 1 do
18 if f ( Eui,g) ≤ f ( Exi,g) then
19 Exi,g+1 = Eui,g;
20 FCi = 0;
21 else
22 Exi,g+1 = Exi,g;
23 FCi = FCi + 1;
24 end
25 end
26 g = g+ 1;
27 end

Algorithm 2 DE/rand/1/bin

1 Select three random donor vectors Exr1,g, Exr2,g, Exr3,g
where r1 6= r2 6= r3 6= i;

2 Select random integer jrand within [1,D];
3 for j = 0; j < D; j = j+ 1 do
4 if rand ji ≤ CR or j = jrand then
5 uji,g = x jr1,g + F · (x

j
r2,g − x

j
r3,g);

6 else
7 uji,g = x ji,g;
8 end
9 end

Algorithm 3 ACM/bin

1 Select any of top p% individuals ExpBest,g;
2 Select random integer jrand within [1,D];
3 Select crossover rate CRci,g from either 0.1 or 0.9;
4 for j = 0; j < D; j = j+ 1 do
5 if rand ji ≤ CR

c
i,g or j = jrand then

6 uji,g = rndcji(x
j
pbest,g, 0.1);

7 else
8 uji,g = x ji,g;
9 end
10 end

B. PERFORMANCE METRICS
To evaluate the performance of test algorithms, we employed
the following performance criteria.

1) FUNCTION ERROR VALUE
We employed the function error value (FEV) to evaluate
the accuracy of a test algorithm. The FEV metric corre-
sponds to the absolute difference between the global opti-
mum of an objective function and the final best objective
value of a test algorithm. The FEV metric can be defined as
follows.

FEV = |f ( Ex∗)− f ( Exbest,Gmax )| (30)

where f (Ex) denotes an objective function. Additionally, Ex∗
and Exbest,Gmax denote the global optimum of the objective
function and the final best objective value of a test algo-
rithm, respectively. As the value of the FEVmetric decreases,
the accuracy of a test algorithm increases.

2) STATISTICAL TEST
We employed the Wilcoxon signed-rank test at a signifi-
cance level of 0.05 to determine whether the performance
differences between two algorithms are statistically signifi-
cant [45]. Hereafter, the symbols used in the tables indicate
the following.

1) +: The proposed algorithm is significantly supe-
rior than the comparison algorithm according to the
Wilcoxon signed-rank test.

2) =: The difference between the proposed algorithm and
the comparison algorithm is not significant according
to the Wilcoxon signed-rank test.

3) −: The proposed algorithm is significantly inferior than
the comparison algorithm according to the Wilcoxon
signed-rank test.

VI. EXPERIMENTAL RESULTS
Experiments and comparisons were carried out with six con-
ventional and six advanced DE variants to demonstrate the
effectiveness of the proposed Cauchy mutation.
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TABLE 1. Averages and standard deviations of function error values with conventional DE variants (D = 30).

FIGURE 4. Median and interquartile ranges (25th and 75th) of function error values with DE/rand/1/bin variants (D = 30).

A. CONVENTIONAL DE VARIANTS
We applied the proposed Cauchy mutation to six conven-
tional DE variants, namely DE/rand/1/bin, DE/best/1/bin,
DE/current-to-best/1/bin, DE/current-to-rand/1, DE/rand/2/
bin, and DE/current-to-best/2/bin. For all of the test algo-
rithms, the scaling factor F , the crossover rate CR,
and the population size NP are initialized to 0.5, 0.5,
and 100, respectively. Additionally, FTinit = 100 and
FTfin = 5 are used for the proposed Cauchymutation (ACM),

and FT = 5 is used for the previous Cauchy mutation (CM)
as same as in [5].

Table 1 presents the averages and the standard deviations of
the FEVs obtained by independently running each algorithm
51 times at 30 dimensions. The summary of the experimental
results is as follows.
• DE/rand/1/bin and DE/rand/2/bin: These mutation
strategies are designed for higher exploration. ACM-DE/
rand/1/bin finds 17/4 statistically better/worse solutions
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TABLE 2. Averages and standard deviations of function error values with conventional DE variants (D = 50).

FIGURE 5. Median and interquartile ranges (25th and 75th) of function error values with DE/rand/1/bin variants (D = 50).

compared to CM-DE/rand/1/bin and 24/2 com-
pared to DE/rand/1/bin. Also, ACM-DE/rand/2/bin
finds 14/8 statistically better/worse solutions com-
pared to CM-DE/rand/2/bin and 28/0 compared to
DE/rand/2/bin.

• DE/best/1/bin, DE/current-to-best/1/bin, and DE/
current-to-best/2/bin: These mutation strategies are

designed for higher exploitation. ACM-DE/best/
1/bin finds 15/1 statistically better/worse solutions
compared to CM-DE/best/1/bin and 6/1 compared
to DE/best/1/bin. Also, ACM-DE/current-to-best/1/bin
finds 18/4 statistically better/worse solutions compared
to CM-DE/current-to-best/1/bin and 19/0 compared
to DE/current-to-best/1/bin, and ACM-DE/current-to-
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TABLE 3. Averages and standard deviations of function error values with advanced DE variants (D = 30).

FIGURE 6. Median and interquartile ranges (25th and 75th) of function error values with EDEV variants (D = 30).

best/2/bin finds 20/4 statistically better/worse solu-
tions compared to CM-DE/current-to-best/2/bin and
25/2 compared to DE/current-to-best/2/bin.

• DE/current-to-rand/1: Thismutation strategy is designed
for rotation invariant. ACM-DE/current-to-rand/1 finds
21/3 statistically better/worse solutions compared
to CM-DE/current-to-rand/1 and 22/0 compared to
DE/current-to-rand/1.

Although CM-DE variants are more greedy than ACM-DE
variants, the performance differences between them on the
unimodal functions (F1-F3) are insignificant. On the con-
trary, ACM-DE variants yield significantly better perfor-
mance than CM-DE variants on the multimodal functions
(F4-F30). These observations are supported by the con-
vergence graphs of DE/rand/1/bin variants from Fig. 4.
We selected DE/rand/1/bin because it is the most widely
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TABLE 4. Averages and standard deviations of function error values with advanced DE variants (D = 50).

FIGURE 7. Median and interquartile ranges (25th and 75th) of function error values with EDEV variants (D = 50).

used one among the six conventional DE variants. As shown
in the figures, the convergence speed of CM-DE/rand/1/bin
is faster than ACM-DE/rand/1/bin, but it gets trapped in a
local optimum during the search process. On the other hand,
the convergence speed of ACM-DE/rand/1/bin is more robust
than CM-DE/rand/1/bin. We can see a similar tendency at
50 dimensions from Table 2 and Fig. 5.

As a result, the proposed Cauchy mutation can enhance
the performance of conventional DE variants that have

different characteristics such as higher exploration, higher
exploitation, and rotation invariant, especially for multimodal
functions.

B. ADVANCED DE VARIANTS
Although conventional DE variants serve as the basis for
many advanced DE variants, further investigation with
advanced DE variants may be intriguing. We applied the
proposed Cauchy mutation to six advanced DE variants,
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TABLE 5. DE/rand/1/bin with failure threshold decrease and increase
approaches (D = 30).

TABLE 6. EDEV with failure threshold decrease and increase approaches
(D = 30).

namely SaDE [11], EPSDE [12], CoDE [13], SHADE [18],
MPEDE [20], and EDEV [21]. For all of the test algorithms,
the control parameters are initialized to the recommended
values by their authors. Additionally, FTinit = 100 and
FTfin = 5 are used for the proposed Cauchy mutation, and
FT = 5 is used for the previous Cauchy mutation as same as
in [5].

Table 3 presents the averages and the standard deviations of
the FEVs obtained by independently running each algorithm
51 times at 30 dimensions. The summary of the experimental
results is as follows.

• SaDE [11] and EPSDE [12]: These are the self-adaptive
DE variants. ACM-SaDE finds 17/4 statistically
better/worse solutions compared to CM-SaDE and
14/3 compared to SaDE. Also, ACM-EPSDE finds
14/3 statistically better/worse solutions compared to
CM-EPSDE and 11/0 compared to EPSDE.

• CoDE [13]: This DE variant uses three composite
mutation strategies. ACM-CoDE finds 16/8 statisti-
cally better/worse solutions compared to CM-CoDE and
23/0 compared to CoDE.

• SHADE [18]: This DE variant uses an advanced muta-
tion strategy. ACM-SHADE finds 15/0 statistically
better/worse solutions compared to CM-SHADE and
8/1 compared to SHADE.

• MPEDE [20] and EDEV [21]: These are the multi-
population-based DE variants. ACM-MPEDE finds
15/0 statistically better/worse solutions compared to
CM-MPEDE and 18/0 compared to MPEDE. Also,
ACM-EDEV finds 15/1 statistically better/worse solu-
tions compared to CM-EDEV and 12/0 compared to
EDEV.

Although CM-DE variants are more greedy than ACM-DE
variants, the performance differences between them on the
unimodal functions (F1-F3) are insignificant. On the contrary,
ACM-DE variants yield significantly better performance than
CM-DE variants on themultimodal functions (F4-F30). These
observations are supported by the convergence graphs of
EDEV variants from Fig. 6. We selected EDEV because it
is the most recently proposed one among the six advanced
DE variants. Additionally, EDEV is a multi-population-based
DE variant that uses three DE variants that have different
characteristics. As shown in the figures, the convergence
speed of CM-EDEV is faster than ACM-EDEV, but it gets
trapped in a local optimum during the search process. On the
other hand, the convergence speed of ACM-EDEV is more
robust than CM-EDEV. We can see a similar tendency at
50 dimensions from Table 4 and Fig. 7.

As a result, the proposed Cauchy mutation can enhance the
performance of advanced DE variants, especially for multi-
modal functions.

VII. ANALYSIS OF ACM-DE
We have insisted that the performance of ACM-DE is due
to the sigmoid based parameter control and the p-best indi-
vidual based Cauchy mutation. The advantages of using the
p-best individual information over using the best individual
information have been verified successfully [9], [18], [19].
Therefore, we performed a series of experiments to verify the
contribution of the sigmoid based parameter control only.

A. SIGMOID BASED PARAMETER CONTROL
We carried out experiments with four parameter controls for
the failure threshold as follows.

1) SFTD: decreases FT as a sigmoid function of g.
2) SFTI: increases FT as a sigmoid function of g.
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TABLE 7. ACM-DE/rand/1/bin with different failure threshold settings (D = 30).

TABLE 8. ACM-EDEV with different failure threshold settings (D = 30).

3) LFTD: decreases FT as a linear function of g.
4) LFTI: increases FT as a linear function of g.

There are two failure threshold decrease approaches
(SFTD and LFTD) and two failure threshold increase
approaches (SFTI and LFTI). SFTD and LFTD assign a
high failure threshold at the beginning of the search process
and gradually reduces it over generations, while SFTI and
LFTI do the opposite. We used DE/rand/1/bin as a conven-
tional DE variant and EDEV as an advanced DE variant.
For ACM-DE/rand/1/bin, the scaling factor F , the crossover

rate CR, and the population size NP are initialized to 0.5,
0.5, and 100, respectively, and for ACM-EDEV, the con-
trol parameters are initialized to the recommended values
by their authors. Tables 5 and 6 present the averages and
the standard deviations of the FEVs obtained by indepen-
dently running DE/rand/1/bin variants and EDEV variants
51 times at 30 dimensions. As we can see from the tables,
both DE/rand/1/bin and EDEV work best with SFTD. SFTD
and LFTD yield significantly better performance than SFTI
and LFTI because SFTD and LFTD can establish a bal-
ance between exploration and exploitation, while SFTI and
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LFTI cannot. Also, SFTD yields slightly better performance
than LFTD because SFTD has higher exploration in the first
half of the search process and higher exploitation in the sec-
ond half of the search process.

B. FAILURE THRESHOLD
ACM-DE introduces two control parameters FTinit and
FTfin that determine a new failure threshold at each gen-
eration. Therefore, further investigation to find appropri-
ate control parameters may be intriguing. We carried out
experiments with seven initial failure thresholds FTinit ∈
{30, 50, 80, 100, 130, 150, 180} and one final failure thresh-
old FTfin = 5. We used DE/rand/1/bin as a conventional DE
variant and EDEV as an advanced DE variant. For ACM-
DE/rand/1/bin, the scaling factor F , the crossover rate CR,
and the population size NP are initialized to 0.5, 0.5, and
100, respectively, and for ACM-EDEV, the control param-
eters are initialized to the recommended values by their
authors. Tables 7 and 8 present the averages and the stan-
dard deviations of the FEVs obtained by independently run-
ning DE/rand/1/bin variants and EDEV variants 51 times at
30 dimensions. Aswe can see from the tables, both ACM-DE/
rand/1/bin and ACM-EDEV work best with FTinit ∈
[80, 130]. As a result, the setting of FTinit = 100 and
FTfin = 5 is considered as a standard setting of ACM-DE.

VIII. CONCLUSION
EAs need to establish a balance between exploration and
exploitation to be successful [6], [7]. The previous Cauchy
mutation of MDE was proposed to increase the convergence
speed of DE by using the best individual information and
the Cauchy distribution, which can locate the consecutively
failed individuals to new positions close to the best individual.
Although the effectiveness of MDE has been demonstrated
successfully on the classical benchmark problems, MDE
lacks robustness and faces difficulty in optimizing complex
problems because of its strong exploitation.

We have proposed a variant of MDE called advanced
Cauchy mutation DE (ACM-DE). We employed a sigmoid
based parameter control, which alters the failure thresh-
old for performing the Cauchy mutation in a time-varying
schedule. That is, ACM-DE assigns a high failure thresh-
old at the beginning of the search process and gradually
reduces it over generations. We also employed the p-best
individual based Cauchy mutation to prevent premature
convergence.

ACM-DE has been tested on a set of 30 different and
difficult CEC 2017 benchmark problems. Experiments and
comparisons were carried out with six conventional and six
advanced DE variants to demonstrate the effectiveness of the
proposed Cauchy mutation. The experiment results indicate
that the DE variants assisted by the proposed Cauchy muta-
tion have better or at least competitive performance in terms
of accuracy and robustness, particularly for multimodal func-
tions compared to the DE variants assisted by the previous
Cauchy mutation as well as the original DE variants.

Possible directions for future work include 1) design-
ing a mutation based on the multivariate Cauchy distri-
bution; 2) extending the proposed Cauchy mutation for
multi-objective optimization; 3) applying the proposed
Cauchy mutation to other population-based metaheuristics.
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